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Abstract: In this paper, the channel estimation problem for the uplink massive multi-input multi-

output (MIMO) system is considered. Motivated by the observations that the channels in massive

MIMO systems may exhibit sparsity and the channel support changes slowly over time, we propose

one efficient channel estimation method under the framework of compressive sensing. By exploit-

ing the channel impulse response (CIR) estimated from the previous OFDM symbol, we firstly

estimate the probabilities that the elements in the current CIR are nonzero. Then, we propose the

probability-weighted subspace pursuit (PWSP) algorithm exploiting these probability information

to efficiently reconstruct the uplink massive MIMO channel. Moreover, noting that the massive

MIMO systems also share a common support within one channel matrix due to the shared local

scatterers in the physical propagation environment, an antenna collaborating method is exploited

for the proposed method to further enhance the channel estimation performance. Simulation result-

s show that compared to the existing compressive sensing methods, the proposed methods could

achieve higher spectral efficiency as well as more reliable performance over time-varying channel.

1. Introduction

As a promising technology for future communication networks, massive multiple-input multiple-

output (MIMO) systems where the base station (BS) is equipped with a large number of antennas

have gained much interest in the research community [1]. In order to benefit from the advantages

of massive MIMO systems, there are still many issues that need to be properly addressed. For

example, the channel state information (CSI) is crucial for both of the uplink and downlink. But in

typical massive MIMO systems, reliable CSI acquisition is a challenging problem, especially for

the downlink where each user has to estimate the channels from large number of BS antennas. To

solve this problem, lots of works today have considered massive MIMO of time division duplex (T-

DD) systems, where CSI can be acquired only at the uplink, and then utilised at both transmission

directions based on the assumption of channel reciprocity [2][3]. The uplink channel estimation is

therefore critical for TDD massive MIMO since it affects the signal detection at both transmission

directions.

Recently, there has been a growing interest in compressive sensing (CS) based channel estima-

tion algorithms [4][5]. By exploiting the inherent sparsity of the MIMO channels, sparse channel

estimation can give better estimation performance than conventional schemes such as least square

(LS) and minimum mean square error (MMSE) [6]. In [4], a structured subspace pursuit (SSP)

algorithm is proposed to estimate the massive MIMO channel through superimposed pilots. In

1



[5], the block based orthogonal matching pursuit scheme is proposed for massive multiple-input

single-output (MISO) systems. Noting that consecutive frames tend to share some common multi-

paths even in time-varying propagation environment, some recent schemes exploit the previously

estimated channel support to enhance current channel estimation [7]-[11]. [7]-[9] proposed the

modified basis pursuit (MBP) utilizing the a priori signal support. In [10], the Auxiliary infor-

mation based Block Subspace Pursuit (ABSP) is proposed, which utilizes the previous channel

support to initialize the estimated support for subspace pursuit algorithm. However, using the a

priori support information directly may lead to even worse performance when the channel is fast

varying, since the path delays may change from their previous locations. In [11], the authors

have further considered the incorrect indices in the previous support, and exclude them adaptively.

However, this method does not take into account delay variance and the relationships between the

channel supports in adjacent frames.

In this paper, we propose an efficient channel estimation scheme in uplink massive MIMO sys-

tem. Specifically, inspired by the observation that in massive MIMO systems, the path delays

change slowly although the path gains may change quickly [15][16], we first explore the temporal

correlation of channel support in uplink TDD massive MIMO systems. And then we propose a

method that easily estimates the probabilities of the nonzero path delays in current channel im-

pulse response (CIR) based on the knowledge of the previous CIR. After that we utilize the prob-

abilities as a priori information in the subspace pursuit (SP) algorithm [17][18], and propose the

probability-weighted SP (PWSP) algorithm to improve the uplink massive MIMO channel estima-

tion. Moreover, noting that the massive MIMO system may also share common support within

one channel matrix [19]. Based on this assumption, an antenna collaborating method is exploited

for the proposed channel estimation approach, so that the antennas could share information with

their neighbouring antennas to strengthen their beliefs about the locations of the path delays, and

thus to further improve the channel estimation performance. Compared with the conventional SP

method, the proposed method reduces the pilot overhead significantly while improving the channel

estimation performance.

The rest of the paper is organized as follows. We first describe the massive MIMO OFDM

system model in Section II. Then the PWSP algorithm is proposed in Section III. Section IV

discusses the simulation results while Section V concludes the paper.

