
Outage Probability of Multi-hop Networks with Amplify-and-Forward

Full-duplex Relaying

by

Abhilash Sureshbabu

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved September 2016 by the
Graduate Supervisory Committee:

Cihan Tepedelenlioğlu, Chair
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ABSTRACT

Full-duplex communication has attracted significant attention as it promises to in-

crease the spectral efficiency compared to half-duplex. Multi-hop full-duplex networks

add new dimensions and capabilities to cooperative networks by facilitating simulta-

neous transmission and reception and improving data rates.

When a relay in a multi-hop full-duplex system amplifies and forwards its re-

ceived signals, due to the presence of self-interference, the input-output relationship

is determined by recursive equations. This thesis introduces a signal flow graph ap-

proach to solve the problem of finding the input-output relationship of a multi-hop

amplify-and-forward full-duplex relaying system using Mason’s gain formula. Even

when all links have flat fading channels, the residual self-interference component due

to imperfect self-interference cancellation at the relays results in an end-to-end effec-

tive channel that is an all-pole frequency-selective channel. Also, by assuming the

relay channels undergo frequency-selective fading, the outage probability analysis is

performed and the performance is compared with the case when the relay channels

undergo frequency-flat fading. The outage performance of this system is performed

assuming that the destination employs an equalizer or a matched filter.

For the case of a two-hop (single relay) full-duplex amplify-and-forward relay-

ing system, the bounds on the outage probability are derived by assuming that the

destination employs a matched filter or a minimum mean squared error decision feed-

back equalizer. For the case of a three-hop (two-relay) system with frequency-flat

relay channels, the outage probability analysis is performed by considering the out-

put SNR of different types of equalizers and matched filter at the destination. Also,

the closed-form upper bounds on the output SNR are derived when the destination

employs a minimum mean squared error decision feedback equalizer which is used

in outage probability analysis. It is seen that for sufficiently high target rates, full-
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duplex relaying with equalizers is always better than half-duplex relaying in terms

of achieving lower outage probability, despite the higher RSI. In contrast, since full-

duplex relaying with MF is sensitive to RSI, it is outperformed by half-duplex relaying

under strong RSI.
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Chapter 1

INTRODUCTION

1.1 Wireless Channel Basics

Due to the nature of the wireless channel, the design of wireless networks differ

from wired network design. A wireless channel is unpredictable and difficult commu-

nication medium. As an information signal propagates through a wireless channel, it

experiences random fluctuations in time because of reflections and attenuation if the

transmitter, receiver, or surrounding objects are moving. Hence the channel charac-

teristics appear to change randomly with time, making it difficult to design reliable

systems with guaranteed performance. Thus, understanding the wireless channel

behavior is fundamental to performance analysis. The wireless channel behavior is

dependent on multipath fading, the rate of time variation and frequency selectivity.

1.1.1 Multipath Propagation

A radio signal transmitted by a source will encounter multiple objects in the wire-

less channel environment which produce reflected, diffracted, or scattered copies of

the original transmitted signal from the source. These additional copies of trans-

mitted signal called as multipath signal components can be attenuated, delayed and

shifted in phase and/or frequency with respect to the line of sight (LOS) component

at the destination.

Let the transmitted signal be [1]:

x(t) = <
{
u(t)ej2πfct

}
, (1.1)

where u(t) is the equivalent lowpass signal for x(t) with bandwidth Bu, fc is the
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carrier frequency. Neglecting noise, the corresponding received signal is the sum of

the LOS component and all the resolvable multipath components:

y(t) = <


N(t)∑
n=0

αn(t)u(t− τn(t))ej(2πfc(t−τn(t))+φDn )

 , (1.2)

where n = 0 corresponds to the LOS path. N(t) is the number of resolvable multipath

components and, for the LOS path and each multipath component, its path length

yn(t) and corresponding delay τn(t) = yn(t)/c, φDn(t) is the Doppler phase shift, and

αn(t) is the amplitude. We say that two multipath components with delay τ1 and τ2

are resolvable if |τ1 − τ2| � B−1
u . The multipath components which do not satisfy

this criterion cannot be separated at the destination because u(t − τ1) ≈ u(t − τ2)

and thus are not resolvable.

When these multipath signal components are summed at the destination, it often

results in distortion in the received signal.

1.1.2 Small Scale Fading Models

Small scale fading refers to variations in the signal strength over the distances of

the order of the carrier wavelength, due to the constructive and destructive interfer-

ence of multipath components. Channels which undergo small scale fading can be

modeled by following statistical channel models:

Rayleigh fading channel: Rayleigh fading is a reasonable model when the trans-

mitted signal undergoes scattering from many scatters present in the transmission

environment. If there are sufficiently more scatters then according to the central

limit theorem, the channel impulse response will be well-modeled as a Gaussian pro-

cess irrespective of the distribution of the individual multipath components. If there

is no dominant multipath component, then such process will have zero mean. Thus,
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the envelope of the channel response will be Rayleigh distributed with distribution

pZ(z) =
2z

P̄r
exp

(
− z

2

P̄r

)
, z ≥ 0, (1.3)

where, P̄r is the average received signal power.

Rician fading channel: Rician fading is a reasonable model when the transmitted

signal undergoes scattering from many scatters present in the transmission environ-

ment and there is a dominant multipath component. The envelope of the channel

response will be Rician distributed with distribution

pZ(z) =
2z(K + 1)

P̄r
exp

(
−K − (K + 1) z2

P̄r

)
I0

2z

√
K(K + 1)

P̄r

 , z ≥ 0, (1.4)

where, P̄r is the average received power, K is the Rician factor which is the ratio be-

tween the power in LOS component to the power in the other multipath components

and I0(·) is the 0th order modified Bessel function of the first kind. When there is

no LOS path i.e., K=0 , we have Rayleigh fading and K = ∞ corresponds to the

non-fading channel. The fading parameter K is, therefore, a measure of the severity

of the fading: a small K implies severe fading, a large K implies relatively mild fading.

Nakagami-m fading channel: Rayleigh and Rician distributions can capture the

underlying physical properties of the channel models. However, some experimental

data does not fit well into either of these distributions. Thus, a more general fading

distribution was developed whose parameters can be adjusted to fit a variety of em-

pirical measurements. This distribution is called the Nakagami-m fading distribution

[2] and is given by

pZ(z) =
2mmz2m−1

Γ(m)P̄r
m exp

(
−mz2

P̄r

)
, m ≥ 0.5, (1.5)

where, P̄r is the average received power and Γ(·) is the Gamma function. Rayleigh

fading is a special case of Nakagami-m fading, obtained when m = 1. For m =
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(K+1)2/(2K+1), Nakagami-m fading is approximately Rician fading with parameter

K. When m =∞, the channel corresponds to a non-fading channels [3].

1.2 Cooperative Communications and Relaying Strategies

Cooperative communications refer to a scheme where distributed radios interact

with each other to transmit information in a wireless network. When cooperative com-

munication is used to leverage spatial diversity available among distributed radios, it

results in cooperative diversity. The main motivation here is to improve the reliability

of information transferred for a given transmission rate. Also, cooperative communi-

cations can be used primarily to increase the transmission rate. Cooperation allows

for a trade-off between target performance and required transmitted power, and thus

provides additional design options for energy-efficient wireless networks. To illustrate

the issues associated with cooperative communications, consider a single source, two

relays, and a single destination as shown in Fig.1.1 and Fig.1.2. Generalizations to

multi-source, and multi-stage cooperation have also been considered in [4, 5, 6, 7].

Cooperative communication exploits the broadcast nature of the wireless medium

and allows radios to jointly transmit information through relays. A relay, by its

simplest definition, is a wireless transceiver which can be connected to other relays in

parallel and/or series as shown in Fig.1.1 and Fig.1.2 respectively. From Fig.1.1, we

can see that the two relays can receive signals resulting from the source transmission,

process those received signals, and transmit the signals of their own so as to increase

the capacity and improve the reliability of the end-to-end transmissions between the

source and destination. From Fig.1.2, we can see that relaying can be performed in

multiple stages so that relays as well as the destination benefit from spatial diversity.

