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Abstract—In this paper, we study the problem of secret
communication over a multiple-access channel with a common
message. Here, we assume that two transmitters have confidential
messages, which must be kept secret from the wiretapper (the
second receiver), and both of them have access to a common
message which can be decoded by the two receivers. We call
this setting as Multiple-Access Wiretap Channel with Common
message (MAWC-CM). For this setting, we derive general inner
and outer bounds on the secrecy capacity region for the discrete
memoryless case and show that these bounds meet each other for
a special case called the switch channel. As well, for a Gaussian
version of MAWC-CM, we derive inner and outer bounds on
the secrecy capacity region. Providing numerical results for the
Gaussian case, we illustrate the comparison between the derived
achievable rate region and the outer bound for the considered
model and the capacity region of compound multiple access
channel.

I. INTRODUCTION

In a seminal work, the wire-tap channel was introduced by
Wyner [1], where a sender wishes to communicate a message
to a receiver while keeping the message secret from an
eavesdropper. He established the secrecy capacity for a single-
user degraded wire-tap channel. Later, Csiszár and Körner
extended the wire-tap channel to a more generalized model
called the broadcast channel with confidential messages [2]
and computed its secrecy capacity.

The problem of secret communication over multi-user chan-
nels has recently attracted remarkable attention [3]–[13]. In
[3], [4], Multiple Access Channel (MAC) with generalized
feedback has been considered, where in [3] the encoders do
not need to keep their messages secret from each other, but
their messages should be kept secret from an external eaves-
dropper. Whereas in [4] each user views the other user as an
eavesdropper and wishes to keep its confidential information
as secret as possible from the other user.

The Multiple Access Wire-tap Channel (MAWC) (i.e. multi-
ple access channel with an external eavesdropper) under strong
secrecy criterion has been studied in [5]. In [6], MAWC has
been studied assuming that there exists a common message
while the eavesdropper is unable to decode it. For this model
an achievable rate region for discrete memoryless case under
the strong secrecy criterion has been derived. A degraded
Gaussian MAWC, in which the eavesdropper receives a de-
graded version of the legitimate receiver’s signal, has been
studied in [7] and an achievable rate region for this setting

has been established. In [9] general Gaussian MAWC has
been considered such that an achievable rate region has been
derived. The problem of lossy source transmission over a
MAWC was considered in [14].

The influence of partial encoder cooperation on the se-
crecy capacity of the MAWC has been studied in [10]. In
their considered setting, two encoders that are connected
by two communication links with finite capacities wish to
send secret messages to the common intended decoder in the
presence of an eavesdropper. In their model the transmitters
do not have any common messages. The compound MAC
(two-transmitter/two-receiver MAC) with conferencing links
between both encoders and decoders without any secrecy
constraint has been studied in [15]. In [16], we have considered
compound MAC with confidential messages so that the first
transmitter’s private message is confidential and are only
decoded by the first receiver, and kept secret from the second
receiver, while the common message and the private message
of the second transmitter are decoded by both receivers.

In this paper, we investigate secrecy constraints in a multiple
access channel with a common message. We call our model
as Multiple-Access Wiretap Channel with Common Message
(MAWC-CM). To interpret this model, it can be noted that in
wireless networks there may be a scenario in which the users
may have a common message which can be decoded by all
users in addition to the confidential information that wish to
be kept secret from illegal users. Motivated by this scenario,
we consider MAWC-CM as a building block of this setting.
In this model, each transmitter sends its own private message
while both of them have a common message. Both of the
transmitter’s private messages (W1 and W2) are confidential
and are only decoded by the first receiver and kept secret from
the second receiver. The common message W0 is decoded by
both receivers (see Fig. 1). For this model, we derive single-
letter inner and outer bounds on the secrecy capacity region.
We also study a switch channel which is a special case of our
model and show that the derived inner and outer bounds meet
each other for this case. We also consider Gaussian MAWC-
CM and derive inner and outer bounds on its secrecy capacity
region. Providing some numerical examples for Gaussian
MAWC-CM, we compare the derived achievable rate region
and outer bound for the Gaussian case with each other and also
with the capacity region of the Gaussian compound MAC. The
considered examples illustrate the impact of noise power and
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Fig. 1 Multiple Access Wire-tap Channel with Common Message
(MAWC-CM)
secrecy constraints on the rate regions. We show that there
are scenarios for which the secret transmissions may increase
achievable rate region in compare with the case that requires
the second receiver to decode the private messages.

The rest of this paper is organized as follows. In Section II,
the notations and the system model are described. In Sec-
tion III, outer and inner bounds on the secrecy capacity region
of discrete memoryless MAWC-CM are established and it
is shown that these bounds meet each other for the switch
channel model. An achievable secrecy rate region and an outer
bound on the secrecy capacity region of Gaussian MAWC-CM
are derived in Section IV. Finally, Section V concludes the
paper.

II. NOTATIONS AND SYSTEM MODEL

In this paper, the random variables are represented by
capital letters e.g., X , the realizations of random variables are
represented by lower case letters e.g., x and their alphabets
are represented by X . The T nε (PXY ) indicates the set of
ε−strongly jointly typical sequences [11] of length n, on joint
distribution PX,Y . Xn

i indicates vector (Xi,1, Xi,2, . . . , Xi,n),
and Xk

i,j indicates vector (Xi,j , Xi,j+1, . . . , Xi,k). The cardi-
nality of U is denoted by |U|.

Definition 1: Consider a discrete memoryless MAWC-CM
(X1,X2, p(y1, y2|x1, x2),Y1,Y2) where X1 and X2 are the
finite input alphabets of transmitters, Y1 and Y2 are the
channel output alphabets of receiver 1 and receiver 2, respec-
tively (Fig. 1) and p(y1, y2|x1, x2) is the channel transition
probability distribution.

Definition 2: A (2nR0 , 2nR1 , 2nR2 , n) code for the MAWC-
CM (Fig. 1) consists of the followings: i) Three message
sets Wu = {1, ..., 2nRu} for u = 0, 1, 2 where independent
messages W0, W1 and W2 are uniformly distributed over
respective sets. ii) Two stochastic encoders gk, k = 1, 2, for
transmitter k that are specified by gk : W0 ×Wk → Xnk for
k = 1, 2. iii) Two decoding functions φ : Yn1 →W0×W1×W2

and ρ : Yn2 → W0. The first decoder is at the legitimate
receiver and assigns (Ŵ01, Ŵ1, Ŵ2) ∈ W0 × W1 × W2 to
each received sequence yn1 . The second decoder assigns an
estimate Ŵ02 ∈ W0 to each received sequence yn2 . The average
probability of error is defined as,

Pne,1 = Pr{(Ŵ01, Ŵ1, Ŵ2) 6= (W0,W1,W2)} (1)

Pne,2 = Pr{(Ŵ02) 6= (W0)} (2)

Pne = max{Pne,1, Pne,2} (3)

The ignorance level of the eavesdropper (Receiver 2), with
respect to the confidential messages W1 and W2, is measured
by equivocation rate (1/n)H(W1,W2|Y n2 ).

Definition 3: A rate tuple (R0, R1, R2) is said to be achiev-
able for MAWC-CM, if for any ε > 0 there exists a

(2nR0 , 2nR1 , 2nR2 , n) code which satisfies

Pne < ε (4)

R1 +R2 −
1

n
H(W1,W2|Y n2 ) ≤ ε (5)

for sufficiently large n. Note that secrecy requirement (5)
implies:

Rk −
1

n
H(Wk|Y n2 ) ≤ ε for k = 1, 2 (6)

that also has been shown in [3]. The secrecy capacity region
of the MAWC-CM is defined as the closure of the set of all
achievable rate tuples (R0, R1, R2).

