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Abstract—For enhancement of the quality of digital trans- II. CONVOLUTIONAL ENCODER

missions, standards are in continual evolution, which generates A uti | der is defined b t of th
compatibility problems. Cognitive radio systems permit one to convolutional encoder IS aetined by a set of three pa-

solve this problem through the design of intelligent receivers. fameters, respectively denoted byk and K, wheren is the
However, such receivers must be able to adapt themselves tonumber of outputsk is the number of inputs an& is the

a specific transmission context. This requires the development constraint length, plus & x n) generator matrix [denoted as
of new methods in order to blindly estimate error-correcting G(D)] such that

codes. Coding schemes like turbocode, composed of convolutional

codes, belong to a family of error-correcting codes in use in many g11(D) - gi1.(D)

standards. In most of the methods designed to identify convolu- " o

tional encoders the_ algebraic pro_perties are used implicitly. But G(D) = : : 1)
usually, these dedicated properties are neither explicated, nor ge1(D) -+ grna(D)

detailed, nor demonstrated. The study reported here investigates
the algebraic properties of convolutional encoders, useful for whereg; ;(D) are generator polynomials or generator rational
blind recognition methods in the cognitive radio context and more  {,nctions.

specially the algebraic relationships between different forms o .
a convolutional code and its corresponding dual code. Moreover, Let us denote byn(D) and ¢(D) the input and output

some simulation results are presented to show the relevance ofS€Jquences, respectively. So, the relation between them is
these properties for the blind identification of the convolutional expressed as

encoder. ¢(D) = m(D).G(D,). 2

I. INTRODUCTION A. Equivalent encoder

In order to meet the expectations and transmission con-One of the most important properties in the error correction
straints about data rate or readability generated by neMéory is the notion of equivalent encoder. Indeed, a given con-
applications, digital communication systems are in constaglutional code can be encoded by several different encoders.
evolution. With the fast development of new communicatioporeover, it has both systematic rational generator matrices
standards, the design of intelligent receivers has becomewhere the entries are rational functions) and polynomial
must. Indeed, such receivers can adapt to a specific tragénerator matrices (where all the entries are polynomials).
mission context through a blind estimate of the transmitt@he systematic rational generator matrices give encoders with
parameters. This requires the development of new methofigdback’. Let us denote the encoders with feedback by
to blindly estimate error-correcting codes known to enhangesC (Recursive and Systematic Code) and those with no
the quality of communications by enabling the binary dat@edback by NRNSC (Non-Recursive and Non-Systematic
stream to better withstand channel impairments such as a naistle). Properties of equivalent encoders were given in earlier
transmission channel, interferences or channel fading. For tpigpers [1], [2].
purpose, they introduce some redundancy in the informativeDefinition 1: Two convolutional generator matric&s(D)
binary data stream. and G’(D) are equivalent if they encode the same cade,

A literature review shows that most of the methods dedfwo convolutional encoders are equivalent if their generator
cated to the blind identification of convolutional encoder us@atrices are equivalent.
both some algebraic properties of convolutional encoders andrheorem1: Two rater — k/n code generator matrices
those of their dual codes. These considerations led usd®D) and G'(D) are equivalent if, and only if there is a
study certain algebraic properties of convolutional encodetsx i nonsingular matrixI'(D) such that
used in blind recovery methods. The paper is organized as
follows: section Il introduces some properties of convolutional G(D) =T(D).G'(D). 3)
encoders as well as the notion of equivalent encoder. ThenTheoremZ:
section Il investigates the relationship between the dugi

R

fi? de aTd Lhe.code. F'ti‘a"y’ Sti]c“g? 3/ showgtihe intfrr]ezt r a convolutional encoder, the choice of generator matrix is
ese algebraic properties on the biind recognition metho Se%fsential. Indeed, the various generator matrices give differ-

convolutional encoders. Our conclusion is drawn in section \ént complexities both in encoding and decoding procedures.
Email: {melanie.marazin, roland.gautier, gilles.burel}@univ-brest.fr ~ Among the generator matrices, the class corresponding to