Cooperative communication leverages the spatial diversity when multiple trans-

missions experience fading and/or shadowing. For example, if the source signal expe-
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Figure 1.1: Parallel Relays

Figure 1.2: Serial Relays

riences a deep fade at the destination, there remains a significant chance that it can

be effectively communicated to the destination via one of the other relays.

In communication networks, relays can be used to divert the traffic from congested

area of a cellular network to cells with lower traffic. In ad-hoc networks, by employing

more number of relays leads to higher network capacity [8],[9]. Relays extend the

edge of the cell in a cellular network by forwarding the information signal to the

areas where the signal coming directly from the source cannot reach. Relays can also

increase cell coverage by filling uncovered territories, particularly in urban areas by

eliminating the shadowing effect which is a result of the presence of high buildings

[10],[11]. Therefore, relaying systems are efficient in power consumption, and they

lead to higher throughput.
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To illustrate this, consider a communication system in which a certain information

signal has to be transmitted over a distance d. This task can be done in a single-hop,

or by dividing the link into N hops, each of length d/N . In the multi-hop case, the

relay nodes receive the signal, processes it, and passes it on to the next hop, until the

destination is reached. Shorter links require less transmission power and at the same

time offer a greater bandwidth, thus motivating the multi-hop approach. Also, if the

distance between source and destination is large then the path loss of the end-to-end

system is high, consequently, the average SNR of the channel is less. This motivates

to use the multiple relays between the source and the destination there by decreasing

the path loss.

There are many relaying strategies, each having its own advantages and disadvan-

tages over the others. Relays with different relaying strategies are utilized in different

applications depending on the needs. We discuss two important relaying strategies

namely, amplify-and-forward relaying and decode-and-forward relaying which were

first introduced in [12].

1.2.1 Amplify-and-forward Relaying

Relays with amplify-and-forward relaying strategy amplify the received signal and

transmit it towards the destination without any encoding or decoding processes, hence

this relaying strategy is also known as non-regenerative relaying [13],[14]. However,

the relays transmit the received signal with a different gain, and essentially act as

analog repeaters, thereby increasing the system noise level [15]. If relay transmit gain

is greater than one, a multi-hop (many relays) system may become unstable due to

amplification process at each of the relays. Since amplify-and-forward relaying strat-

egy introduces low processing delays at the relays and is fast due to less computation

complexity at the receiver, it is widely used in practical systems [12],[16].
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1.2.2 Decode-and-forward Relaying

Relays with decode-and-forward relaying strategy decode the received signal and

then transmit the re-encoded signal, hence this relaying strategy is also known as

regenerative relaying [17],[18]. Relays with decode-and-forward relaying strategy are

also referred as digital repeaters, bridges, or routers [15]. Decode-and-forward relaying

gives good SNR performance however, it requires high computation power and is not

as fast as amplify-and-forward relaying.

1.3 Half-duplex vs. Full-duplex Relaying

A duplex communication system is a point-to-point system where two devices

can communicate with one another in both the directions. These systems can be

divided into half-duplex and full-duplex relaying systems depending on their ability

to transmit and receive at same time [19, 20].

1.3.1 Half-duplex Relaying

Consider cooperative networks as shown in Fig.1.1 and Fig.1.2, if the relays op-

erate in half-duplex scheme then they can either receive transmitted signal from the

source or transmit their own signal to the destination but not both at the same time.

Each relay in the system should wait for its turn to transmit [21]. One way to achieve

that is to allocate short time intervals for each of the relays to transmit and receive.

By doing that, the communication on each direction looks practically uninterrupted.

This is called time-division duplexing (TDD) [21].
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1.3.2 Full-duplex Relaying

Consider cooperative networks as shown in Fig.1.1 and Fig.1.2, if the relays op-

erate in full-duplex scheme then they can receive transmitted signal from the source

as well as transmit their own signal to the destination at the same time. It can be

achieved by allocating different spectrum for each of the relays to transmit on. This

is called out-band full-duplex relaying and sometimes called as frequency-division du-

plexing (FDD) [21]. In contrast, if the same spectrum is allocated for each of the

relays to transmit on, it is called as in-band full-duplex relaying [22, 23, 24]. Since

the relays will be transmitting and receiving in the same frequency band, the spectral

efficiency can be potentially doubled as compared to half-duplex relaying.

In half-duplex relaying, the relays transmit and receive in same frequency band

but in different time slots [25]. Consequently, there will be no interference between

the transmitted and received signals of the relay. The time to send or receive a symbol

doubles as compared to full-duplex relaying. Due to this spectral efficiency loss in

half-duplex relaying, half of the time spent on communication is wasted. Therefore

full-duplex relaying is more efficient than half-duplex relaying in terms of system

capacity and it can potentially provide twice as much capacity as half-duplex relaying

[20], [26].

In out-band full-duplex relaying, since the transmitted and received signals at

the relays are from different frequency bands, they do not interfere with each other.

However, this does not increase the spectral efficiency since different frequency bands

are used. In contrast in-band full-duplex relaying doubles the spectral efficiency com-

pared to half-duplex relaying but it has a major disadvantage. The transmitted signal

from the relay is also received at the receiver side of the same relay, which is termed

as self-interference [27, 28, 29, 30, 31]. Due to this drawback, in-band full-duplex re-
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laying systems are not deployed as widely as half-duplex relaying systems [10]. From

here on, in-band full-duplex relaying is simply called as full-duplex relaying.

Since 2010, some of the significant experimental results for full-duplex single-input

single-output systems have marked a new beginning for full-duplex communications

[32, 33, 34, 35, 36]. While before that, it was supposed for a long time that having

full-duplex communications is inefficient due to the inherent strong self-interference

between the transmitter and receiver of the same full-duplex system. In the two

surveys, [22] and [23] on full-duplex communications, challenges and opportunities in

wireless communications in PHY and MAC Layers, respectively have been covered.

1.3.3 Self-interference in Full-duplex Relaying

Consider a traditional multi-hop transmission scheme such as in Fig.1.2, let the

relays operate in full-duplex relaying scheme. When the Relay 1 receives the signal

from source, it simultaneously transmits a signal which it received in previous time

slots after some processing. Thus, the signal transmitted by Relay 1 unintentionally

interferes with the signal received by Relay 1. This self-interference signal from the

transmitter of Relay 1 degrades the system’s SINR (signal-to-interference-plus-noise

Ratio) performance. Therefore, in order to leverage full-duplex relaying, there should

be mitigation of self-interference at the relays.

1.4 Mitigation of Self-interference in Full-duplex Relaying

In the literature, by designing the real model, a group of researchers have fo-

cused on interference cancellation techniques, which are divided into three cancella-

tion methods namely, propagation-domain cancellation, analog-domain cancellation

and digital-domain cancellation. For bidirectional antennas and MIMO systems, au-

thors in [37] found the lower and upper bounds on the achievable rates for a single
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relay model with a direct path between source and destination where the dynamic

range limitations were applied. Authors in [32, 33], for the first time, implemented

a single transmitter-receiver pair that operates in full-duplex mode. In [38] active

analog-domain and digital-domain cancellations were utilized that leads to a total

average cancellation of 74 dB. With the assumption that simultaneous reception

and transmission in the same frequency band causes an infinite feedback loop in

an amplify-and-forward relay and with the channel equalization perspective like in

[39], authors in [40] attempted to propose an adaptive cancellation method for MIMO

amplify-and-forward full-duplex relays, which mitigated self-interference and channel

equalization by means of spectrum restoration. Among these techniques, the self-

interference can be canceled by estimating the self-interference channels [41, 42] or be

suppressed with the null-space method in MIMO [43]. However, the estimation error

and the trade-off between suppression and user rate still lead to RSI. Thus, highly

accurate channel state information (CSI) in the presence of RSI is required at the des-

tination to further improve the system performance by canceling RSI. Several works

analyze the system performance in the presence of RSI with different criteria such

as interference power, outage probability, bit error rate etc. [39, 44, 45]. However,

these works do not consider the cancellation of the RSI. Some of the works assume

perfect CSI while others assume imperfect CSI without considering how to estimate

the channels. [46] gives an overview of the effect of channel estimation errors on the

capacity of full-duplex amplify-and-forward relay networks and provides a derivation

of a lower bound on the capacity of the system in the presence of channel estimation

errors and RSI. Finally, optimal power allocation schemes in maximizing the capac-

ity with joint power constraints are proposed. Excessive channel estimation errors

drive full-duplex amplify-and-forward relay into unstable modes and cause capacity

reduction [47]. More insight into the self-interference cancellation techniques is given
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in the next subsections.