III. DISCRETE MEMORYLESS MAWC-CM

In this section, we derive an outer bound on the secrecy
capacity region of discrete memoryless MAWC-CM in Theo-
rem 1 and an inner bound in Theorem 2. We show that these
bounds meet each other in a special case.

A. Outer Bound

Theorem 1: (Outer bound) The secrecy capacity region of
MAWC-CM is included in the set of rates satisfying

R0 ≤ min{I(U ;Y1), I(U ;Y2)} (7)
R1 ≤ I(V1;Y1|U)− I(V1;Y2|U) (8)
R2 ≤ I(V2;Y1|U)− I(V2;Y2|U) (9)

R1 +R2 ≤ I(V1, V2;Y1|U)− I(V1, V2;Y2|U) (10)

for some joint distribution

p(u)p(v1, v2|u)p(x1|v1)p(x2|v2)p(y1, y2|x1, x2) (11)

where the auxiliary random variables U , V1 and V2 are
bounded in cardinality by

|U| ≤ |X1|.|X2|+ 7 (12)
|V1| ≤ (|X1|.|X2|+ 3).(|X1|.|X2|+ 7) (13)
|V2| ≤ (|X1|.|X2|+ 3).(|X1|.|X2|+ 7). (14)

Proof: See Appendix A.
Remark 1: If transmitter 1 (or transmitter 2) does not send

any messages, by setting V1 = ∅ (or V2 = ∅) in Theorem 1 the
region reduces to the capacity region of the broadcast channel
with confidential messages discussed in [2].

B. Achievability

Theorem 2: (Achievability) For a discrete memoryless
MAWC-CM, the secrecy rate region R(πI) is achievable,
where R(πI) is the closure of the convex hull of all non-
negative (R0, R1, R2) satisfying

R0 ≤ I(U ;Y2) (15)
R1 ≤ I(V1;Y1|V2, U)− I(V1;Y2|U) (16)
R2 ≤ I(V2;Y1|V1, U)− I(V2;Y2|U) (17)

R1 +R2 ≤ I(V1, V2;Y1|U)− I(V1, V2;Y2|U) (18)
R0 +R1 +R2 ≤ I(V1, V2;Y1)− I(V1, V2;Y2|U) (19)
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Fig. 2 The Switch channel model.

and πI denotes the class of joint probability mass functions
p(u, v1, v2, x1, x2, y1, y2) that factor as

p(u)p(v1|u)p(v2|u)p(x1|v1)p(x2|v2)p(y1, y2|x1, x2) (20)

in which the auxiliary random variables U , V1 and V2 are
bounded in cardinality by

|U| ≤ |X1|.|X2|+ 6 (21)
|V1| ≤ (|X1|.|X2|+ 5).(|X1|.|X2|+ 6) (22)
|V2| ≤ (|X1|.|X2|+ 5).(|X1|.|X2|+ 6). (23)

Proof: In the following, we provide outlines of our
achievable scheme and the details of the proof are referred to
Appendix B. In the coding scheme we use superposition tech-
nique and Wyner’s wiretap coding [1], as the secrecy achiev-
ability method. We illustrate the common message w0 with the
auxiliary codeword un. All receivers are able to decode this
codeword. Therefore, it does not need to be protected from
the illegal user by Wyner’s coding technique. The auxiliary
codeword vn1 , which illustrates the private message w1, is
superimposed on top of un and is decoded only by receiver 1.
Also, the auxiliary codeword vn2 , which illustrates the message
w2, is superimposed on top of un and is decoded only by
receiver 1. These codewords are protected from the illegal user
by Wyner’s coding technique. The structure of the encoder is
depicted in Fig. 7 in Appendix B. Transmitted codewords xn1
and xn2 are drawn based on vn1 and vn2 respectively, according
to (20).

Remark 2: If we convert our model to a MAWC without
common message, by setting U = ∅, V1 = X1 and V2 = X2

in Theorem 2, the region reduces to the achievable secrecy
rate region of the MAWC without common message that is
reported in [3] and its Gaussian version is firstly introduced
in [7] and [9].

Remark 3: If we convert the model to a broadcast channel
with confidential messages, our region includes the region
discussed by Csiszár and Körner in [2]. It can be verified by
setting V1 = ∅ or V2 = ∅ in (15)-(19).

C. Switch Channel

Now, we obtain the secrecy capacity region for a switch
channel. In the switch channel (see Fig. 2) the receivers cannot
listen to both transmitters at the same time. For example,
each receiver can listen to only one frequency whereas each
transmitter can broadcast at various frequencies during the
symbol time i. We assume that at each symbol time i, each
receiver t for t ∈ {1, 2} has access to a random switch
st ∈ {1, 2}, which independently is set to t or t̄ with

probabilities

P (St,i = t) = τt (24)
P (St,i = t̄) = 1− τt, i = 1, ..., n (25)

where t̄ is complement of t. Hence, if St,i = t, receiver t for
t ∈ {1, 2} listens to the signal sent by the transmitter t (i.e.
xt,i) and if St,i = t̄, receiver t listens to the signal sent by the
transmitter t̄ (i.e. xt̄,i). The switch channel is investigated in
[12] as a special case of Interference channel. We generalize
the interpretation of a switch channel to our model as follows:
Consider a MAC with a common message and an eavesdropper
that the legal receiver (receiver 1) can listen to only one of the
transmitters at each time instant that is determined by the first
switch state. The illegal receiver (in terms of private messages)
can eavesdrop only one of the transmitters which is determined
by the second switch state. We also assume that both receivers
have access to switch state information. Thus, we have

P (yt,i|x1,i, x2,i, st,i) = P (yt,i|x1,i)1(st,i = 1)

+ P (yt,i|x2,i)1(st,i = 2) = P (yt,i|xst,i,i) (26)

where 1(.) is the indicator function. The switch state infor-
mation {St,i}ni=1 is an i.i.d. process known at receiver t.
Therefore, we can assume that st,i is a part of the channel
output. In other words, we set

yt,i , {kt,i, st,i} (27)

where kt,i indicates the received signal at receiver t. For the
described switch channel, we have the following theorem for
the secrecy capacity region.

Theorem 3: For the switch channel with two confidential
messages and one common message, the secrecy capacity
region CS is the union of all (R0, R1, R2) satisfying

R0 ≤ I(U ;Y2) (28)
R1 ≤ I(V1;Y1|U)− I(V1;Y2|U) (29)
R2 ≤ I(V2;Y1|U)− I(V2;Y2|U) (30)

R1 +R2 ≤ I(V1, V2;Y1|U)− I(V1, V2;Y2|U) (31)
R0 +R1 +R2 ≤ I(V1, V2;Y1)− I(V1, V2;Y2|U) (32)

over all distributions

p(u)p(v1|u)p(v2|u)p(x1|v1)p(x2|v2)p(y1, y2|x1, x2) (33)

where the auxiliary random variables U , V1 and V2 are
bounded in cardinality by

|U| ≤ |X1|.|X2|+ 6 (34)
|V1| ≤ (|X1|.|X2|+ 4).(|X1|.|X2|+ 6) (35)
|V2| ≤ (|X1|.|X2|+ 4).(|X1|.|X2|+ 6). (36)

Proof: See Appendix C.

IV. GAUSSIAN MAWC-CM

In this section, we consider Gaussian MAWC-CM as shown
in Fig. 3, and derive inner and outer bounds on its secrecy
capacity region. Relationships between the inputs and outputs
of the channel, as shown in Fig. 3, are given by
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Y1 = X1 +X2 +N1 (37)
Y2 = X1 +X2 +N2 (38)

where N1 and N2 are independent zero-mean Gaussian Ran-
dom Variables (RVs), with variances σ2

1 and σ2
2 , and indepen-

dent of the RVs X1, X2. We impose the power constraints
1
n

∑n
i=1E[X2

j,i] ≤ Pj , j = 1, 2.