Notations: Throughout this paper, boldface lower and upper case symbols represent vectors

and matrices, respectively. Operators T , H and † represent transpose, Hermite and Moore-Penrose

matrix inversion, respectively. diag{x} is the diagonal matrix with x at its main diagonal. P(x),
|x|, ‖x‖p supp(x) and suppK(x) denote the probability, cardinality, ℓp-norm, support and largest

K elements in the support of x, respectively. x〉k denotes the k-sparse vector of x which retains

the k largest elements of x while setting the rest of the elements to zero.

2. MASSIVE MIMO SYSTEM MODEL

Consider the uplink TDD massive MIMO OFDM system where the BS with M antennas is serving

a large number U autonomous single-antenna user terminals (UTs) (M > U ). During the ith
OFDM symbol, the CIR between the mth BS antenna and one certain UT can be denoted as

hi,m = [hi,m(0), hi,m(1), · · · , hi,m(L − 1)]T with 1 ≤ m ≤ M , where L is the maximum delay

spread of the CIR. Under the assumption of channel sparsity, only K elements are nonzero in hi,m,

satisfying K ≪ L [4].

Suppose the total number of OFDM subcarriers is N , among which Np subcarriers are randomly
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employed to transmit pilot symbols. Thus we can denote the pilot sequence transmitted from one

certain UT to the BS as x = [xP1
, · · · , xPj

, · · · , xPNp
], where p = [P1, · · · , Pj, · · · , PNP

] is the

corresponding subcarrier indices of Np pilots. At the BS side, the pilot vectors received by different

BS antennas are distinct due to the different path gains in each uplink channel. We denote the Np×1
received pilot vector as

yi,m = diag{x}Fhi,m + ni,m, (1)

where F is a Np × L submatrix comprising the Np rows and the first L columns of the standard

N ×N discrete Fourier transform matrix, and ni,m is the additive white Gaussian noise with zero

mean and unit variance. Moreover, let Yi = [yi,1, yi,2, · · · , yi,M ] represent the Np ×M received

pilots for all M BS antennas, Hi = [hi,1, hi,2, · · · , hi,M ] be the L × M CIR matrix and Ni =
[ni,1, ni,2, · · · , ni,M ] be the Np ×M channel’s AWGN, the signal model (1) can be equivalently

written as

Yi = ΦHi + Ni, (2)

where Φ , diag{x}F.

Based on many practical measurements of the channel matrix of massive MIMO systems [11]-

[14], we have the following two important observations:

Observation I (Temporal Correlation Between Channel Matrices) In [4], the authors exploit the

temporal correlation of wireless fading channels, whereby the channels exhibit identical common

support in R adjacent OFDM symbols, indicating that S1,m = · · · = Si,m = · · · = SR,m, where

Si,m = supp{hi,m} = {l : |hi,m(l)| > 0}L−1
l=0 . However, this method suffers from performance

deterioration even when there is only slight changes in the support. In the Fig.3 of [18], the authors

illustrate the CIRs of four adjacent OFDM symbols over the International Telecommunications U-

nion Vehicular B (ITU-VB) channel with 120km/h receiver velocity and signal bandwidth B=7.56

MHz [15][16]. As shown in these figures, the path delays are not completely the same, although

they are nearly invariant, since the support of CIR changes over time when there is a relative

movement between the UT and the BS. Nevertheless, note that the path delays just vary within

their vicinity, we can still extract some useful information from the CIR of the previous OFDM

symbol (i.e., Si−1,m) to assist current channel estimation.

Observation II (Common Support within Channel Matrix) Some existing researches [5]-[11]

indicate that the massive MIMO channels are usually correlated at the BS side. That is to say,

the CIRs of different uplink channels share a common support since the distance between the BS

and UT is far larger than the antenna spacing at the BS side. This can also be proved by the fact

that two channel taps are not resolvable if the time interval of arrival is smaller than 1
10B

[19],

i.e. dmax

c
< 1

10B
where dmax is the maximum resolvable distance, and c is the speed of light.

Consider a 16 × 16 massive MIMO system where B = 20MHz and the signal wavelength is

λ = 0.116m [22]. The distance between two adjacent antennas is d = λ
2
= 0.058m. Hence,

the maximum distance between two BS antennas is D = 15d = 0.87m (D is a function of the

antenna spacing d and the number of antennas in the array), while dmax = c
10B

= 3.96m which

is much larger than D. As a result, the BS uplink channels share the common support Si, i.e.,

Si = Si,1 = · · · = Si,m = · · · = Si,M [10].