1.4.1 Propagation-domain Self-interference Suppression

Propagation-domain self-interference suppression technique suppresses the self-

interference signal by separating the transmitter chain from the receiver chain. This

can be achieved by using a combination of cross-polarization [48, 49, 50, 51] and

antenna directionality [48, 51] for separate-antenna system or by using a circulator for

shared-antenna system. Even though these methods are very effective in suppressing

direct-path self-interference, they fail to distinguish between the reflected-path self-

interference and the desired received signal. Thus self-interference suppression will not

be effective when there is reflect-path self-interference. This motivates in developing

channel aware technique to handle reflected path signals.

Transmit beamforming is one among the transmit channel aware propagation-

domain self-interference suppression techniques in which the transmit antenna array

of full-duplex relay is steered in an attempt to zero the radiation pattern at its receiver

antennas. The main drawback of this suppression technique is that, while adjusting

the transmit and/or receive patterns to suppress self-interference, the full-duplex

relays might accidentally suppress its desired signal.

1.4.2 Analog-circuit-domain Self-interference Cancellation

Analog-circuit-domain self-interference cancellation techniques can be used before

analog-to-digital conversion in the receiver-chain circuitry. The transmit signal after

the digital-to-analog conversion in transmit-chain is tapped, electronically processed

in the analog-circuit domain, and subtracted from the receiver-chain in order to cancel

the self-interference. This method can capture the transmitter non-idealities like

oscillator-phase noise and high power amplifier distortions because the transmitting
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signal is tapped close to the transmitting antennas for the purpose of canceling the

self-interference in analog-domain of the receiver chain. Among the analog-circuit-

domain self-interference cancellation techniques, channel un-aware techniques aim

to cancel direct-path self-interference[33, 48, 52, 53, 54], whereas, channel aware

techniques aim to cancel both the direct-path and the reflected-path self-interference

[27, 31, 32, 33, 34].

Even though analog-circuit-domain self-interference cancellation techniques cir-

cumvent the transmitter non-idealities, these techniques require analog-domain sig-

nal processing, which becomes difficult in the case of wideband reflected-path self-

interference [22] since it would require adapting an analog filter for each transmit-

receive antenna pair in a MIMO system. However, the techniques which tap and

process the transmit signal in digital domain have the advantage of using sophis-

ticated adaptive DSP techniques to reflected-path self-interference. However, these

cancellation techniques have the disadvantage of reduced cancellation precision due

to the presence of analog-circuit non-idealities.

1.4.3 Digital-circuit-domain Self-interference Cancellation

Digital-circuit-domain self-interference cancellation techniques can be used after

analog-to-digital conversion in the receiver-chain circuitry by processing the received

signal using sophisticated DSP techniques [22]. However, the disadvantage of this

technique is that, if the self-interference is strong then the ADC in the receiver cir-

cuitry will saturate. Therefore, the ADC’s dynamic-range limits the amount of self-

interference reduction that is possible. Thus, the self-interference must be sufficiently

suppressed before the ADC, using propagation-domain suppression techniques and/or

-analog-circuit-domain self-interference cancellation as described in the previous sec-

tion.
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1.5 Previous Works on Multi-hop Networks with Full-duplex Relaying

In this section, we will explore various researches which took place on multi-hop

full-duplex relay networks to discuss the problems that are solved in multi-hop full-

duplex relay networks and to determine the remaining open problems.

In [55] and [56], a virtual full-duplex relay was proposed by using two half-duplex

relays in a novel way. The two relays in each hop transmit data to the next hop in

odd and even number of time slots. It means that in a time slot, say an odd number,

one of them is transmitting data to the next hop and the other relay is receiving

data from the previous hop. Obviously, in each time slot, the relay that is receiving

a signal from the previous hop will receive the interference signal coming from the

relay that is transmitting data to the next hop. They considered the achievable rates

for various coding schemes and compared them with a cut-set upper bound.

Authors in [57] proposed an optimal multi-hop relay selection algorithm that finds

the optimal hop count, selects some relays and maximizes transmission rate. With

a network security perspective, calculation of the transmit power allocations for full-

duplex relays that are obtained by a sub-optimal approach to maximize the lower

bound of the achievable secrecy rate using the geometric programming method is

done [58]. To achieve the structured cancellation defined in [59], a transmission

strategy for multi-hop full-duplex relay network was proposed that is limited to the

situations in which the source-to-relay SNR is higher than the relay-to-destination

SNR, and limited to the case that the residual self-interference channel coherence time

is short. In [60], authors proposed a wireless multi-hop relaying scheme composed of

both half-duplex and full-duplex relays. It is assumed that the adjacent relays, in

consecutive hops, send interference signals to each other. They have shown that

employing all relays in full-duplex mode between source and destination does not
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lead to the minimum outage performance.

Diversity-multiplexing trade-off (DMT) of a multiple-input-multiple-output full-

duplex single-user multi-hop relay channel is investigated in [61]. It was shown that

the DMT upper bound of the channel can be achieved by properly designing space-

time codes at the source. However, they did not model any loop interference at

full-duplex users, which is a non-trivial assumption in practice.

One of the main problems in full-duplex communications like the secondary colli-

sion problem, that occurs while combining wireless full-duplex with multi-hop com-

munication, is avoided by using directional asynchronous full-duplex medium access

control (DAFD-MAC) protocol and directional antennas [62]. Authors in [62] also fo-

cused on asynchronous timing adjustment because clock synchronization for all nodes

in a multi-hop network is an unsettling task. Another problem in full-duplex com-

munications is characterization of the interference relationship between links in the

multi-hop full-duplex network. Authors in [63] introduce a novel method for this

characterization with the cut-through transmission. By using this method, it is pos-

sible to derive simple interference conditions that capture the full-duplex cut-through

constraint in a scalable and low-complexity manner. For a two-way relay channel

where two sources exchange information through a multi-antenna full-duplex relay,

to solve the problems of finding the achievable rate region and maximizing the sum

rate, iterative algorithms and 1-D search was proposed [64].

Authors in [65] defined a new parameter named path-loss-to-interference ratio

(PLIR), which describes the ratio of the received desired signal power to the received

interference power when the transmit powers of the useful and the interference signals

are identical. By supposing the general method for calculating the outage probability

of multi-hop full-duplex relaying systems employing a decode-and-forward protocol,

an outage of the end-to-end communication link occurs if and only if an outage occurs
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in at least one of the intermediate links, and they have derived an expression for the

overall outage probability.

1.6 Full-duplex Relaying in 5G Standards

Considering the challenges in 5G which includes spectrum management, flexible

spectrum allocations, spectrum efficiency and increasing the system throughput, re-

searchers were recently motivated to explore the applicability of full-duplex Radios

in 5G [24, 66, 67, 68, 69]. With this regards, in [66] several key design issues in

full-duplex network are discussed and some potential solutions are proposed.

Considering a multi-cell scenario, and noticing the fact that by increasing the

number of simultaneous transmissions and reception, correspondingly increases the

number of interference signals in a small cell, authors in [67] evaluated the perfor-

mance of full-duplex communication in a dense small cell scenario that has drawn a

significant attention of researchers in 5G research. With a practical perspective, au-

thors in [68] addressed the advantages and the disadvantages of potential full-duplex

self-interference cancellation techniques such as passive suppression, active analog

cancellation, and active digital cancellation. Moreover, an opportunistic decode-and-

forward based relay selection scheme is analyzed in the cognitive networks.