A. Outer Bound

Theorem 4: (Outer bound) The secrecy capacity region for
the Gaussian MAWC-CM is included in the set of rates
satisfying

⋃





R0 ≤ min{C( (1−β1)P1+(1−β2)P2+(1−β1β2)ρ
√
P1P2

β1P1+β2P2+2β1β2ρ
√
P1P2+σ2

1

)

, C( (1−β1)P1+(1−β2)P2+(1−β1β2)ρ
√
P1P2

β1P1+β2P2+2β1β2ρ
√
P1P2+σ2

2

)}
R1 +R2 ≤ [C

(
β1P1+β2P2+2β1β2ρ

√
P1P2

σ2
1

)

−C
(
β1P1+β2P2+2β1β2ρ

√
P1P2

σ2
2

)
]+

(39)
where C(x) = (1/2) log(1 + x) and the union is taken over
all 0 ≤ β1 ≤ 1, 0 ≤ β2 ≤ 1 and 0 ≤ ρ ≤ 1.

Proof: See Appendix D.

B. Inner Bound

Theorem 5: (Achievability) An inner bound on the secrecy
capacity region of Gaussian MAWC-CM is:

⋃





R0 ≤ C(
β2
1P1+β2

2P2+2β1β2

√
P1P2

(1−β2
1)P1+(1−β2

2)P2+σ2
2

)

R1 ≤ C(
(1−β2

1)P1

σ2
1

)− C(
(1−β2

1)P1

(1−β2
2)P2+σ2

2
)

R2 ≤ C(
(1−β2

2)P2

σ2
1

)− C(
(1−β2

2)P2

(1−β2
1)P1+σ2

2
)

R1 +R2 ≤ C(
(1−β2

1)P1+(1−β2
2)P2

σ2
1

)

−C(
(1−β2

1)P1+(1−β2
2)P2

σ2
2

)

R0 +R1 +R2 ≤ C(P1+P2+2β1β2

√
P1P2

σ2
1

)

−C(
(1−β2

1)P1+(1−β2
2)P2

σ2
2

)

(40)

where C(x) = (1/2) log(1 + x) and the union is taken over
all 0 ≤ β1 ≤ 1 and 0 ≤ β2 ≤ 1.

Proof: The achievable rate region in Theorem 2 can be
extended to the discrete-time Gaussian memoryless case with
continuous alphabets by standard arguments [17]. Hence, it
is sufficient to evaluate (15)-(19) with appropriate choice of
input distribution to reach (40). We constrain all the inputs
to be Gaussian. For certain 0 ≤ β1 ≤ 1 and 0 ≤ β2 ≤ 1

consider the following mapping in (41)-(44) for the generated
codebook in Theorem 2 with respect to the p.m.f (20), which
contains the Gaussian version of the superposition coding and
random binning:

V1 =
√
P1β1U +

√
P1(1− β2

1)K1 (41)

X1 = V1 (42)

V2 =
√
P2β2U +

√
P2(1− β2

2)K2 (43)

X2 = V2. (44)

where U , K1 and K2 are independent, zero-mean and unit
variance Gaussian RVs. Using the above mapping with the
channel model in (37)-(38), and by calculating mutual infor-
mation functions for Gaussian RVs similar to the method in
[17], we have:

I(U ;Y2) = C(
β2

1P1 + β2
2P2 + 2β1β2

√
P1P2

(1− β2
1)P1 + (1− β2

2)P2 + σ2
2

) (45)

I(V1;Y1|V2, U) = C(
(1− β2

1)P1

σ2
1

) (46)

I(V1;Y2|U) = C(
(1− β2

1)P1

(1− β2
2)P2 + σ2

2

) (47)

I(V2;Y1|V1, U) = C(
(1− β2

2)P2

σ2
1

) (48)

I(V2;Y2|U) = C(
(1− β2

2)P2

(1− β2
1)P1 + σ2

2

) (49)

I(V1, V2;Y1|U) = C(
(1− β2

1)P1 + (1− β2
2)P2

σ2
1

) (50)

I(V1, V2;Y2|U) = C(
(1− β2

1)P1 + (1− β2
2)P2

σ2
2

) (51)

I(V1, V2;Y1) = C(
P1 + P2 + 2β1β2

√
P1P2

σ2
1

) (52)

where C(x) = (1/2) log(1 + x). Considering Theorem 2 and
(45)-(52) completes the proof.
As mentioned in the Introduction section we aim to compare
our derived bounds with each other and also with the capacity
region of the Gaussian compound MAC. Hence, we first derive
this region as follows.

Theorem 6: The capacity region of Gaussian compound
MAC with common information is given by:

⋃





R1 ≤ min{C(
P1(1−β2

1)

σ2
1

), C(
P1(1−β2

1)

σ2
2

)}
R2 ≤ min{C(

P2(1−β2
2)

σ2
1

), C(
P2(1−β2

2)

σ2
2

)}
R1 +R2 ≤ min{C(

P1(1−β2
1)+P2(1−β2

2)

σ2
1

)

, C(
P1(1−β2

1)+P2(1−β2
2)

σ2
2

)}
R0 +R1 +R2 ≤ min{C(P1+P2+2

√
P1P2β1β2

σ2
1

)

, C(P1+P2+2
√
P1P2β1β2

σ2
2

)}

(53)

where C(x) = (1/2) log(1 + x) and the union is taken over
all 0 ≤ β1 ≤ 1 and 0 ≤ β2 ≤ 1.

Proof: It is clear that to obtain this capacity region,
Propositions 6.1 and 6.2 in [15], which are outer and inner
bounds on the capacity region of the Gaussian compound



5

Fig. 4 Achievable rate region and Outer bound of Gaussian MAWC-
CM for P1 = P2 = 1, σ2

1 = 0.1 and σ2
2 = 0.3.

MAC with conferencing links, can be modified by setting
C12 = C21 = 0 in them (i.e., ignoring conferencing links)
and by adopting them to our defined channel parameters in
(37) and (38).

C. Examples

In this part, we provide numerical examples and compare
our derived inner and outer bounds on the secrecy capacity re-
gion of Gaussian MAWC-CM. We also compare these bounds
with the capacity region of the Gaussian compound MAC
illustrated in (53). As an example, for the values P1 = P2 = 1,
σ2

1 = 0.1 and σ2
2 = 0.3 the outer bound in Theorem 4 and the

achievable rate region in Theorem 5 are depicted in Fig. 4.
In order to illustrate the effect of secrecy constraint and noise
power on the rate region of MAWC-CM, we also compare
our derived regions with the capacity region of the Gaussian
compound MAC in (53). These comparisons are shown in
Figures 5 and 6. Actually, in the Compound MAC (CMAC)
both receivers should decode W0,W1,W2 reliably, while in
the defined MAWC-CM model the messages W1 and W2

should be kept secret from receiver 2. As it can be seen in
Fig. 5 for channel parameters P1 = P2 = 1, σ2

1 = 0.1
and σ2

2 = 0.3 (i.e., the same as for Fig. 4) the achievable
rates and outer bounds on R1 and R2 (rate of W1 and W2

respectively, which are decoded by receiver 1) for MAWC-
CM is less than that for CMAC due to secrecy constraint for
decoding messages W1 and W2. Note that in Figures 5 and 6
we present the regions in two-dimensional by projecting on R0

plane to have a better illustration. Based on (53) it is clear that
if the noise power of receiver 2 (i.e., σ2

2) increases, the capacity
region of Gaussian CMAC may remain as before or decreases
(i.e., it does not increase). On the other hand, there exist
scenarios for MAWC-CM (see (40)) for which increasing σ2

2

results in increasing its achievable rate region. For comparison,
assume changing σ2

2 = 0.3 to σ2
2 = 0.6 in the above example.