Note that Observation I refers to the temporal shared support between different channel matri-

ces, while Observation II refers to the spatial common support within one channel matrix. In the

next section, we shall propose an efficient channel estimation method based on these observations.
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(a)

(b)

Fig. 1. The relationship between the signal bandwidth B and channel taps in two successive

OFDM symbols.

3. A PRIORI INFORMATION AIDED CHANNEL ESTIMATION ALGORITHMS

3.1. Estimation of probabilities

Note that the spatial resolution of channel taps is determined by the inverse bandwidth 1
B

[19], in

Fig.1 we demonstrate the relationship between B and the channel taps in two successive OFDM

symbols. From Fig.1(a) we can see that the channel tap with delay τ can be recognized as hi−1,m(j)
(i.e., j ∈ Si−1) if j

B
− 1

2B
≤ τ ≤ j

B
+ 1

2B
. Assume B = 7.56MHz [18], then we can obtain the

minimum resolvable interval of the channel taps as 1
2B
≈ 0.06µs. Let the maximum delay spread

τmax = 20µs according to the ITU-VB channel with 120km/h receiver velocity, and the maximum

variation rate of the delays between two adjacent OFDM symbols is ν = ±0.5%§, then we can

acquire the variation of the delays by |var| ≤ |ν × τmax| = 0.1µs [20]. Noting that |var| < 1
B

,

from Fig.1(b) we can see that in the following OFDM symbol, this path tap will (i) be invariant

(i.e., j ∈ Si) if j
B
− 1

2B
≤ τ+var ≤ j

B
+ 1

2B
; (ii) move to j−1 (i.e., j−1 ∈ Si) if τ+var < j

B
− 1

2B
;

or (iii) move to j + 1 (i.e., j + 1 ∈ Si) if τ + var > j
B
+ 1

2B
.

In addition, by assuming that the value of var occurs uniformly within |var| ≤ 0.1µs, we have

P(|var| ≤ 1
2B

) = 1/2B
ντmax

= 3
5

and P(|var| > 1
2B

) = ντmax−1/2B
ντmax

= 2
5
. Therefore, the conditional

probabilities of the nonzero channel taps can be expressed as

{

P(hi,m(l) 6= 0|l ∈ Si−1) =
3
5

P(hi,m(l ± 1) 6= 0|l ∈ Si−1) =
2
5

, (3)

Assume ς is a small integer, indicating the offset of delays from the (i − 1)th symbol to the

ith symbol. Based on the previous analysis, we can easily derive the relationship between the

maximum ς (denoted as ςmax), the signal bandwidth B, the maximum delay spread τmax and the

variation ν as
ςmax

B
−

1

2B
< ντmax <

ςmax

B
+

1

2B
. (4)

§Since the channel support depends on the large scale properties of the scattering environment and changes slowly over a very long timescale in

practice, we can obtain the knowledge of ν easily based on the a priori knowledge of the propagation environment [11].
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(c) ςmax=1,Si−1={5,10,12}

Fig. 2. The probability tl based on the previous channel support Si−1.

Thus, we have

ςmax = ⌈
2Bντmax − 1

2
⌉+, (5)

where ⌈·⌉+ denotes the ceil function. Moreover, we can further exploit the relationship between

B, τmax, ν and the probability P(hi,m(l+ ς) 6= 0|l ∈ Si−1). It is obvious that if ςmax = 0, the path

delays are invariant, that is
{

P(hi,m(l) 6= 0|l ∈ Si−1) = 1
P(hi,m(l) 6= 0|l 6∈ Si−1) = 0

. (6)

When ςmax > 0, we have














P(hi,m(l) 6= 0|l ∈ Si−1) = P(|var| ≤
1
2B

)
P(hi,m(l ± ς) 6= 0|l ∈ Si−1) = P(

2ς−1
2B

< |var| ≤ 2ς+1
2B

)
for 0 < ς < ςmax

P(hi,m(l ± ςmax) 6= 0|l ∈ Si−1) = P(
2ςmax−1

2B
< |var|)

. (7)

We can then obtain the probabilities that the lth delay in (i− 1)th symbol is shifted to the position

l ± ς in the ith symbol as,

P(hi,m(l±ς) 6= 0|l ∈ Si−1)