In 5G, it is important to guarantee the quality of service (QOS) for wireless

full-duplex networks while considering the heterogeneity caused by different types of

simultaneous traffic over the wireless full-duplex links. With this aim, authors in [68]

formulated the optimization problems to maximize the system throughput subject to

heterogeneous statistical delay-bound QoS requirements.

Finally, a group of researchers investigated the applications of self-interference

cancellation in 5G and mentioned the self-interference cancellation architectures and

costs associated with them [24]. The authors also explored the feasibility of full-duplex
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in a small cell and heterogeneous networks.

1.7 Contributions and Outline of Thesis

Full-duplex communication has attracted significant attention as it potentially

doubles the spectral efficiency compared to half-duplex. Multi-hop full-duplex net-

works add new capabilities to cooperative networks by facilitating simultaneous trans-

mission and reception and improving the performance in terms of achieving higher

data rates. However, full-duplex communications is not feasible due to the inherent

strong loop interference. Therefore, to leverage the advantages of fill-duplex commu-

nications, there should be proper self-interference cancellation at the relays.

In multi-hop full-duplex communication, [65] analyzes the outage probability per-

formance of multi-hop decode-and-forward relaying networks where each hop has

frequency-flat fading channels. However, to the best of our knowledge, outage prob-

ability analysis of multi-hop amplify-and-forward full-duplex relaying systems with

frequency-flat or frequency-selective channel is not explored yet. This is due to the

fact that it is quite challenging to derive the input-output relationship of multiple

full-duplex relays in series suffering residual self-interference.

The thesis is organized as follows. Chapter 2 gives the signal flow graph approach

using the Mason’s gain formula to solve the problem of finding the input-output

relationship of multi-hop full-duplex amplify-and-forward relaying systems. Chapter

3 provides the outage probability analysis of a multi-hop full-duplex amplify-and-

forward relaying system. End-to-end output SNR is calculated by employing matched

filter and different types of equalizers at the destination, which can be used to perform

the outage probability analysis of the end-to-end system. Finally, the conclusion and

the scope for future research are presented in Chapter 4.
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Chapter 2

MULTI-HOP FULL-DUPLEX AMPLIFY-AND-FORWARD RELAYING

2.1 System Model

Figure 2.1: System Model with (N + 1) hops

A full-duplex multi-hop amplify-and-forward relaying system shown in Fig.2.1,

consists of a source node, S, and a destination node, D, connected through N relay

nodes, R1 to RN , which amplify-and-forward the received signal to the next relay. At

time n, S transmits information-bearing signal x[n] to R1, R1 amplifies the received

signal by a factor g1 > 0 and transmits to R2, with a processing delay of one symbol

period. In general, the relay Ri receives a signal ri[n], which is the combination of

signal transmitted from relay Ri−1, denoted as ti−1, its own loop interference signal

and the corresponding noise input signal, vi at relay Ri:

ri[n] = hiti−1[n] + hrr
i ti[n] + vi[n], i = 1, · · · , N, (2.1)

and t0[n]=x[n]. The transmitted signal ti[n] by the relay Ri is given by (2.2)

ti[n] = giri[n− 1]. (2.2)
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The same sequence of amplifying at the ith relay Ri, i = 1, ..., N , by a corresponding

factor gi > 0 and forwarding to the next relay, Ri+1, continues from R1 to RN , and

eventually the destination D receives the signal incident from RN , denoted by

y[n] = hN+1tN [n] + vD[n]. (2.3)

We consider frequency-flat Rayleigh fading so that hi, i ∈ {1, ..., N}, are complex

Gaussian channel gains between relays Ri−1 and Ri with zero mean and variance σ2
h.

In a full-duplex relaying system, since reception and transmission occurs at the same

time [12],[33], in addition to the information sent from Ri−1, Ri also receives an RSI

component hrr
i [44],[70]. We assume that all the channels are independent, and both S

and relay Ri transmit at normalized average power of unity, additive Gaussian noise

terms, vD, at the destination and vi, at the relay Ri have an identical variance, σ2
v .

The signal-to-noise ratio (SNR), γi = |hi|2/σ2
v , are exponentially distributed random

variables with the mean Γi = σ2
h/σ

2
v . Furthermore, one can see that the RSI not only

makes the overall channel more frequency selective but also introduces colored noise

since the noise propagate through multiple relays (multiple filters). In our thesis, we

do not perform noise whitening therefore we consider colored noise.

2.2 Amplification Gain at the Relays

We assume that both the source and the relay, Ri, transmits signals x[n] and

ti[n] respectively, at normalized average power of unity [20], i.e., E{|x[n]|2} = 1 and

E{|ti[n]|2} = 1, where E{·} denotes the average over signal and noise distributions.

The relay Ri receives a signal ri[n], given by (2.1), which is the combination of signal

transmitted from relay Ri−1, denoted as ti−1, its own loop interference signal and the

noise input signal, vi. The transmitted signal ti[n] by the relay Ri is given by (2.2).
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To find amplification factor at R1, recursive substitution of (2.1) into (2.2) gives,

t1[n] = g1r1[n− 1]

= g1 (h1x[n− 1] + hrr
1 t1[n− 1] + v1[n− 1])

= g1 (h1x[n− 1] + v1[n− 1] + hrr
1 g1{h1x[n− 2] + hrr1 t1[n− 2] + v1[n− 2]})

= g1

∞∑
j=1

(hrr
1 g1)j−1 (h1x[n− j] + v1[n− j]) . (2.4)

The instantaneous relay transmit power can be calculated using (2.4) to be,

E{|t1[n]|2} = g2
1

∞∑
j=1

(
|hrr

1 |2g2
1

)j−1 (|h1|2 + σ2
v

)
= g2

1

|h1|2 + σ2
v

1− |hrr
1 |2g2

1

. (2.5)

The sum in (2.5) converges, if g2
1 < 1/|hrr

1 |2. Substituting (2.5) into normalization

condition, E{|t1[n]|2} = 1, amplification factor at relay R1 after simplification is given

to be,

g1 = (|h1|2 + |hrr
1 |2 + σ2

v)
− 1

2 . (2.6)

To find amplification factor at R2, again by recursive substitution of (2.1) into

(2.2) gives,

t2[n] = g2r2[n− 1]

= g2 (h2t1[n− 1] + hrr
2 t2[n− 1] + v2[n− 1])

= g2{h2g1 (h1x[n− 2] + hrr
1 t1[n− 2] + v1[n− 2]) + hrr

2 t2[n− 1] + v2[n− 1]}

= g2

∞∑
j=1

(hrr
2 g2)j−1{h2g1 (h1x[n− j − 1] + hrr

1 t1[n− j − 1] + v1[n− j − 1]) + v2[n− j]}

= g2

∞∑
j=1

(hrr
2 g2)j−1{h2g1

∞∑
k=0

(hrr
1 g1)k (h1x[n− j − k − 1] + v1[n− j − k − 1]) + v2[n− j]}

(2.7)
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By noting that the second summation in (2.7) converges if g2
1 < 1/|hrr

1 |2, the instan-

taneous relay transmit power can be calculated using (2.4) to be,

E{|t2[n]|2} = g2
2

∞∑
j=1

(hrr
2 g2)j−1

(
|h2|2g2

1

1− |hrr
1 |2g2

1

(
|h1|2 + σ2

v

)
+ σ2

v

)
.