As it can be seen in Fig. 6, the achievable rate region of
MAWC-CM is larger than the capacity region of CMAC for
the new parameters. This can be interpreted as follows: the
transmitted signals from transmitters 1 and 2 are extremely
attenuated at the receiver 2 in comparison to the investigated
case shown in Fig. 5. So, for this case the requirement of
secrecy of W1 and W2 from receiver 2 in MAWC-CM can
increase the achievable rate region in comparison with that of
CMAC wherein W1 and W2 should be reliably decoded by
receiver 2.

Fig. 5 Achievable rate region and Outer bound of Gaussian MAWC-
CM and the Capacity region of Gaussian CMAC for P1 = P2 = 1,
σ2
1 = 0.1 and σ2

2 = 0.3.

Fig. 6 Achievable rate region of Gaussian MAWC-CM and the
Capacity region of Gaussian CMAC for P1 = P2 = 1, σ2

1 = 0.1 and
σ2
2 = 0.6.

V. CONCLUSIONS

In this paper, we have studied the secrecy capacity region
of Multiple Access Wire-tap Channel with Common Message
(MAWC-CM). We have obtained inner and outer bounds on
the secrecy capacity region for the general MAWC-CM and
showed that these bounds meet each other for the switch
channel model. As well, we have studied Gaussian MAWC-
CM and derived inner and outer bounds on its secrecy capacity
region. Providing numerical examples for the Gaussian case,
we have illustrated the impact of noise and secrecy constraint
on the capacity region. We have shown that there are scenarios
for which the secret transmissions may increase achievable
rate region in compare with the case that requires receiver 2
to decode the private messages.
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APPENDIX A
PROOF FOR THEOREM 1

The basis for deriving our outer bound is using Fano’s
inequality [18] and applying the techniques in [2] to consider
the secrecy constraints.

Consider a (2nR0 , 2nR1 , 2nR2 , n, Pne ) code for the MAWC-
CM. Applying Fano’s inequality results in

H(W0,W1,W2|Y n1 ) ≤ nε1 (54)
H(W0|Y n2 ) ≤ nε2. (55)
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where εi → 0, i = 1, 2 as Pne → 0.
In order to derive the upper bound on R1, we first present

the bound on H(W1|Y n2 ) as follows:

H(W1|Y n2 ) = H(W1|Y n2 ,W0) + I(W1;W0|Y n2 )

= H(W1|Y n2 ,W0) +H(W0|Y n2 )−H(W0|Y n2 ,W1)

(a)

≤ H(W1|Y n2 ,W0) + nε2

(b)

≤ H(W1|Y n2 ,W0)−H(W1|Y n1 ,W0) + n(ε1 + ε2)

= I(W1;Y n1 |W0)− I(W1;Y n2 |W0) + n(ε1 + ε2)

=

n∑

i=1

[I(W1;Y1,i|W0, Y
i−1
1 )− I(W1;Y2,i|W0, Y

n
2,i+1)]

+ n(ε1 + ε2)

(c)
=

n∑

i=1

[I(W1;Y1,i|W0, Y
i−1
1 , Y n2,i+1)

− I(W1;Y2,i|W0, Y
i−1
1 , Y n2,i+1)] + nε′

(d)
=

n∑

i=1

[I(V1,i;Y1,i|Ui)− I(V1,i;Y2,i|Ui)] + nε′ (56)

where (a) and (b) result from Fano’s inequality in (54) and
(55). The equality (c) results from [19, Lemma 17.12] (i.e.,
Csiszár’s sum Lemma [2]), and setting ε′ = ε1 + ε2. The
equality (d) results from the following definitions of the
random variables in (57)-(59).

Ui = W0, Y
i−1
1 , Y n2,i+1 (57)

V1,i = (W1, Ui) (58)
V2,i = (W2, Ui). (59)

Now, we have

H(W1|Y n2 )
(a)

≤ n

n∑

i=1

p(Q = i)[I(V1,Q;Y1,Q|UQ, Q = i)

− I(V1,Q;Y2,Q|UQ, Q = i)] + nε′

= n[I(V1,Q;Y1,Q|UQ, Q)− I(V1,Q;Y2,Q|UQ, Q)] + nε′

(b)
= n[I(V1;Y1|U)− I(V1;Y2|U)] + nε′ (60)

where (a) results from considering Q with a uniform distri-
bution over {1, 2, ..., n} outcomes and (b) is due to defining
V1,Q = V1, V2,Q = V2, Y1,Q = Y1, Y2,Q = Y2 and
(UQ, Q) = U . Using (6) and (60) we derive the bound on
R1 as follows

R1 ≤ I(V1;Y1|U)− I(V1;Y2|U). (61)

Now, we derive the bound on R2. Using (6) and proceeding
the same way as for deriving the bound on H(W1|Y n2 ), the
bound on H(W2|Y n2 ) and hence the bound on R2 can be
derived as follows:

R2 ≤ I(V2;Y1|U)− I(V2;Y2|U) (62)

Based on (5) we have: for any ε > 0,

n(R1 +R2)− nε ≤ H(W1,W2|Y n2 ) (63)

for all sufficiently large n. Hence, to derive the bound on R1+
R2 we first derive the bound on H(W1,W2|Y n2 ) as follows:

H(W1,W2|Y n2 ) = H(W1,W2|Y n2 ,W0) + I(W1,W2;W0|Y n2 )

(a)

≤ H(W1,W2|Y n2 ,W0) + nε2

(b)

≤ H(W1,W2|Y n2 ,W0)−H(W1,W2|Y n1 ,W0) + n(ε1 + ε2)

= I(W1,W2;Y n1 |W0)− I(W1,W2;Y n2 |W0) + n(ε1 + ε2)

=

n∑

i=1

[I(W1,W2;Y1,i|W0, Y
i−1
1 )

− I(W1,W2;Y2,i|W0, Y
n
2,i+1)] + n(ε1 + ε2)

(c)
=

n∑

i=1

[I(W1,W2;Y1,i|W0, Y
i−1
1 , Y n2,i+1)

− I(W1,W2;Y2,i|W0, Y
i−1
1 , Y n2,i+1)] + nε′

(d)
=

n∑

i=1

[I(V1,i, V2,i;Y1,i|Ui)− I(V1,i, V2,i;Y2,i|Ui)] + nε′

(64)

where (a) and (b) result from Fano’s inequality in (54) and
(55) respectively. The equality (c) results from Csiszár’s sum
Lemma, and setting ε′ = ε1+ε2. The equality (d) results from
the definitions of the random variables as (57)-(59). Using (63)
and (64) and by applying the same time-sharing strategy as
before, we have

R1 +R2 ≤ I(V1, V2;Y1|U)− I(V1, V2;Y2|U) + ε? (65)

where ε? = ε + ε′. Finally, we derive the bound on R0 as
follows:

nR0 = H(W0)

= I(W0;Y n1 ) +H(W0|Y n1 )

≤ I(W0;Y n1 ) + nε1

=

n∑

i=1

I(W0;Y1,i|Y i−1
1 ) + nε1

=
n∑

i=1

[I(W0, Y
i−1
1 ;Y1,i)− I(Y i−1

1 ;Y1,i)] + nε1.