=















1
2Bντmax

, ς = 0
1

Bντmax
, 0 < ς < ςmax

1− 2ςmax−1
2Bντmax

, ς = ςmax

0, else

. (8)

Next, let T = diag([t0, · · · , tl, · · · , tL−1]) where tl denotes the probability that the lth element in

hi,m is nonzero, i.e. tl = P(hi,m(l) 6= 0). Therefore, we have

tl =
L−1
∑

b=0

P(hi,m(l) 6= 0|b ∈ Si−1)P(b ∈ Si−1), (9)

where P(b ∈ Si−1) equals 1 or 0 is known a priori according to the previous CIR.

In Fig.2, we illustrate three examples of the probabilities tl with (a) ςmax = 0, Si−1 = {10}, (b)

ςmax = 1, Si−1 = {10} and (c) ςmax = 1, Si−1 = {5, 10, 12}, respectively. Clearly, in Fig.2(a) the

channel is static where the path delays are invariable during the successive symbols. On the other

hand, in Fig.2(b) and Fig.2(c) the channels are time-varying, where the path delay may change but

only within its neighbourhood due to ςmax = 1. It is also worth noting that t11 is larger than t9 in

Fig.2(c) since both of its neighbours are in the support of hi−1, which increases the probability that

the path delay at l = 11 is nonzero.
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3.2. Uplink channel estimation with the aid of the probabilities

In order to incorporate the probability tl into the CS algorithm, we assign a diagonal matrix W =
diag([w0, · · · , wl, · · · , wL−1]) based on the probability T. In this paper, we first initial the weights

by

wl = 1 + αtl, 0 ≤ l ≤ L− 1. (10)

where α ≥ 0 is a user-selected parameter.

Note that the weights W are exploited based on not only the probabilities T but also the pa-

rameter α, where the value of α determines the degree that the probabilities T may impact the

algorithm. Obviously, in the slow time-varying channel where the variance rate ν is small, a larger

number of indices in supp(T) is correct, which indicates a more reliable T. Therefore, by using a

larger α, we encourage the PWSP algorithm to select indices from supp(T) to form the support set

Ω. On the contrary, in the fast time-varying channel where ν is large, less indices in supp(T) are

correct. In such cases, we reduce the impact of the a priori information on the support detection

by using a relatively smaller α. In this way, the a priori support information supp(T) is utilized

adaptively based on the variance rate ν, and hence better recovery performance can be achieved§.

Since α is inversely proportional to ν, we assume ν = β% and employ α = 1
|β|

.

Then we propose the PWSP approach designed by exploiting the a priori information and the

antenna collaboration based on the conventional subspace pursuit [4]. The details of PWSP is

presented in Algorithm 1.

Algorithm 1

1: Input: Received pilot matrix Yi, sensing matrix Φ, previous support Si−1, approximated chan-

nel sparsity K = ‖Si−1‖0.
2: Initialization:

3: The initial residual V0 = Yi, W = 1 + T/ν, α = 1
100|ν|

, Γ = Si−1 and k = 1;

4: while ‖Vk‖F < ‖Vk−1‖F do

5: Ω = arg max
|Ω′|=K

‖(WΦHVk)
Ω′

‖F ;

6: Γ← Γ ∪ Ω;

7: Γ← arg max
|Ω′|=K

‖(WΓΦ
†
ΓYi)

Ω′

‖F ;

8: Set Ĥ
Γ

i = Φ†
ΓYi and Ĥ

[{0,··· ,L−1}\Γ]

i = 0;

9: k ← k + 1;

10: Vk ← Yi − ΦHĤi;

11: end while

12: Output: The estimated CIR vector Ĥi.

In Algorithm 1, Γ is the estimated support set, Vk is the residual at the kth iteration. ΦΓ and ΦΓ

denote the sub-matrix formed by collecting the column vectors and row vectors of Φ respectively,

whose indices belong to Γ.

Note that the PWSP is developed based on the classical SP algorithm but with two major

changes:

1) Antenna Collaborating. In the SP algorithm, the K significant path delays are captured by

maximizing the correlations between the column vectors of Φ and the residual measurement, i.e.

§Note that when M = 1 and ν → ∞, Algorithm 1 will reduce to conventional SP [17].

6



SP

MSP

PWSP

(a)

(b)

(c)

...