Every convolutional generator matrix is
uivalent to a systematic rational encoding matrix.



those termed as catastrophic ones must be avoided. Indéldws, f; ;(D) corresponds to the determinant of a sub-matrix
with such a catastrophic matrix, a small number of channel L(D) obtained by deleting théth row and theith col-
errors may generate an unlimited number of errors aftemn. These generator polynomials arek-arder minor of
decoding. Furthermore, within a class of generator matric&' y gy sc (D) matrix.
for a code, the most used encoder is the one with theMost methods of blind identification allow one to find the
most desirable structural properties. These generataraesit NRNSC equivalent form of the really used encoder. Thus, the
which describe optimal convolutional encoders, have goediation between a generator matrix of an NRNSC encoder
algebraic properties ( [1], [3] ) that can be judiciously a4@d and its RSC equivalent encoder expressed in (6) is paramount
for blind identification. in blind recovery. Indeed, if the encoder is in the RSC form,
this relation permits one to get the true generator matrix.
B. Relation between the NRNSC and the RSC encoders

Evidence of the relationship between the generator matri>fII
of an NRNSC encoder and that of its RSC equivalent encoder
was given in an earlier paper [4]. It is briefly recalled héeya
prior to the study of the relationship between the dual cadk a |n this section, focus is on the relation between the geaerat

the code. For this, let us denote biy rvsc (D) a generator matrix of a dual code and the generator matrix of the RSC
matrix of an NRNSC encoder and Wyrsc (D) a generator encoder.

matrix of its RSC encoder. Then, the matty znsc(D) is

RELATIONSHIP BETWEEN THE DUAL CODE AND THE
RSCENCODER

defined by
g11(D) -+ gi.(D) A. Dual code
Gnrysc(D) = : : (4) A convolutional encoder can also be described by a dual
gk1(D) - grn(D) code generator matrix termed parity check matrix, whose

- _ properties ( [2], [5] ) are known as excellent in the blind
On condition to denote by.(D) a (k x k) sub-matrix of jdentification of convolutional encoders.

Gnrnsc(D), such that Property1: Let G(D) be a generator matrix of’. If an
g11(D) - gir(D) ((n — k) x n) polynomial matrix, H(D), is a parity check
L(D) = : : (5) matrix of C, then
gk (D) - gre(D) G(D).H™ (D) = 0. (10)

the RSC equivalent matrix is
Corollary 1: Let H(D) be a parity check matrix of’. The

1 . . .
Grsc(D) = m.adj L(D).Gyrnsc(D)  (6) output sequence(D) is a codeword sequence 6fif and only
if
where det L(D) is the determinant of.(D), and adjL(D)
is the adjoint matrix ofL(D). The matrix,Grsc(D), is a
(k x n) matrix such that

¢(D).HT (D) = 0. (12)

The methods dedicated to the blind estimation of convolu-
1 fren@D) 0 fin(D) tional encoders are based on the algebraic properties wbeon

fl’l_(D) fl’l_(D) lutional codes ( [6], [7]). In such blind recovery methodse t
Grsc(D) = o R () first step is the identification of the code parametétsi(and
1 f’vfﬁigg)” . ?ﬁ?((g)) K). Itis followed by the identification of the code parity ckec

, matrix. At last, a generator matrix of its NRNSC encoder can
where f; ;(D) and _f1,1(D) are termgd, respectively, as thése deduced from this parity check matrix. But, as observed fo
generator polynomials of'rsc (D), Vi = 1,--- kandVj = o olutional encoders, the dual code is described by many
k+1,---,n, and the feedback polynomial. _ matrices. In blind recovery, getting a parity check matrithw
ch‘corldmg to'(6), thefi*j(D.) polynqm|a|s gre obtained by good algebraic properties is essential to deduce a generato
multiplying the ith row of adjL(D) with the jth column of - 4y of its NRNSC encoder. This requirement drove us to
Gnrysc(D). An adjoint matrix is defined by gain more insight into the parity check matriéf,( D), used to