So, we have

nR0 ≤
n∑

i=1

I(W0, Y
i−1
1 ;Y1,i) + nε1

=

n∑

i=1

[I(W0, Y
i−1
1 , Y n2,i+1;Y1,i)

− I(Y n2,i+1;Y1,i|W0, Y
i−1
1 )] + nε1

≤
n∑

i=1

I(W0, Y
i−1
1 , Y n2,i+1;Y1,i) + nε1

=

n∑

i=1

I(Ui;Y1,i) + nε1. (66)

By applying the same time-sharing strategy as before, we
have

R0 ≤ I(U ;Y1) + ε1. (67)
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Also we have,

nR0 = H(W0)

= I(W0;Y n2 ) +H(W0|Y n2 )

≤ I(W0;Y n2 ) + nε2

=

n∑

i=1

I(W0;Y2,i|Y n2,i+1) + nε2

=

n∑

i=1

[I(W0, Y
n
2,i+1;Y2,i)− I(Y n2,i+1;Y2,i)] + nε2.

So, we have

nR0 ≤
n∑

i=1

I(W0, Y
n
2,i+1;Y2,i) + nε2

=

n∑

i=1

[I(W0, Y
i−1
1 , Y n2,i+1;Y2,i)

− I(Y i−1
1 ;Y2,i|W0, Y

n
2,i+1)] + nε2

≤
n∑

i=1

I(W0, Y
i−1
1 , Y n2,i+1;Y2,i) + nε2

=

n∑

i=1

I(Ui;Y2,i) + nε1. (68)

By applying the same time-sharing strategy as before, we
have

R0 ≤ I(U ;Y2) + ε2. (69)

Therefore, from (67) and (69) we have:

R0 ≤ min{I(U ;Y1), I(U ;Y2)}. (70)

Considering (61), (62), (65) and (70), the region in (7)-(10)
is obtained. The bounds on cardinality of |U|, |V1| and |V2|
can be derived by following the steps in [2, Appendix]. This
completes the proof.

APPENDIX B
PROOF FOR THEOREM 2

As described in Section III.B, we use the coding structure as
illustrated in Fig. 7. More precisely, the codebook generation
is as follows:

1) Codebook generation: Fix
p(u), p(v1|u), p(v2|u), p(x1|v1) and p(x2|v2). Let

R′1 +R′2 = I(V1, V2
;Y2|U)− ε, (71)

where ε > 0 and ε→ 0 as n→∞.
i) Generate 2nR0 length-n codewords un through p(un) =∏n

i=1 p(ui) and index them as un(w0), w0 ∈
{1, ..., 2nR0}.

ii) For each codeword un(w0), generate 2nR̃1 length-n code-
words vn1 through p(vn1 |un) =

∏n
i=1 p(v1,i|ui), where

R̃1 = R1 + R′1. Then, randomly bin 2nR̃1 codewords
into 2nR1 bins, and index them as vn1 (w0, w1, q), where
w1 ∈ {1, ..., 2nR1} is the bin number and q ∈ Q =
{1, ..., 2nR′1} is the index of codewords in the bin number
w1.

The codebook for user 2 is generated in the same way.

2) Encoding: Assume that (w0, w1) is the message pair
to be transmitted, the encoder g1 randomly chooses index q
corresponding to (w0, w1) and then generates a codeword Xn

1

at random according to
∏n
i=1 p(x1,i|v1,i). Transmitter 2 uses

the same way to encode (w0, w2).

3) Decoding and Probability of error:
Decoding:

• The legitimate receiver (Receiver 1) decodes
(ŵ01, ŵ1, ŵ2) by looking for the unique (un, vn1 , v

n
2 ) such

that (un(ŵ01), vn1 (ŵ01, ŵ1, q), v
n
2 (ŵ01, ŵ2, q

′), yn1 ) ∈
Tnε (PUV1V2Y1

).
• Receiver 2 decodes ŵ02 by looking for the unique un

such that (un(ŵ02), yn2 ) ∈ Tnε (PUY2).

Probability of Error Analysis: Define the events

Er,w0,w1,w2
= {(un(ŵ01), vn1 (ŵ01, ŵ11, q)

, vn2 (ŵ01, ŵ21, q
′), yn1 ) ∈ Tnε (PUV1V2Y1

)} (72)
Ee,w0

= {(un(ŵ02), yn2 ) ∈ Tnε (PUY2
)}. (73)

Without loss of generality, we assume that (w0, w1, w2) =
(1, 1, 1) was sent. We can bound the probability of error in
Receiver 1 using the union bound:

Pne,1(1, 1, 1) = Pr{Ecr,1,1,1
⋃

w0 6=1

Er,w0,1,1

⋃

w1 6=1

Er,1,w1,1

⋃

w0 6=1
w1 6=1

Er,w0,w1,1

⋃

w2 6=1

Er,1,1,w2

⋃

w0 6=1
w2 6=1

Er,w0,1,w2

⋃

w1 6=1
w2 6=1

Er,1,w1,w2

⋃

w0 6=1
w1 6=1
w2 6=1

Er,w0,w1,w2} (74)

≤ Pr{Ecr,1,1,1}+
∑

w0 6=1

Pr{Er,w0,1,1}

+
∑

w1 6=1

∑

q

Pr{Er,1,w1,1}+
∑

w0 6=1

∑

w1 6=1

∑

q

Pr{Er,w0,w1,1}

+
∑

w2 6=1

∑

q′

Pr{Er,1,1,w2}+
∑

w0 6=1

∑

w2 6=1

∑

q′

Pr{Er,w0,1,w2}

+
∑

w1 6=1

∑

q

∑

w2 6=1

∑

q′

Pr{Er,1,w1,w2}

+
∑

w0 6=1

∑

w1 6=1

∑

q

∑

w2 6=1

∑

q′

Pr{Er,w0,w1,w2
}. (75)

In the same way we can bound the probability of error in
Receiver 2 using the union bound as:

Pne,2(1, 1, 1) = Pr{Ece,1
⋃

w0 6=1

Ee,w0
}

≤ Pr{Ece,1}+
∑

w0 6=1

Pr{Ee,w0
} (76)



8

1

2nR0

...

...

...

un(w0)
•

1

2nR2

•

...

...

...

vn
2 (w0, w2, q′)

1 2 2nR′2. . .
. . .

. . .

1

2nR1

•

...

...

...

vn
1 (w0, w1, q)

1 2 2nR′1. . .
. . .

. . .

Fig. 7 Coding scheme.

From the Asymptotic Equipartition Property (AEP) [17, Chap-
ter 3] and [17, Thm. 15.2.1, 15.2.3], it follows that

Pr{Ecr,1,1,1} ≤ ε (77)

Pr{Er,w0,1,1} ≤ 2−n[I(U,V1,V2;Y1)−ε] (78)

Pr{Er,1,w1,1} ≤ 2−n[I(V1;Y1|V2,U)−ε] (79)

Pr{Er,w0,w1,1} ≤ 2−n[I(U,V1,V2;Y1)−ε] (80)

Pr{Er,1,1,w2} ≤ 2−n[I(V2;Y1|V1,U)−ε] (81)

Pr{Er,w0,1,w2
} ≤ 2−n[I(U,V1,V2;Y1)−ε] (82)

Pr{Er,1,w1,w2
} ≤ 2−n[I(V1,V2;Y1|U)−ε] (83)

Pr{Er,w0,w1,w2} ≤ 2−n[I(U,V1,V2;Y1)−ε] (84)
Pr{Ece,1} ≤ ε (85)

Pr{Ee,w0
} ≤ 2−n[I(U ;Y2)−ε] (86)

where ε > 0 and ε→ 0 as n→∞. Hence, (75) and (76) are
respectively bounded by

Pne,1(1, 1, 1) ≤ ε+ 2nR0 × 2−n[I(U,V1,V2;Y1)−ε]

+ 2nR̃1 × 2−n[I(V1;Y1|V2,U)−ε]

+ 2nR0+R̃1 × 2−n[I(U,V1,V2;Y1)−ε]