(2.8)

The sum in (2.8) converges, if g2
2 < 1/|hrr

2 |2. Substituting (2.6) into (2.8) and con-

sequently into normalization condition, E{|t2[n]|2} = 1, after some simplifications,

amplification factor at relay R2 is given to be,

g2 = (|h2|2 + |hrr
2 |2 + σ2

v)
− 1

2 . (2.9)

Though (2.6) and (2.9) gives the amplification gain of relay R1 and R2 respectively

only, we can generalize the procedure to find the amplification gain at relay Ri by

recursively substituting (2.1) into (2.2) to obtain (2.10). The recursive substitution

should be terminated after we get the term t0[n], since t0[n] = x[n].

ti[n] = gi

∞∑
j=1

(hrr
i gi)

j−1 (hiti−1[n− j] + vi[n− j]) . (2.10)

The sum in (2.10) converges if |hrr
i |2g2

i < 1. Assuming the signal and noise samples are

mutually independent, the instantaneous transit power of relay Ri can be calculated

using (2.10). As discussed in the previous sections, the amplification factor gi is

selected such that the instantaneous transmit power in relay is normalized such that

E{|ti[n]|2} = 1. Substituting the expression for E{|ti[n]|2} derived from (2.10) into

this normalizing condition, we can find the amplifying factor gi for corresponding

relay Ri.
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2.3 Mason Gain Formula Approach to Find Input-output Relationship of the

Multi-hop Full-duplex Amplify-and-forward Relaying System

In this section, we first discuss the difficulty in finding the input-output relation-

ship of multi-hop full-duplex amplify-and-forward network and then we propose an

easy way of finding the input-output relationship based on signal flow graph method

by using Mason’s gain formula (MGF).

2.3.1 Difficulty in Finding the Input-output Relationship

In full-duplex relaying, we assume that the relays introduce a processing delay

of one symbol time due to interference cancellation. Since the relays continuously

amplifies-and-forwards previously received symbols, the received symbol at the des-

tination at time n is given by

y[n] = hN+1 (gNyrN [n− 1]) + vD[n], (2.11)

where the received signal, yrN [·], at the relay RN is given by

yrN [n] = hN
(
gN−1yr(N−1)[n]

)
+ hrr

N (gNyrN [n− 1]) + vN [n], (2.12)

where the received signal, yr(N−1)[n], at the relay RN−1 is given by

yr(N−1)[n] = hN−1

(
gN−2yr(N−2)[n]

)
+ hrr

N−1

(
gN−1yr(N−1)[n− 1]

)
+ vN−1[n]. (2.13)

Due to the RSI, the received signals yrN [n], yr(N−1)[n] , · · · , yr1[n] at the relays RN ,

RN−1 , · · · , R1, respectively, have a recursive form and thus, are a function of the

previously received symbols x[n], x[n − 1], · · · . By substituting yrN [n], yr(N−1)[n] ,

· · · , yr1[n] into (2.11) we can find the overall input-output relationship of the network.

This method of recursive substitution to find the overall input-output relationship has

been done in [39] for the case of two hop (single relay) network. However this approach
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of recursive substitution is tedious and complex for the case of networks with more

than one relays. In the next sub-sections we propose a signal flow graph method to

simplify the procedure of finding the input-output relationship of full-duplex amplify-

and-forward networks with any number of relays between source and destination.

2.3.2 Signal Flow Graph Approach

Signal flow graph theory is concerned with the development of a graph theoretic

approach to solve a system of linear equations. Two closely related methods proposed

by Coates [71] and Mason [72] have appeared in the literature and have served as

elegant aids in gaining insight into the structure and nature of solutions of systems

of equations. A signal-flow graph, often called as mason graph after Samuel Jefferson

Mason, is a specialized directed graph in which nodes represent system variables and

arrows represent the functional connection between a pair of nodes.

As discussed earlier, to find the input-output relationship between x[n] and y[n],

recursive substitution of (2.2) into (2.1) is done for a single-relay case[39]. This is

tedious and complex for systems with multiple relays between source and destina-

tion. To avoid this iterative approach, we propose a new method to determine the

input-output relationship by showing that the system model shown in Fig. 2.1 can

be equivalently represented by a signal-flow graph as shown in Fig.2.2. The transmit

antennas of source and destination along with the transmit and receive antennas of

the relays are considered as nodes in the signal flow graph. We apply MGF [72, 73] to

the signal flow graph given in Fig.2.2, by noting that there is only one forward path

with path gain of h1h2g1, ..., hi+1gi, ..., hN+1gNz
−N and N non-touching loops, one at

each of the N relays with loop gain hrr
i giz

−1, where z−1 captures the processing delay

at each of the N relays.
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Figure 2.2: Signal-flow Graph

Linearity can be applied to find the input-output relationship of the system in-

cluding the noise since the output is a linear function of the input and noise pro-

cesses. This is done by considering two different cases: one by considering only the

information-bearing signal as the input while neglecting the noise inputs and the other

by considering only the noise terms at respective relays as inputs while neglecting the

information-bearing signal input.

2.3.3 Mason Gain Formula

Masons gain rule is a technique for finding an overall transfer function of a network

with multiple-inputs and multiple-outputs, which is helpful to simplify a complex

network. The purpose of using MGF is the same as that of block reduction. However,

MGF is guaranteed to yield a concise result via a direct procedure, where as the

process of block reduction can meander. The terminology used for explaining the

method of writing the input-output relationship using MGF is,

• Path: A continuous line segments traversed in the direction indicated

• Forward path: A path from input-node to output-node by not going through

any of the nodes more than once.

• Loop: A path starting and ending at the same node and not going through any

of the intermediate nodes more than once.
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• Path gain: Product of gains of all the branches in the path.

• Loop gain: Product of gains of all the branches in the loop.

• Non-touching loops: Two loops which do not have a common node.

The Mason’s gain formula is given by,

G =
Y (z)

X(z)
=

∑M
k=1 Gk∆k

∆
. (2.14)

∆ = 1−
∑
Li +

∑
LiLj −

∑
LiLjLk + ...+ (−1)m

∑
...+ ...

where,

∆ = the determinant of the signal flow graph

Y (z) = z-transform of the output-node variable

X(z) = z-transform of the input-node variable

G = Transfer function

M = total number of forward paths between X(z) and Y (z)

Gk = path gain of the kth forward path between X(z) and Y (z)

Li = loop gain of each closed loop in the system

LiLj = product of the loop gains of any two non-touching loops

LiLjLk = product of the loop gains of any three pairwise non-touching loops

∆k = the co-factor value of ∆ for the kth forward path, with the loops touching the

kth forward path removed.

Figure 2.3: Three Relay System with Inter-relay Interference
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Figure 2.4: Signal-flow Graph of Three Relay System with Inter-relay Interference

Consider a 3-relay system with inter-relay interference as shown in Fig. 2.3,

whose corresponding signal-flow graph is given in Fig. 2.4. We can see from the

signal-flow graph that, there is only one forward path (M=1), with path gain G1 =

h1h2g1h3g2h4g3z
−3. Let the individual loop gains be, L1 = hrr

11g1z
−1, L2 = hrr

22g2z
−1,

L3 = hrr
33g3z

−1, L4 = h2g1h
rr
21g2z

−2 and L5 = h3g2h
rr
32g3z

−2. The products of two

non-touching loops are L1L2, L1L3, L2L3, L1L5, L3L4 and the products of three

non-touching loops are L1L2L3.

Since all the loops touch the forward path, ∆k=1. By noting that the transfer

function, G, represents the input-output relationship of the network, since there are

four noise inputs, one each at the relays, one symbol input and one output, we can

write five input-output relationship equations with respect to each of the five inputs.

Linearity can be applied to find the overall input-output relationship of the sys-

tem including the noise since the output is a linear function of the input and noise

processes. This is done by considering two different cases: one by considering only

the information-bearing signal as the input while neglecting the noise inputs and the

other by considering only the noise terms at respective relays as inputs while neglect-

ing the information-bearing signal input. The overall transform-domain input-output

relationship of the system can be written as,

Y (z) = H(z)X(z) +Hn1(z)V1(z) +Hn2(z)V2(z) +Hn3(z)V3(z) + VD(z). (2.15)
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We now proceed to find the effective channels H(z) and Hni(z), i = 1, 2, 3, with

respect to information symbol and noise at the relay Ri respectively.