Cofi1(D) --- Cofy1(D) identify a convolutional encoder.
adj L(D) = : : (8) This parity check matrix is af(n — k) x n) matrix such
Cofix(D) - Cofyx(D) et
where Cof, ;(D) is a determinant of a sub-matrix df(D) hia(D) e haw(D) - ho(D)
obtained by deleting theth row and theith column of L(D). H(D) = : : _
Each generator polynomig ;(D) is such that B k2 (D) o k(D) ho(D)

k
fii(D) = ng,j(D).COfpyi(D). (9) Wwhere ho(D) and h; (D), Vi = 1,---,n —k andVj =
=1 1,---,k, are the generator polynomials &f(D).



B. Relation betweett/ (D) and Grsc(D)

Let us consider the previoud (D) matrix (12) in the case
where it is composed of the generator polynomials of an RSC

encoder so that

f1.k+1(D) Frek+1(D)  f1,1(D)

H(D) = :
fk,n(D)

fl,n(D) fl.l(D)
(13

This determinant has two different values

k
> 9i4(D).Cof,;(D) =0 (21)
j=1

k
> 9i(D).Cof, ;(D) = det L(D) (22)
j=1

To show that this matrix (13) is a parity check matrix of ) ] )
the NRNSC encoder equivalent to the previous RSC encodgY, resuming (21) and (22), the polynomiel,, (D), (17), is
let us denote byG(D) an NRNSC generator matrix andSuch that

by fi;(D) the generator polynomials of its RSC equivalent

encoder.

Let us denote byR(D) a (k x (n — k)) matrix defined by

R(D) = G(D).H" (D)

D k(D
7“1,1.( ) T, .k( ) (14)
7%,1(D) Tkn—k(D)
where the polynomialsy; ,,(D), Vi = 1,--- ,k andVm =
1,---,n —k, are such that

k
Tim(D) =Y 9i.j(D).fihtm(D) + giskpm(D)-f1.1(D).
j=1

(15)
According to (9), the polynomials; ,,,(D) are
k k
Tim(D) = Z Zgi,j(D)'gp,k+m(D)~COfp,j(D)
I=tp=t (16)

Kk
+ Z i k+m (D)yp,l (D).Copr (D)
p=1

Thus, splittingr; ,, (D) into two polynomials leads to

k k
rbn(D) =" 9ii(D)-gpkrm(D).Cofy (D) (17)
j=1p=1
and

k
i (D) =Y giserm(D)-gp,1 (D)-Cofy1 (D) (18)
p=1

« Study of the polynomiat; (D)

k kK
(D) =YY 9i5(D).Cofy (D).gpgesm(D).  (19)

p=1j=1

For a fixed value ofp, the part3>"_, g;;(D).Cof, (D)
corresponds to the determinant

g1,1(D) g1.x(D)
Gp14(D) - gp1x(D)
det | gp+1,1(D) Ip+1,k(D) (20)
g (D) g1 (D)
gi,l(D) gi,k(D)

ko k
Hm(D) =Y 915(D)gpsm(D).Cofy (D)

oo (23)
= det L(D).gi jsm(D)
« Study of the polynomiat?,, (D)
k
17 m(D) =Y giktm(D)-gp1(D).Cofy1(D)
= .4

= det L(D).g; k+m (D)

According to (23) and (24), the polynomia) ,,,(D), (16), is
such that
rim(D) =0 ¥i,m (25)

Thus, the matrixR(D) is composed of zero polynomials.
Consequently, the matrix defined in (12),(D), is a parity
check matrix of the encoder. In practice, it is usual to only
employ optimal convolutional encoders because their error
correction capabilities are the highest. In the blind recpv
context, the algebraic properties of these optimal cortiaial
encoders can be judiciously exploited. In fact, this getesra
strong properties on a generator matrix of an NRNSC or RSC
encoder. In this section, we proved that the generator pelyn
mials of the encoder RSC correspond to the polynomials of the
parity check matrix of its equivalent NRNSC encoder. Thus,
the parity check matrix, H(D), used to deduce the generator
matrix of an NRNSC encoder has also excellent properties for
blind identification methods.