+ 2nR̃2 × 2−n[I(V2;Y1|V1,U)−ε]

+ 2nR0+R̃2 × 2−n[I(U,V1,V2;Y1)−ε]

+ 2n(R̃1+R̃2) × 2−n[I(V1,V2;Y1|U)−ε]

+ 2n(R0+R̃1+R̃2) × 2−n[I(U,V1,V2;Y1)−ε] (87)

and

Pne,2(1) ≤ ε+ 2nR0 × 2−n[I(U ;Y2)−ε]. (88)

Due to (88) and (87), to generate Pne → 0 as n → ∞, we
must choose

R0 ≤ I(U ;Y2) (89)

R̃1 ≤ I(V1;Y1|V2, U) (90)

R̃2 ≤ I(V2;Y1|V1, U) (91)

R̃1 + R̃2 ≤ I(V1, V2;Y1|U) (92)

R0 + R̃1 + R̃2 ≤ I(U, V1, V2;Y1), (93)

and

R0 ≤ I(U, V1, V2;Y1) (94)

R0 + R̃1 ≤ I(U, V1, V2;Y1) (95)

R0 + R̃2 ≤ I(U, V1, V2;Y1) (96)

then Pne,1 ≤ ε and Pne,2 ≤ ε, and from (3) we have: Pne ≤ ε.
Note that in (89)-(96), we have these Markov chains V1 −
U −V2 and U − (V1, V2)− (Y1, Y2), and the bounds (94)-(96)
are redundant because of (93). Therefore, we need to consider
only (89)-(93). Also R̃1 = R1 + R′1 and R̃2 = R2 + R′2 that
by replacing these into (89)-(93) we have

R0 ≤ I(U ;Y2) (97)
R1 +R′1 ≤ I(V1;Y1|V2, U) (98)
R2 +R′2 ≤ I(V2;Y1|V1, U) (99)

R1 +R′1 +R2 +R′2 ≤ I(V1, V2;Y1|U) (100)
R0 +R1 +R′1 +R2 +R′2 ≤ I(U, V1, V2;Y1) (101)

4) Equivocation computation:

H(W1,W2|Y n2 ) ≥ H(W1,W2|Y n2 , Un)

= H(W1,W2, Y
n
2 |Un)−H(Y n2 |Un)

= H(W1,W2, Y
n
2 , V

n
1 , V

n
2 |Un)

−H(V n1 , V
n
2 |W1,W2, Y

n
2 , U

n)−H(Y n2 |Un)

= H(W1,W2, V
n
1 , V

n
2 |Un) +H(Y n2 |W1,W2, V

n
1 , V

n
2 , U

n)

−H(V n1 , V
n
2 |W1,W2, Y

n
2 , U

n)−H(Y n2 |Un)

(a)

≥ H(V n1 , V
n
2 |Un)−H(V n1 , V

n
2 |W1,W2, Y

n
2 , U

n)

+H(Y n2 |V n1 , V n2 , Un)−H(Y n2 |Un)

= H(V n1 , V
n
2 |Un)−H(V n1 , V

n
2 |W1,W2, Y

n
2 , U

n)

− I(V n1 , V
n
2 ;Y n2 |Un) (102)

where (a) is due to I(Y n2 ;W1,W2|V n1 , V n2 , Un) = 0.
The first term in (102) is given by:

H(V n1 , V
n
2 |Un) = nR̃1 + nR̃2 = n(R1 +R′1 +R2 +R′2).

(103)
We then show that the second term in (102) can be bounded

by H(V n1 , V
n
2 |W1,W2, Y

n
2 , U

n) ≤ nε1, as n → ∞ then
ε1 → 0. To this aim, it can be noted that given the message
(W1,W2) = (w1, w2) and assuming that receiver 2 knows the
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sequence Un = un, it can decode (q, q′) with small probability
of error if

R′1 ≤ I(V1;Y2|V2, U) (104)
R′2 ≤ I(V2;Y2|V1, U) (105)

R′1 +R′2 ≤ I(V1, V2;Y2|U). (106)

for sufficiently large n.
Using Fano’s inequality implies that H(V n1 , V

n
2 |W1 =

w1,W2 = w2, Y
n
2 , U

n) ≤ nε1. Hence,

H(V n1 , V
n
2 |W1,W2, Y

n
2 , U

n) =∑

w1

∑

w2

p(W1 = w1)p(W2 = w2)

×H(V n1 , V
n
2 |W1 = w1,W2 = w2, Y

n
2 , U

n) ≤ nε1. (107)

The last term in (102) is bounded as:

I(V n1 , V
n
2 ;Y n2 |Un) ≤ nI(V1, V2;Y2|U) + nε2, (108)

as n→∞ then ε2 → 0 similar to [1, Lemma 1]. By replacing
(103), (107) and (108) in (102) we have:

H(W1,W2|Y n2 ) ≥ n(R1 +R′1 +R2 +R′2)− nε1

− nI(V1, V2;Y2|U)− nε2 (109)
= n(R1 +R2 +R′1 +R′2 − I(V1, V2;Y2|U))− nδ (110)
= n(R1 +R2)− 2nδ (111)

where δ = ε1 + ε2. Finally, by using the Fourier-Motzkin
procedure [18] to eliminate R′1 and R′2 in (71), (97)-(101)
and (104)-(106) we obtain the five inequalities in Theorem 2.
The bounds on cardinality of |U|, |V1| and |V2| can be derived
by following the steps in [2, Appendix]. This completes the
proof of Theorem 2.

APPENDIX C
PROOF FOR THEOREM 3

To prove this theorem, we concentrate on outer bound
(Theorem 1) and inner bound (Theorem 2) and we prove
that these bounds are identical for the switch channel case.
The method of our proof is similar to the method in [12].
According to the distribution (20), for a known auxiliary
random variable U , auxiliary random variables V1 and V2

are independent, but this is not true for distribution (11).
Therefore, we first show that these distributions are identical
for a switch channel case. Therefore, we show that,

I(V1;V2|U) = 0 (112)

holds for the outer bound of switch channel case. Also, if

I(V1;V2|Y1, U) = 0, (113)

holds for the outer bound of the switch channel, then

I(V1;Y1|V2, U) = I(V1;Y1|U) (114)
I(V2;Y1|V1, U) = I(V2;Y1|U) (115)

that is, for the switch channel case, (8)-(9) in the outer bound
and (16)-(17) in the inner bound are identical.

Now, we prove that equations (112) and (113) hold for outer
bound of switch channel model. From definitions (57)-(59) we
need to show that

I(W1;W2|Ui) = 0 (116)
I(W1;W2|Ui, Y1,i) = 0 (117)

where according to (57), Ui = W0, Y
i−1
1 , Y n2,i+1. We first

show that (116) holds for switch channel. From definition (27)
we have,

{Y i−1
1 , Y n2,i+1} = {Ki−1

1 ,Kn
2,i+1, S

i−1
1 , Sn2,i+1} (118)

therefore,

I(W1;W2|Ui) = I(W1;W2|W0,K
i−1
1 ,Kn

2,i+1, S
i−1
1 , Sn2,i+1)

=
∑

si−1
1

∑

sn2,i+1

P (Si−1
1 = si−1

1 , Sn2,i+1 = sn2,i+1)

× I(W1;W2|W0,K
i−1
1 ,Kn

2,i+1, s
i−1
1 , sn2,i+1)

=
∑

si−1
1

∑

sn2,i+1

[
i−1∏

a=1

P (S1,a = s1,a)

n∏

b=i+1

P (S2,b = s2,b)

]

× I(W1;W2|W0,K
i−1
1 ,Kn

2,i+1, s
i−1
1 , sn2,i+1). (119)

Now, for known st,i, the switch channel model (26) shows
that kt,i depends only on the channel input xst,i,i. From [12],
and for known switch state information si−1

1 and sn2,i+1 we
can easily show that

I(W1;W2|W0,K
i−1
1 ,Kn

2,i+1, s
i−1
1 , sn2,i+1) = 0. (120)

This proves the equality (112). Proceeding the same way,
we can show that equality (113) holds. Hence, the equalities
(114)-(115) hold for the switch channel. Also, (7) implies (15).
Moreover, in the derived outer bound in Theorem 1, adding (7)
to the (10) subject to the existing Markov chain U−(V1, V2)−
(Y1, Y2) gives: R0+R1+R2 ≤ I(V1, V2;Y1)−I(V1, V2;Y2|U)
that is identical to (19) in the derived inner bound. The bounds
on cardinality of |U|, |V1| and |V2| can be derived by following
the steps in [2, Appendix]. This completes the proof.