...

...

W>1 W=1

Fig. 3. The impact of the weights on support detection.

Γ← arg max
|Ω′|=K

‖(Φ†
Γyi,m)

Ω′

‖, where yi,m is the ith received pilot sequence on the mth antenna. As

a result, the estimated support may be inaccurate due to the imperfect Φ with only approximate

orthogonal columns [17]. In the proposed PWSP method, the receive antennas collaborate with

each other to take advantage of Observation II and estimate the path delays jointly, i.e. Γ ←
arg max

|Ω′|=K
‖(Φ†

ΓYi)
Ω′

‖F . Therefore, according to the law of large numbers, it is more likely to

capture the correct path delays since the antennas share information with each other to reach a

decision on the most probable support (see more details in our previous work [10]).

2) Weights Aided. Suppose that j̄ ∈ Si−1, j = j̄−1 ∈ Si and j′ /∈ Si−1∪Si. For the classical SP

algorithm with antenna collaborating, consider an ideal case that all the columns of Φ are orthog-

onal, the K significant path delays can be easily captured by calculating arg max
|Ω′|=K

‖(Φ†Yi)
Ω′

‖F ,

since ‖(Φ†Yi)
j‖F ≫ ‖(Φ†Yi)

j′‖F . However, in the practical case, the columns of Φ are only

locally near-orthogonal. As a result, it may happen that the value of ‖(Φ†Yi)
j‖F is smaller than

the value of ‖(Φ†Yi)
j′‖F , and this leads to incorrect support detection. On the other hand, in the

modified SP (MSP) algorithm [7], the previous channel support (i.e., the j̄th path) is used to en-

hance the channel estimation directly, which is equivalent to adding a large weight on the j̄th path.

Consequently, MSP could improve the channel estimation performance if the channel is invariant

(i.e., j̄ ∈ Si−1

⋂

Si). However, in the time-varying channel where j̄ /∈ Si, this scheme may lead to

bad performance.

Compared with these conventional algorithms, the proposed PWSP exploits more information

from the previous channel support. Specifically, according to the analyses in Section 3.1, we have

wj > wj′ . Hence, it is more likely that ‖(WΦ†Yi)
j‖F > ‖(WΦ†Yi)

j′‖F although ‖(Φ†Yi)
j‖F ≤

‖(Φ†Yi)
j′‖F . Consequently, PWSP is more probable to obtain the correct support. To illustrate this

point, we give a simple example in Fig. 3. Assume j̄ ∈ Si−1, j = j̄ − 1 ∈ Si and j′ /∈ Si−1 ∪ Si,

it can be seen from Fig.3(a) that ‖(Φ†Yi)
j̄‖F < ‖(Φ†Yi)

j‖F < ‖(Φ†Yi)
j′‖F . As a result, the

conventional SP algorithm will capture the incorrect path delay j′, which leads to performance

deterioration. For the MSP scheme in Fig. 3(b), we can see that ‖(Φ†Yi)
j‖F < ‖(Φ†Yi)

j′‖F <
‖(Φ†Yi)

j̄‖F . Hence, the MSP will capture the incorrect index j̄, On the contrary, with the PWSP

scheme in Fig. 3(c), we have ‖(WΦ†Yi)
j̄‖F < ‖(WΦ†Yi)

j′‖F < ‖(WΦ†Yi)
j‖F . Therefore, the

proposed PWSP will still capture the correct index j into the support set.
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4. SIMULATION RESULTS

In this section, we conduct simulation studies to evaluate the performance of the proposed channel

estimation algorithms. The signal bandwidth is 7.56 MHz locating at a central frequency of 760

MHz. For the uplink transmission, the system parameters are set as: OFDM subcarriers N = 2048,

number of BS antennas M = 64, sparsity of channel K = 6, maximum variation ν = ±0.5% and

maximum delay spread L = 151 [20]. We assume the path delays of the previous CIR is known a

priori∗. In order to verify the effectiveness of the proposed scheme, we compare the performance

of PWSP with the conventional SP [17], modified SP (MSP), Basis Pursuit (BP) [17], modified

Basis Pursuit (MBP) [7], and exact Least Square (exact LS) with perfectly known support of the

sparse channel as the performance benchmark [4]. The MSP and MBP are developed based on the

conventional SP and BP respectively, with exploitation of the previous support information.