• Input-output relationship with respect to symbol input: In this case, noise

inputs, v1, v2, v3 and vD are assumed to be absent. Therefore the signal-flow

graph in Fig.2.4 can be modified and it is shown in Fig.2.5, noting that in this

case G = H(z), (2.14) reduces to

Figure 2.5: Signal-flow Graph of Three Relay System with Inter-relay Interference
and with Only Symbol Input

H(z) =
h1h2g1h3g2h4g3z

−3

1− (L1 + L2 + L3 + L4 + L5) + (L1L2 + L1L3 + L2L3 + L1L5 + L3L4)

− L1L2L3

.

(2.16)

• Input-output relationship with respect to noise input v1: In this case, all the

inputs other than noise input v1 are assumed to be absent. Therefore the signal-

flow graph in Fig.2.4 can be modified and it is shown in Fig.2.6, noting that in

this case G = Hn1(z), (2.14) reduces to

Hn1(z) =
h2g1h3g2h4g3z

−3

1− (L1 + L2 + L3 + L4 + L5) + (L1L2 + L1L3 + L2L3 + L1L5 + L3L4)

− L1L2L3

.

(2.17)

It is worth mentioning that Hn1(z) = H(z)/h1.

• Input-output relationship with respect to noise input v2: In this case, all the

inputs other than noise input v2 are assumed to be absent. Therefore the signal-

flow graph in Fig.2.4 can be modified and it is shown in Fig.2.7, noting that in
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Figure 2.6: Signal-flow Graph of Three Relay System with Inter-relay Interference
and with Noise Input v1

this case G = Hn2(z), (2.14) reduces to

Figure 2.7: Signal-flow Graph of Three Relay System with Inter-relay Interference
and with Noise Input v2

Hn2(z) =
h3g2h4g3z

−2

1− (L2 + L3 + L5) + L2L3

. (2.18)

• Input-output relationship with respect to noise input v3: In this case, all the

inputs other than noise input v3 are assumed to be absent. Therefore the signal-

flow graph in Fig.2.4 can be modified and it is shown in Fig.2.8, noting that in

this case G = Hn3(z), (2.14) reduces to

Figure 2.8: Signal-flow Graph of Three Relay System with Inter-relay Interference
and with Noise Input v3

Hn3(z) =
h4g3z

−1

1− L3

. (2.19)
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• Input-output relationship with respect to noise input vD: In this case, all the

inputs other than noise input vD are assumed to be absent. Noting that in this

case, (2.14) reduces to, G = Hn4(z)=1 since the input is same as the output.

2.3.4 Input-output Relationship of the Multi-hop Full-duplex Amplify-and-forward

Relaying System

We find the input-output relationship of the multi-hop full-duplex amplify-and-

forward relaying system by considering two different cases: one by considering only

the information-bearing signal as the input while neglecting the noise inputs and the

other by considering only the noise inputs at respective relay as input while neglecting

the information-bearing signal input.

Considering the information-bearing signal and neglecting the noise inputs, the

transfer function of the system is given by

H(z) =

h1z
−N

N∏
k=1

hk+1gk

1 +
N∑
k=1

z−k(−1)k
∑
A∈Sk

∏
j∈A

hrr
j gj

. (2.20)

Here Sk represents the set of subsets of {1, 2, ..., N}, where k indicates number of

elements in subset. If m is the number of subset in Sk then (m−1) gives the number of

summations in the second summation symbol of the denominator in (2.20). Element A

of Sk represents subsets whose element j points to the corresponding self-interference

term hrr
j gj. Here j points to all the elements in subset A. From (2.20), we can see

that the denominator has the products of the terms hrr
j gj and when N is large, the

denominator can be approximated by considering first two terms of the summation
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as other terms can be neglected. Consequently, (2.20) reduces to,

H(z) =

h1z
−N

N∏
k=1

hk+1gk

1− z−1

N∑
j=1

hrr
j gj + z−2

∑
A∈S2

∏
j∈A

hrr
j gj

. (2.21)

Considering the other case without information-bearing signal and only the noise

inputs are present, the transfer function corresponding to ith noise input vi at the

relay Ri can be formulated as,

Hni(z) =

z−(N−i+1)

N∏
k=i

hk+1gk

1 +
N∑
k=1

z−k(−1)k
∑
A∈Sk,i

∏
j∈A

hrr
j gj

. (2.22)

Here the significance of A and j are same as previous section, but Sk,i represents the

set of subsets of {i, ..., N} with k elements. Under the same approximation done to

obtain (2.21) from (2.20), (2.22) reduces to,

Hni(z) =

z−(N−i+1)

N∏
k=i

hk+1gk

1− z−1

N∑
j=i

hrr
j gj + z−2

∑
A∈S2,i

∏
j∈A

hrr
j gj

. (2.23)

The overall transform-domain input-output relationship of the system corresponding

to both information-bearing signal and noise signal inputs can be obtained from (2.21)

and (2.23) as,

Y (z) = H(z)X(z) +
N∑
i=1

Hni(z)Vi(z) + VD(z). (2.24)

2.4 Impulse Response of Multi-hop Full-duplex Amplify-and-forward Relaying

System

For a multi-hop full-duplex amplify-and-forward relaying system, the effective

channel for information-signal input at the destination is given by (2.21). Let m1 and
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m2 be the roots of (2.21), then (2.21) can be written as

H(z) = z−N

h1

N∏
k=1

hk+1gk

(1−m1z−1) (1−m2z−1)
. (2.25)

Let,

HB(z) =

h1

N∏
k=1

hk+1gk

(1−m1z−1) (1−m2z−1)
=

A

1−m1z−1
+

C

1−m2z−1
, (2.26)

where, upon solving (2.26), A and C are found to be

A =

h1

N∏
k=1

hk+1gk

1− m2

m1

and C =

h1

N∏
k=1

hk+1gk

1− m1

m2

. (2.27)

Substituting A and C into (2.26) and taking its inverse z-transform, we obtain

hB(n) =


h1

N∏
k=1

hk+1gk

1− m2

m1

mn
1 +

h1

N∏
k=1

hk+1gk

1− m1

m2

mn
2

u[n]. (2.28)

The impulse response of the system, h[n], corresponding to information-bearing

signal input can be obtained as,

h(n) = hB(n−N) =


h1

N∏
k=1

hk+1gk

1− m2

m1

mn−N
1 +

h1

N∏
k=1

hk+1gk

1− m1

m2

mn−N
2

u[n−N ]. (2.29)

The effective channel for noise source at the destination is given by (2.23). Let

m3 and m4 be the roots of (2.23), then (2.23) can be written as

Hni(z) = z−(N−i+1)

N∏
k=i

hk+1gk

(1−m3z−1) (1−m4z−1)
. (2.30)
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Let,

HBi(z) =

N∏
k=i

hk+1gk

(1−m3z−1) (1−m4z−1)
=

E

1−m3z−1
+

F

1−m4z−1
, (2.31)

where, upon solving (2.31), E and F are found to be

E =

N∏
k=i

hk+1gk

1− m4

m3

and F =

N∏
k=i

hk+1gk

1− m3

m4

. (2.32)

Substituting E and F into (2.31) and taking its inverse z-transform, we obtain

hBi(n) =


N∏
k=i

hk+1gk

1− m4

m3

mn
3 +

N∏
k=i

hk+1gk

1− m3

m4

mn
4

u[n]. (2.33)

The impulse response,hni(n) corresponding to noise input vi, can be obtained as,

hni(n) = hBi(n− (N − i+ 1))

=


N∏
k=i

hk+1gk

1− m4
m3

m
n−(N−i+1)
3 +

h2

N∏
k=i

hk+1gk

1− m3
m4

m
n−(N−i+1)
4

u[n− (N − i+ 1)].

(2.34)

Using (2.20) and (2.22), one can find the effective channel with respect to input signal

and noise respectively, which determine the end-to-end SNR of the system. In the

next chapter, by using (2.20) and (2.22) we derive the end-to-end SNR using which

we perform the outage probability analysis.