APPENDIX D
PROOF FOR THEOREM 4

To derive an outer bound for the Gaussian case we can
follow the steps of deriving an outer bound for discrete
memoryless case (i.e., Theorem 1) that are based on the basic
properties of mutual information (the chain rule and positivity)
and hold irrespective of the continuous or discrete nature of
the channel. Therefore, by following (64), (66) and (68), it
can be seen that if a rate tuple (R0, R1, R2) is achievable for
the Gaussian MAWC-CM, it must hold that

R0 ≤ min

{
1

n

n∑

i=1

I(Ui;Y1,i),
1

n

n∑

i=1

I(Ui;Y2,i)

}
(121)

R1 +R2 ≤
1

n

n∑

i=1

[I(V1,i, V2,i;Y1,i|Ui)

− I(V1,i, V2,i;Y2,i|Ui)] (122)
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It remains to upper bound (121) and (122) with terms that
depend on the power constraints P1 and P2. We first assume
that σ2

1 ≤ σ2
2 so that the eavesdropper’s channel is stochasti-

cally degraded with respect to the main channel. We expand
1
n

∑n
i=1 I(Ui;Y1,i) in terms of the differential entropy as

1

n

n∑

i=1

I(Ui;Y1,i) =
1

n

n∑

i=1

h(Y1,i)−
1

n

n∑

i=1

h(Y1,i|Ui) (123)

and we bound each sum separately. Due to channel model
definition and assumptions, we have

var(Y1,i) = E[X2
1,i] + E[X2

2,i] + σ2
1 + 2λi (124)

where λi = E[X1,iX2,i]. So, the differential entropy of Y1,i is
upper bounded by the entropy of a Gaussian random variable
with the same variance. Hence,

1

n

n∑
i=1

h(Y1,i) ≤
1

n

n∑
i=1

1

2
log(2πe(E[X2

1,i] + E[X2
2,i] + σ2

1 + 2λi))

(a)

≤ 1

2
log(2πe(

1

n

n∑
i=1

E[X2
1,i] +

1

n

n∑
i=1

E[X2
2,i] +

2

n

n∑
i=1

λi + σ2
1)),

where (a) results since x 7→ log(2πex) is a concave function
of x as using Jensen’s inequality. Also, by setting Q1

∆
=

1
n

∑n
i=1E[X2

1,i], Q2
∆
= 1

n

∑n
i=1E[X2

2,i], Q3
∆
= 1

n

∑n
i=1 λi

and ρ = Q3√
Q1Q2

we finally obtain

1

n

n∑

i=1

h(Y1,i) ≤
1

2
log(2πe(Q1 +Q2 + 2ρ

√
Q1Q2 + σ2

1)).

(125)

To bound the second sum 1
n

∑n
i=1 h(Yi|Ui), notice that

1

n

n∑

i=1

h(Y1,i|Ui) ≤
1

n

n∑

i=1

h(Y1,i)

≤ 1

2
log(2πe(Q1 +Q2 + 2ρ

√
Q1Q2 + σ2

1)).

(126)

Moreover, because Ui → (V1,i, V2,i) → (X1,i, X2,i) →
(Y1,i, Y2,i) forms a Markov chain, we have

1

n

n∑

i=1

h(Y1,i|Ui) ≥
1

n

n∑

i=1

h(Y1,i|Ui, X1,i, X2,i)

=
1

n

n∑

i=1

h(Y1,i|X1,i, X2,i)

=
1

2
log(2πeσ2

1). (127)

Since x, y 7→ 1
2 log(2πe(xQ1 + yQ2 + 2xyρ

√
Q1Q2 +σ2

1))
is a continuous function on interval x ∈ [0, 1] and y ∈ [0, 1],
a two-dimensional intermediate-value theorem ensures the
existence of β1, β2 ∈ [0, 1] such that

1

n

n∑

i=1

h(Y1,i|Ui)

=
1

2
log(2πe(β1Q1 + β2Q2 + 2β1β2ρ

√
Q1Q2 + σ2

1)).

(128)

By substituting (125) and (128) into (123), we obtain

1

n

n∑
i=1

I(Ui;Y1,i) ≤
1

2
log(2πe(Q1 +Q2 + 2ρ

√
Q1Q2 + σ2

1))

− 1

2
log(2πe(β1Q1 + β2Q2 + 2β1β2ρ

√
Q1Q2 + σ2

1))

=
1

2
log(1 +

(1− β1)Q1 + (1− β2)Q2 + 2(1− β1β2)ρ
√
Q1Q2

β1Q1 + β2Q2 + 2β1β2ρ
√
Q1Q2 + σ2

1

).

(129)

Now, we need to upper bound 1
n

∑n
i=1 I(Ui;Y2,i). Note that

we can repeat the steps leading to (125) with Y2,i instead of
Y1,i to obtain

1

n

n∑

i=1

h(Y2,i) ≤
1

2
log(2πe(Q1 +Q2 + 2ρ

√
Q1Q2 + σ2

2)).

(130)
So, we need to derive a lower bound for 1

n

∑n
i=1 h(Y2,i|Ui)

as a function of Q1, Q2, β1, β2 and ρ. Since we have assumed
that the eavesdropper’s channel is stochastically degraded with
respect to the main channel, we can write Y2,i = Y1,i+N

′
i with

N ′i ∼ N (0, σ2
2 − σ2

1). Applying the Entropy Power Inequality
(EPI) [18] to the RV Y2,i conditioned on Ui = ui, we have

h(Y2,i|Ui = ui) = h(Y1,i +N ′i |Ui = ui)

≥ 1

2
log
(

22h(Y1,i|Ui=ui) + 22h(N ′i |Ui=ui)
)

=
1

2
log
(

22h(Y1,i|Ui=ui) + 2πe(σ2
2 − σ2

1)
)
.