4.1. Channel Estimation Performance Versus Overhead Np

Firstly, in Fig.4 we compare the mean square error (MSE) of the estimated channel versus the

number of pilots, with signal-to-noise ratio (SNR) SNR = 25dB. From the figure, we observe

that the channel estimation improves with the increase of Np, and the proposed PWSP outperforms

other conventional methods. Specifically, PWSP achieves a substantial performance gain over the

MSP. This is because the a priori channel support Si−1,m is not always correct (i.e., Si−1,m is not

identical to Si,m). In the MSP, Si−1,m is used directly to aid current channel estimation. As a result,

the incorrect a priori information may lead to performance deterioration. On the other hand, PWSP

also exploits how reliable the a priori channel support is as illustrated in Section 3.1. Therefore, it

could provide more stable performance in time varying channel. Moreover, we observe that PWSP

performs closely to the exact LS when Np > 23, which is caused by the fact that Φ has imperfect

but approximate orthogonal columns.

In order to evaluate the stability, we compare the success rate of channel recovery versus the

number of pilots Np in Fig.5. The success rate is defined as the ratio of the number of success trails

to the number of total trails, where a trail is recognized to be successful when the MSE of channel

estimation is better than 10−1 [22]. The number of pilots Np is varied from 1 to 35, while 100

independent trails are implemented for each Np. It can be seen from the figure that PWSP evidently

outperforms other conventional methods. Specifically, when 15 pilots are adopted, PWSP can

achieve a success rate of 66% while the MSP, the best among the conventional methods, can only

reach the success rate of 26%. In addition, PWSP requires 23 pilots to achieve a success rate of

100%, while MSP requires at least 27 pilots, which indicates that the proposed PWSP could lead

to a significant improvement (about 17%) in spectral efficiency.

4.2. Channel Estimation Performance Versus Transmit SNRs

In Fig.6 we present the MSE performance comparison of the estimated channel versus the transmit

SNR with Np = 23. From the figure, we can see that the proposed PWSP can achieve enormous

MSE gains over other conventional methods, and approach the performance bound (i.e., exact LS)

in higher SNR regions.

∗This assumption is reasonable since we could always employ more pilots in the first OFDM symbol to obtain accurate CIR, and then reduce

the number of pilots by using PWSP.
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Fig. 4. MSE comparison of estimated channel versus Np.
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Fig. 5. Success rate comparison of estimated channel versus Np.
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Fig. 6. MSE of estimated channel versus transmit SNR with Np = 23.

4.3. Channel Estimation Performance With Different Number of BS Antennas M

In Fig.7, we set K = 12 and compare the MSE performance of the PWSP scheme with different

number of BS antennas for both Np = 16 and Np = 32. It is evident from both Fig. 7(a) and Fig.
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Fig. 7. MSE performance comparisons of PWSP with different number of BS antennas M .
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Fig. 8. MSE performance comparisons of PWSP versus the variation rate |ν|.

7(b) that the channel estimation performance improves as M increases. This is because that the

BS antennas could coordinate with each other and reach a decision on the most probable channel

support for channel estimation (i.e., Line 5 and Line 7 of Algorithm 1) [10]. Thus, according

to the law of large numbers, more coordinated BS antennas could provide more accurate support

detection, as long as Observation II is satisfied.

4.4. Channel Estimation Performance Versus the Variation Rate |ν|

In order to evaluate the impact of ν on the proposed PWSP, we set Np = 23, M = 64 and illustrate

the MSE comparisons with different |ν| in Fig.8. It is obvious that both of MSP and PWSP achieve

a substantial performance gain over the SP when the channel is invariant (|ν| = 0). However, the

performance of the MSP degrades severely when |ν| > 0. On the contrary, the PWSP is relatively

stable and still provides performance gains over the SP and MSP, demonstrating the robustness of

the proposed PWSP scheme in fast time-varying channel§.

5. CONCLUDING REMARKS

This paper considers the uplink channel estimation for massive MIMO system. By extracting the a

priori information from the previous CIRs and exploiting the spatial correlation of massive MIMO

§Note that PWSP is reduced to the conventional SP when |ν| = ∞.
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channels, the PWSP algorithm is proposed to efficiently perform the channel estimation with only

few pilots. Simulation results have shown that the proposed scheme could achieve higher spectral

efficiency as well as more reliable performance. It is also demonstrated that PWSP could still

achieve performance gain in fast time-varying channel.
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