Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Low-complexity scheduling strategy for wireless multiuser multiple-input multiple-output downlink system

Low-complexity scheduling strategy for wireless multiuser multiple-input multiple-output downlink system

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new volume-based user selection algorithm with low complexity is proposed for a multiuser multiple-input and multiple-output downlink system based on block diagonalisation precoding. The new algorithm achieving this reduced computational complexity is compared with other user selection algorithms, such as semi-orthogonal user selection (SUS) and capacity-based user selection algorithms. The proposed algorithm stems from the new volume-based user selection method that uses the product of the diagonal elements in the upper-triangular matrix obtained via Householder reduction procedure of QR factorisation to the selected users channel matrix. The computational effort of the new algorithm is reduced by one-fourth compared with SUS algorithm. Compared with the capacity-based algorithm, the proposed algorithm does not need to perform the singular value decomposition operation and water-filling algorithm during each user selection step, and hence, significantly reduces the computational time. If the maximum number of supportable users is , the calculation results show that the capacity-based algorithm has 4 times the complexity of the proposed algorithm. Furthermore, the simulation results demonstrate that the volume-based algorithm displays better capacity performance than the SUS algorithm, and the sum-rate capacity of the volume-based algorithm is comparable with that of the capacity-based algorithm but with much less computational complexity.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • C.D. Meyer . (2000) Matrix analysis and applied linear algebra.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2010.0358
Loading

Related content

content/journals/10.1049/iet-com.2010.0358
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address