IV. SIMULATION RESULTS

In [7], an iterative process dedicated to the blind identifi-
cation of a rate(n — 1)/n convolutional encoder in a noisy
environment is explained. The principle of this method is to
first identify the number of outputa. Then, a basis of the
dual code can be estimated. And finally, the knowledge of
these parameters allows to identify a generator matrix.uiset
recall the principle of this algorithm.

The first step is to reshape columnwise the received data bit
stream under matrix form of size}/ x ), denotedR;. This
matrix is computed for different values bfvi = 1,--- , M/2)
and for each matrix the Gauss Jordan Elimination Trough
Pivoting is applied to obtain a lower triangular matrix rebte
Gy

A.R.B =G (26)

In (26), A; is an(M x M) rows permutation matrix anf; an
(I x 1) matrix describing the columns combination. To detect



the value ofn, the principle is to find matriced?; which this problem can be corrected during the iterative process t
exhibit a degenerated rank. So, the gap between two matrigaprove the probability of identifying the true encoderdéed,

R; which have a dependent columns detected correspondsttis important to noted that the probabilities can be imgabv
n. Then a dual code basis can be built from the maltjxand by the iterative process of the blind identification methieadr
finally with (10) a linear system can be solved to estimatxample, after five iterationsP(.,— > encoder) = 0.97.

a generator matrix. But, to obtain the generator matrix of

the encoder used at the transmitter, it is important to have 1
beforehand identified the parity check matrix in the sammfor : :
of (13). ogl. . BER<10®
Here, the relevance of the algebraic properties of convolu- : :
tional codes and dual codes in the blind identification mésho ¢
is studied. An example of &’'(2,1,7) convolutional code = 0.6
is taken. This encoder is used in many standards and it is 8
described by the generator matrix and the parity check ratri £ o4t ; ; ‘ ; :
such that _ _ _P,,~—>encoder N
et . . ~
G = (133 171) andH = (171 133) (27) 02y Poet ™ H AR
. — Acceptable BErR ‘ ‘ :
where polynomials are represented in octal. 0 - - - - ; ; ;
To analyse the impact of the true identification of parity 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
check matrix upon the global performances of the blind iden- Channel error probability

tification method, two probabilities were defined as follows: . _
Figure 1. Probabilities of detection compared with

« probability of identifying the true encoder (parameters
and generator matrix) denotde,.;— > encoder;

« probability of identifying the true parity check matrix V. CONCLUSION
denotedP;.;— > H.

. ) This study described some algebraic properties of con-
Moreover, to evaluate the relevance of the probability ehid

e _ ) ... volutional encoders and those of their dual codes. It also
tifying the true encoder obtained, the different probaéibi  osented the relation between the NRNSC encoder and the
of detection are compared to the code correction capabili SC equivalent encoder, and explained the relation between
For that, let us denote b8 E'R,. the theoretical residual bit these two generator matrices (RSC and NRNSC) and their
error rate obtained after decoding of the corrupted da&@str ;v check matrix. Finally, an analysis of the impact of
with a hard decision, [2]. In [Zg th8ER, is considered as y,ose aigebraic properties upon blind identification mesho
acceptable if it is close td0™", since after this limit, the ¢ -onyolutional encoders is proposed. This study shows tha
decoded data stream is not clean enough to meet requirem@Qise 4igebraic properties are essential for the impleatient

of standard applications. , of blind identification methods.
For theC(2,1,7) code, Fig. 1 shows the different proba-

bilities compared with the channel error probability, dieb
P., and the limit of thel0—° acceptableBER,.. One should _ ) _
note that our blind identification approach based on the dualTNis study was supported by the Brittany Region (France).

code properties of convolutional encoders is pertinent and
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