2.5 Conclusions

The recursive substitution method to find the input-output relationship of a multi-

hop full-duplex amplify-and-forward relaying system is tedious for complex networks
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involving many relays with inter-relay interference. We introduced the signal flow

graph approach using the Mason’s gain formula which provides a simple method

to find the input-output relationship of any complex multi-hop full-duplex amplify-

and-forward relaying system. To demonstrate this, we took an example of a three

relay system with inter-relay interference and derived the effective channel equation

for both the information signal input and the noise inputs. Also, we derived the

generalized input-output relationship along with the channel impulse responses for

the information signal and the noise inputs for a multi-hop full-duplex amplify-and-

forward relaying system.
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Chapter 3

OUTAGE PROBABILITY ANALYSIS OF FULL-DUPLEX

AMPLIFY-AND-FORWARD RELAYING SYSTEM

In this chapter, the outage probability of the multi-hop full-duplex amplify-and-

forward relays is analyzed by considering matched filter and different types of equaliz-

ers at the destination. A general procedure to perform the outage probability analysis

of a multi-hop system is discussed and then the outage probability analysis for the

case of the two and three-hop systems is done. Also, the upper bounds on the output

SNR at the output of MMSE-DFE at the destination by assuming perfect interference

cancellation at one of the relays are derived.

3.1 Matched Filtering at the Output

Matched filtering is a process for detecting a known signal that is embedded in

noise by maximizing the signal-to-noise ratio (SNR) of the signal being detected with

respect to the noise. The matched filter performs correlation of a known signal with

an unknown signal to detect the presence of a signal in the unknown signal.

3.2 Equalization at the Output

The full-duplex multi-hop relays suffer from self-interference, making the effec-

tive end-to-end channel as frequency-selective due to multipath propagation. Conse-

quently, the transmitted symbols undergo inter-symbol interference (ISI) [74]. Viterbi

algorithm can be used to counter-act ISI but it has large computation complexity,

making the use of Viterbi algorithm expensive to implement practically. However,

one can use sub-optimal channel equalization approaches to equalize the channel and
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reduce ISI to allow correct recovery of the transmitted symbols. The equalizers can

be linear or non-linear, we consider two types of linear equalizers namely zero-forcing

equalizer, minimum mean squared error equalizer and a non-linear equalizer namely

minimum mean squared error decision feedback equalizer [75].

3.2.1 Zero-forcing Equalizer (ZFE)

Zero-forcing equalizer approximates the inverse of the channel with a linear filter

to eliminate ISI. The output SNR of the Zero-forcing equalizer is given by (3.1),

γeq =

(∫ 1
2

− 1
2

Sn(f)

Ss(f)
df

)−1

. (3.1)

One can see that when the signal spectral characteristics possess any zeros, the output

SNR of the ZFE goes to zero. Therefore, the performance of ZFE will be bad when the

signal spectral characteristics possess null or takes on small values. This is because of

the fact that when the equalizer tries to eliminate ISI, it also enhances the additive

noise.

3.2.2 Minimum Mean Squared Error (MMSE) Equalizer

If e is the error signal, which is the difference between the transmitted information

signal and the estimate of that signal, MMSE equalizer uses a filter which minimizes

E [|e|2]. The output SNR of the linear MMSE equalizer is given by (3.2),

γeq = −1 +

∫ 1
2

− 1
2

1

1 +
(
Ss(f)
Sn(f)

) df

−1

. (3.2)

3.2.3 MMSE Decision Feedback Equalizer (MMSE-DFE)

MMSE-DFE is a type of non-linear equalizer whose performance is generally better

than that of linear equalizers. The MMSE-DFE equalizer consists of two filters,
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a feedforward filter and a feedback filter. The received signal is the input to the

feedforward filter and the sequence of decisions on previously detected symbols are

the input to the feedback filter. The feedback filter is used to remove the ISI from

the present estimated symbol from the previously detected symbols. This equalizer

is considered to be a nonlinear since the detector feeds hard decisions to the feedback

filter. The output SNR of such type of MMSE-DFE is given by (3.3),

γeq = −1 + exp

(∫ 1
2

− 1
2

log

(
1 +

Ss(f)

Sn(f)

)
df

)
. (3.3)

Using the independence of the noise at the relays, the power spectral density of the

signal, Ss(f), and the power spectral density of the noise, Sni(f), can be derived from

(2.20) and (2.22) by using the relationships,

Ss(f) = |H(ej2πf )|2, (3.4)

Sni(f) = |Hni(e
j2πf )|2. (3.5)

Overall power spectral density of noise inputs at all the relays, Sn(f), can be derived

from the relation,

Sn(f) = σ2
v

[
1 +

N∑
i=1

Sni(f)

]
. (3.6)

Equations (3.4) and (3.6) can be determined for any multi-hop system and upon

substituting into (3.1), (3.2) and (3.3), one can find the output SNR of the respective

equalizer. If the resulting SNR is below a threshold SNR ΓT , the end-to-end system

is considered to be in outage, this threshold SNR is related to target rate, RT , of the

system according to Shannon capacity formula as,

RT = log2(1 + ΓT ) bps/Hz. (3.7)
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3.3 Outage Probability Analysis of Multi-hop Amplify-and-forward Half-duplex

and Full-duplex Relaying Systems with Flat Fading Channels

In the previous section we discussed the general procedure to finding the output

SNR of a multi-hop amplify-and-forward full-duplex system with N number of hops

using which one can perform outage probability analysis. By using the procedure we

discussed, in this section, we derive the bounds on outage probability of a two-hop

systems with matched filter and MMSE-DFE at the destination. We also derive the

bounds on the output SNR expressions of a three-hop system with MMSE-DFE.

3.3.1 Outage Probability Analysis of Two-hop System

Consider a two-hop (N=1 relay) system without direct link as shown in Fig. 3.1.

The amplification factor at the relay is given by (2.6). When the relay operates in

half-duplex scheme then the instantaneous received SNR is given by [12]

γHD =
g2|h1|2|h2|2

(g2|h2|2 + 1)σ2

=
γ1γ2

γ1 + γ2 + 1
. (3.8)

When the relay operates in full-duplex scheme, equations (2.20) and (2.22) can be

used to obtain the expressions for H(z) and Hn(z) as,

(a) Block diagram (b) Signal-flow graph

Figure 3.1: System Model of Two-hop System

36



H(z) =
h1h2gz

−1

1− hrrgz−1
, Hn(z) =

h2gz
−1

1− hrrgz−1
. (3.9)

Linearity can be applied to find the input-output relationship of the system including

the noise since the output is a linear function of the input and noise processes. By

modifying (2.24), one can obtain an end-to-end input-output relationship of the two-

hop system as,

Y (z) = H(z)X(z) +Hn(z)V (z) + VD(z). (3.10)

Taking inverse z-transform of Y (z),

y[n] = h[n] ∗ x[n] + hn[n] ∗ v[n] + vD[n]

= h1h2g(hrrg)n−1u[n− 1] ∗ x[n] + h2g(hrrg)n−1u[n− 1] ∗ v[n] + vD[n]

=
∞∑
k=1

h1h2g(hrrg)k−1x[n− k] +
∞∑
k=1

h2g(hrrg)k−1v[n− k] + vD[n].

(3.11)

When the destination performs matched filtering (MF) with respect to the strongest

tap of the channel, treating all the other taps due to RSI as noise, we can upper-bound

the output SNR of MF as,

γMF =
|h1|2|h2|2g2

|h1|2|h2|2g2 |hrr|2g2

1− |hrr|2g2︸ ︷︷ ︸
RSI

+

(
|h2|2g2 1

1− |hrr|2g2
+ 1

)
σ2︸ ︷︷ ︸

noise amplification

=
γ1γ2

γ1 + γrr (γ2 + 1) + γ2 + 1
(3.12)

≤ γ1γ2

γ1 + γrrγ2 + γ2 + 1
. (3.13)

From [13], using the cumulative density function of the SNR γMF, the outage
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probability is lower-bounded by

Pr

(
γ1γ2

γ1 + γ2 + γ2γrr + 1
≤ ΓT

)
= Pr

(
γrr ≥ γ1γ2 − ΓT (γ1 + γ2 + 1)

γ2ΓT

)

= 1− Pr

γrr ≤ 1

γ2ΓT
(γ1(γ2 − ΓT )− ΓT (γ2 + 1))︸ ︷︷ ︸

=ψ


= 1−

∫ ∫
ψ≥0

(
1− e−

ψ
Γrr

) 1

Γ1

e
− γ1

Γ1
1

Γ2

e
− γ2

Γ2 dγ1 dγ2.