(131)

Hence,

1

n

n∑

i=1

h(Y2,i|Ui) =
1

n

n∑

i=1

EUi
[h(Y2,i|Ui)]

(a)

≥ 1

2n

n∑

i=1

EUi

[
log
(

22h(Y1,i|Ui) + 2πe
(
σ2

2 − σ2
1

))]

(b)

≥ 1

2n

n∑

i=1

log
(

22EUi
[h(Y1,i|Ui)] + 2πe

(
σ2

2 − σ2
1

))

=
1

2n

n∑

i=1

log
(

22h(Y1,i|Ui) + 2πe(σ2
2 − σ2

1)
)

(c)

≥ 1

2
log
(

2
2
n

∑n
i=1 h(Y1,i|Ui) + 2πe(σ2

2 − σ2
1)
)

(d)
=

1

2
log(2πe(β1Q1 + β2Q2 + 2β1β2ρ

√
Q1Q2 + σ2

2)),

(132)

where (a) follows from EPI and (131). Both (b) and (c) follow
from the convexity of the function x 7→ log(2x+c) for c ∈ R+
and Jensen’s inequality, while (d) follows from (128). Hence,

1

n

n∑
i=1

I(Ui;Y2,i) =
1

n

n∑
i=1

h(Y2,i)− h(Y2,i|Ui)

≤ 1

2
log(2πe(Q1 +Q2 + 2ρ

√
Q1Q2 + σn2 ))

− 1

2
log(2πe(β1Q1 + β2Q2 + 2β1β2ρ

√
Q1Q2 + σ2

2))

=
1

2
log(1 +

(1− β1)Q1 + (1− β2)Q2 + 2(1− β1β2)ρ
√
Q1Q2

β1Q1 + β2Q2 + 2β1β2ρ
√
Q1Q2 + σ2

2

)

(133)
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where the inequality follows from (130) and (132). By
substituting (129) and (133) into (121), we obtain

R0 ≤ min{
1
2
log(1 + (1−β1)Q1+(1−β2)Q2+2(1−β1β2)ρ

√
Q1Q2

β1Q1+β2Q2+2β1β2ρ
√
Q1Q2+σ

2
1

),

1
2
log(1 + (1−β1)Q1+(1−β2)Q2+2(1−β1β2)ρ

√
Q1Q2

β1Q1+β2Q2+2β1β2ρ
√
Q1Q2+σ

2
2

)
}.

(134)
Now, we derive the bound on R1 +R2,

1

n

n∑

i=1

[I(V1,i, V2,i;Y1,i|Ui)− I(V1,i, V2,i;Y2,i|Ui)]

=
1

n

n∑

i=1

[I(V1,i, V2,i, X1,i, X2,i;Y1,i|Ui)

− I(X1,i, X2,i;Y1,i|Ui, V1,i, V2,i)

− I(V1,i, V2,i, X1,i, X2,i;Y2,i|Ui)
+ I(X1,i, X2,i;Y2,i|Ui, V1,i, V2,i)]

=
1

n

n∑

i=1

[I(X1,i, X2,i;Y1,i|Ui)

+ I(V1,i, V2,i;Y1,i|Ui, X1,i, X2,i)

− I(X1,i, X2,i;Y1,i|Ui, V1,i, V2,i)− I(X1,i, X2,i;Y2,i|Ui)
− I(V1,i, V2,i;Y2,i|Ui, X1,i, X2,i)

+ I(X1,i, X2,i;Y2,i|Ui, V1,i, V2,i)]

(a)
=

1

n

n∑

i=1

[I(X1,i, X2,i;Y1,i|Ui)

− I(X1,i, X2,i;Y1,i|Ui, V1,i, V2,i)

− I(X1,i, X2,i;Y2,i|Ui) + I(X1,i, X2,i;Y2,i|Ui, V1,i, V2,i)]

=
1

n

n∑

i=1

[I(X1,i, X2,i;Y1,i|Ui)

− I(X1,i, X2,i;Y1,i, Y2,i|Ui, V1,i, V2,i)

+ I(X1,i, X2,i;Y2,i|Ui, V1,i, V2,i, Y1,i)

− I(X1,i, X2,i;Y2,i|Ui) + I(X1,i, X2,i;Y2,i|Ui, V1,i, V2,i)]

(b)
=

1

n

n∑

i=1

[I(X1,i, X2,i;Y1,i|Ui)

− I(X1,i, X2,i;Y1,i, Y2,i|Ui, V1,i, V2,i)

− I(X1,i, X2,i;Y2,i|Ui) + I(X1,i, X2,i;Y2,i|Ui, V1,i, V2,i)]

(c)

≤ 1

n

n∑

i=1

[I(X1,i, X2,i;Y1,i|Ui)− I(X1,i, X2,i;Y2,i|Ui)]

(135)

where (a) follows from I(V1,i, V2,i;Y1,i|Ui, X1,i, X2,i) =
I(V1,i, V2,i;Y2,i|Ui, X1,i, X2,i) = 0 since Ui → (V1,i, V2,i)→
(X1,i, X2,i) → (Y1,i, Y2,i) forms a Markov chain, (b)
follows from I(X1,i, X2,i;Y2,i|Ui, V1,i, V2,i, Y1,i) = 0
since Y2,i is stochastically degraded with respect to Y1,i,
and (c) follows from I(X1,i, X2,i;Y2,i|Ui, V1,i, V2,i) ≤
I(X1,i, X2,i;Y1,i, Y2,i|Ui, V1,i, V2,i). Next, we use (128) and
(132) to substitute Q1, Q2, ρ, β1 and β2 as follows:

1

n

n∑

i=1

[I(V1,i, V2,i;Y1,i|Ui)− I(V1,i, V2,i;Y2,i|Ui)]

(a)

≤ 1

n

n∑

i=1

[I(X1,i, X2,i;Y1,i|Ui)− I(X1,i, X2,i;Y2,i|Ui)]

=
1

n

n∑

i=1

[h(Y1,i|Ui)− h(Y1,i|Ui, X1,i, X2,i)

− h(Y2,i|Ui) + h(Y2,i|Ui, X1,i, X2,i)]

(b)

≤ 1

2
log

(
1 +

β1Q1 + β2Q2 + 2β1β2ρ
√
Q1Q2

σ2
1

)

− 1

2
log

(
1 +

β1Q1 + β2Q2 + 2β1β2ρ
√
Q1Q2

σ2
2

)
(136)

where (a) is due to (135), and (b) results from (127), (128)
and (132).

If σ2
1 ≥ σ2

2 , then the main channel is stochastically
degraded with respect to the eavesdropper’s channel and
R1 = R2 = 0 by virtue of [11, Proposition 3.4]. By swapping
the roles of Y1,i and Y2,i in the proof, it can be verified
that (134) still holds. We combine the two cases σ2

1 ≤ σ2
2

and σ2
1 ≥ σ2

2 by writing (39). Notice that (134) and (136)
are increasing functions of Q1 and Q2. So, by defining
Qj = (1/n)

∑n
i=1E[X2

j,i] ≤ Pj , j = 1, 2 the inequalities
in Theorem 4 hold. This completes the proof.
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[15] O. Simeone, D. Gündüz, H. V. Poor, A. J. Goldsmith, and S. Shamai,
“Compound multiple-access channels with partial cooperation,” IEEE
Trans. Inf. Theory, vol. 55, no. 6, pp. 2425–2441, Jun 2009.

[16] H. Zivari-Fard, B. Akhbari, M. Ahmadian-Attari, and M. R. Aref,
“Compound multiple access channel with confidential messages,” in
Proc. IEEE Int. Conf. on Comm. (ICC), Sydney, Australia, Jun 2014,
pp. 1922–1927.

[17] T. Cover and J. Thomas, Elements of information theory, 2nd ed., John
Wiley, Hoboken, New Jersey, 2006.

[18] A. El Gamal and Y. H-Kim, Network information theory, 1st ed.
Cambridge, U.K: Cambridge University Press, 2012.

[19] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems, 2nd ed. Cambridge, U.K: Cambridge
University Press, 2011.


	I Introduction
	II Notations and System Model
	III Discrete Memoryless MAWC-CM
	III.1 Outer Bound
	III.2 Achievability
	III.3 Switch Channel

	IV Gaussian MAWC-CM
	IV.1 Outer Bound
	IV.2 Inner Bound
	IV.3 Examples

	V Conclusions
	VI Acknowledgment
	Appendix A: Proof for Theorem ??
	Appendix B: Proof for Theorem ??
	B.01 Codebook generation
	B.02 Encoding
	B.03 Decoding and Probability of error
	B.04 Equivocation computation


	Appendix C: Proof for Theorem ??
	Appendix D: Proof for Theorem ??
	References

