Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Optimal design of forward error correction for fairness maximisation among transmission control protocol flavours over wireless networks

Optimal design of forward error correction for fairness maximisation among transmission control protocol flavours over wireless networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A plethora of modifications to transmission control protocol (TCP) have recently been proposed, a major aim being to improve its performance over wireless links. Two schools of thought have emerged: the first investigates changes to the transport-layer protocol, whereas the second explores the potential to enhance the characteristics of lower layers to improve the end-to-end performance of TCP. This study focuses on the latter, and, in contrast to most research in this area, which thus-far has concentrated on a single TCP flavour, examines the case where different TCP flavours are competing over a wireless link. To this end, the authors present and assess a cross-layer solution to adapt the coding rate at the link-layer based on the detected TCP flavour, to maximise fairness among TCP flows. Through both analysis and simulation, the authors show that the proposed scheme considerably improves the fairness among different TCP flavours that compete over a wireless link. Furthermore, the proposed approach has minimal detrimental effect on the aggregate throughput of TCP flows.

References

    1. 1)
      • Jain, R., Chiu, D., Hawe, W.: `A quantitative measure of fairness and discrimination for resource allocation in shared computer systems', TR-301, DEC Research Report, September 1984.
    2. 2)
      • Zanella, A., Procissi, G., Gerla, M., Sanadidi, M.Y.: `TCP Westwood: analytic model and performance evaluation', Proc. IEEE GLOBECOM'01, November 2001, St. Antonio, Texas, USA, 3, p. 1703–1707.
    3. 3)
      • Jaiswal, S.: `Measurement in the middle: inferring end-end path properties and characteristics of TCP connections through passive measurement', September 2005, PhD, University of Massachusetts Amherst.
    4. 4)
      • Mahmoodi, T., Friderikos, V., Holland, O., Aghvami, A.H.: `Cross-layer design to improve wireless tcp performance with link-layer adaptation', Proc. IEEE VTC Fall, October 2007, Baltimore, MD, USA, p. 1504–1508.
    5. 5)
      • B. Sikdar , S. Kalyanaraman , K.S. Vastola . Analytic models for the latency and steady-state throughput of TCP Tahoe, Reno, and SACK. IEEE/ACM Trans. Netw. , 6 , 959 - 971
    6. 6)
      • Pilosof, S., Ramjee, R., Shavitt, Y., Sinha, P.: `Understanding TCP fairness over wireless LAN', Proc. IEEE INFOCOM'03, March 2003, San Francisco, CA, USA, 2, p. 863–872.
    7. 7)
      • Elena Lopez-Aguilera, F.R.A.D., Martin, Heusse, Casademont, J.: `Performance of wireless LAN access methods in multicell environments', Proc. IEEE GLOBECOM'06, November 2006, San Francisco, CA, USA.
    8. 8)
      • Mahmoodi, T., Friderikos, V., Holland, O., Aghvami, A.H.: `Cross-layer optimization to maximize fairness among TCP flows of different TCP flavors', Proc. IEEE GLOBECOM'08, November 2008, New Orleans, LA, USA.
    9. 9)
      • Floyd, S., Henderson, T., Gurtov, A.: `The NewReno modification to TCP's fast recovery algorithm', IETF RFC 3782, April 2004.
    10. 10)
    11. 11)
      • S. Biaz , N.H. Vaidya . De-randomizing congestion losses to improve TCP performance over wired-wireless networks. IEEE/ACM Trans. Netw. , 3 , 596 - 608
    12. 12)
    13. 13)
      • C. Barakat , E. Altman . Bandwidth tradeoff between TCP and link-level FEC. Comput. Netw. , 133 - 150
    14. 14)
      • J. Padhye , V. Firoiu , D.F. Towsley , J.F. Kurose . Modeling TCP Reno performance: a simple model and its empirical validation. IEEE/ACM Trans. Netw. , 2 , 133 - 145
    15. 15)
      • H. Jiang , C. Dovrolis . Passive estimation of TCP round-trip times. ACM Compnt. Commun. Rev. , 3 , 75 - 88
    16. 16)
      • (2001) Convolutional encoder and viterbi decoder.
    17. 17)
      • Smit, L., Smit, G., Hurink, L., Kokkeler, A.: `Soft output bit error rate estimation for WCDMA', Proc. Personal Wireless Commun., September 2003, Venice, Italy.
    18. 18)
      • V. Tsaoussidis , I. Matta . Open issues on TCP for mobile computing. Wirel. Commun. Mob. Comput. , 1 , 3 - 20
    19. 19)
      • Vacirca, F., Vendictis, A.D., Todini, A., Baiocchi, A.: `On the effects of ARQ mechanisms on TCP performance in wireless environments', Proc. IEEE GLOBECOM'03, December 2003, San Francisco, CA, USA, 2, p. 671–675.
    20. 20)
      • Barman, D., Matta, I., Altman, E., Azouzi, R.: `TCP optimization through FEC, ARQ and transmission power tradeoffs', Proc. Second Int. Conf. on Wired/Wireless Internet Communication, 2004, Frankfurt, Germany.
    21. 21)
      • Jacobson, V., Braden, R., Borman, D.: `TCP extensions for high performance', IETF RFC 1323, May 1992.
    22. 22)
      • J.G. Proakis . (1995) Digital communications.
    23. 23)
      • W.R. Stevens . (2000) TCP/IP illustrated, vol. I (The protocols).
    24. 24)
    25. 25)
      • ‘The TCP westwood model for the ns2 network simulator,’ www.cs.ucla.edu/nrl/hpi/tcpw.
    26. 26)
      • J.J. Lee , M. Gupta . (2007) A new traffic model for current user web browsing behavior.
    27. 27)
      • C. Görg , U. Vornefeld . Uniform distribution of users in a circle.
    28. 28)
      • S. Boyd , L. Vandenberghe . (2004) Convex optimization.
    29. 29)
      • Dunaytsev, R., Koucheryavy, Y., Harju, J.: `TCP NewReno throughput in the presence of correlated losses: the slow-but-steady variant', Proc. IEEE INFOCOM'06, Global Internet Workshop, April 2006, Barcelona, Spain, p. 115–120.
    30. 30)
      • Vandersteen, G., Wambacq, P., Rolain, Y., Schoukens, J.: `Efficient bit-error-rate estimation of multicarrier transceivers', Proc. Design, Automation and Test in Europe, March 2001, Munich, Germany, p. 164–168.
    31. 31)
      • R. Wang , K. Yamada , M.Y. Sanadidi , M. Gerla . TCP with sender-side intelligence to handle dynamic, large, leaky pipes. IEEE J. Sel. Areas Commun. , 3 , 235 - 248
    32. 32)
      • Z. Chen , T. Bu , M. Ammar , D.F. Towsley . Comments on modeling TCP Reno performance: a simple model and its empirical validation. IEEE/ACM Trans. Netw. , 2 , 451 - 453
    33. 33)
      • Allman, M., Paxson, V., Stevens, W.: `TCP congestion control', IETF RFC 2581, April 1999.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2009.0394
Loading

Related content

content/journals/10.1049/iet-com.2009.0394
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address