We can divide the integration region ψ ≥ 0 with integration limits ΓT ≤ γ2 <∞ and

γlt ≤ γ1 <∞, where γlt = ΓT (γ2 + 1)/ (γ2 − ΓT )

Pr

(
γ1γ2

γ1 + γ2 + γ2γrr + 1
≤ ΓT

)
= 1−

∫ ∞
γ2=ΓT

∫ ∞
γ1=γlt

(
1− e−

ψ
Γrr

) 1

Γ1
e
− γ1

Γ1
1

Γ2
e
− γ2

Γ2 dγ1 dγ2

= 1−
∫ ∞
γ2=ΓT

1

Γ1Γ2
e
− γ2

Γ2 dγ2

∫ ∞
γ1=γlt

(
1− e−

ψ
Γrr

)
e
− γ1

Γ1 dγ1.

(3.14)

For the purpose of simplification, let us consider the RHS of (3.14),

1−
∫ ∞
γ2=ΓT

1

Γ1Γ2

e
− γ2

Γ2 dγ2

∫ ∞
γ1=γlt

(
1− e−

ψ
Γrr

)
e
− γ1

Γ1 dγ1

= 1−
∫ ∞
γ2=ΓT

1

Γ1Γ2

e
− γ2

Γ2 dγ2

[∫ ∞
γ1=γlt

e
− γ1

Γ1 dγ1 −
∫ ∞
γ1=γlt

e
−
(
ψ

Γrr + γ1
Γ1

)
dγ1

]
= 1−

∫ ∞
γ2=ΓT

1

Γ1Γ2

e
− γ2

Γ2 dγ2

[
−Γ1e

− γ1
Γ1

∣∣∣∞
γ1=γlt

+
1

1
Γrrγ2ΓT

(γ2 − ΓT ) + 1
Γ1

e
−
(
ψ

Γrr + γ1
Γ1

)∣∣∣∞
γ1=γlt

]

= 1−
∫ ∞
γ2=ΓT

1

Γ1Γ2

e
− γ2

Γ2 dγ2

[
Γ1e

− ΓT (γ2+1)

Γ1(γ2−ΓT ) − 1
1

Γrrγ2ΓT
(γ2 − ΓT ) + 1

Γ1

e
− ΓT (γ2+1)

Γ1(γ2−ΓT )

]

= 1−
∫ ∞
γ2=ΓT

1

Γ2

e
− γ2

Γ2 dγ2

[
Γ1 (γ2 − ΓT )

Γ1 (γ2 − ΓT ) + γ2ΓrrΓT
e
− ΓT (γ2+1)

Γ1(γ2−ΓT )

]
= 1−

∫ ∞
z=0

1

Γ2

e
−ΓT−z

Γ2

[
Γ1z

Γ1z + ΓrrΓT (z + ΓT )
e
−ΓT (ΓT+z+1)

Γ1z

]
dz

= 1− e
−ΓT

Γ2 e
−ΓT

Γ1

Γ2

∫ ∞
z=0

e
− z

Γ2 e
−Γ2

T+ΓT
Γ1z

Γ1z

Γ1z + ΓrrΓT (z + ΓT )
dz,

(3.15)

where, z = γ2 − ΓT and when

Γ1z

Γ1z + ΓrrΓT (z + ΓT )
' Γ1

Γ1 + ΓrrΓT
, (3.16)
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(3.15) is reduced to,

Pr(γMF ≤ ΓT ) ≥ 1− e
−ΓT

Γ2 e
−ΓT

Γ1

Γ2

∫ ∞
z=0

e
− z

Γ2 e
−Γ2

T+ΓT
Γ1z

Γ1

Γ1 + ΓrrΓT
dz. (3.17)

Using [76, Eq. 3.471.9], (3.17) can be simplified to get

Pr(γMF ≤ ΓT ) ≥ 1− e−
ΓT
Γ1 e
−ΓT

Γ2
Γ1

Γ1 + ΓrrΓT
ξ2K1(ξ2)

≈ 1− e−
ΓT
Γ1 e
−ΓT

Γ2

1− ΓrrΓT
Γ1 + ΓrrΓT︸ ︷︷ ︸

=LMF

 . (3.18)

Note that in the above equation, ξ2 = 2
√

(ΓT + Γ2
T ) /Γ1Γ2 and

Kn(x) =
∫∞

0
e−x cosh(t) cosh(nt) dt is the n-th order modified Bessel function of the

second kind. We can see that the outage performance degradation due to RSI, denoted

by LMF in (3.18), does not goes to zero even when Γ2 tends to infinity. This is due to

the fact that, when RSI is treated as noise, increasing γ2 amplifies the total amount

of interference at the same time which can be seen in (3.13).

However, observing that the RSI in the relays also contains useful information

about the transmitted symbol, the destination can potentially achieve higher SNR by

equalizing the entire channel. Since the performance of MMSE-DFE is better than

other equlaizer [77], we consider MMSE-DFE equalizer at the destination to derive

the equations for outage probability of the network. Ss(f) and Sn(f) can be derived

from H(z) and Hni(z) respectively, as discussed earlier and the ratio Ss(f)/Sn(f) can

be derived. For the case of two-hop system, the ratio of (3.4) and (3.5) is given by,

Ss(f)

Sn(f)
=

∣∣∣ √
γ1γ2√

γ1+γrr+1ej2πf−
√
γrr

∣∣∣2∣∣∣ √
γ2√

γ1+γrr+1ej2πf−
√
γrr

∣∣∣2 + 1

=
γ1γ2

γ2 +
∣∣√γ1 + γrr + 1ej2πf −

√
γrr
∣∣2

=
γ1γ2

γ2 + γ1 + 2γrr + 1− 2
√
γrr (γ1 + γrr + 1)cos(2πf)

.

(3.19)
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Substituting Ss(f)/Sn(f) into (3.3) and simplifying,

γeq = exp

[∫ 1
2

− 1
2

log

(
γ1γ2 + γ2 + γ1 + 2γrr + 1− 2

√
γrr (γ1 + γrr + 1)cos(2πf)

γ2 + γ1 + 2γrr + 1− 2
√
γrr (γ1 + γrr + 1)cos(2πf)

)
df

]
− 1.

(3.20)

With the help of [76], the exponent in (3.20) can be simplified to get,

γeq =
Q1 +

√
Q2

1 −Q3
3

Q2 +
√
Q2

2 −Q3
3

− 1 (3.21)

=
γ1γ2 +

√
Q2

1 −Q3
3 −

√
Q2

2 −Q3
3

Q2 +
√
Q2

2 −Q3
3

≥ γ1γ2

γ1 + γ2 + 2γrr + 1
, (3.22)

whereQ1 = γ1γ2+γ2+γ1+2γrr+1, Q2 = γ2+γ1+2γrr+1, andQ3 = −2
√
γrr (γ1 + γrr + 1).

The outage probability Pr (γeq ≤ ΓT ) is upperbounded by

Pr

(
γ1γ2

γ1 + γ2 + 2γrr + 1
≤ ΓT

)
= Pr

(
γrr ≥ γ1γ2 − ΓT (γ1 + γ2 + 1)

2ΓT

)

= 1− Pr

γrr ≤ 1

2ΓT
(γ1(γ2 − ΓT )− ΓT (γ2 + 1))︸ ︷︷ ︸

=ψ2


= 1−

∫ ∫
ψ2≥0

(
1− e−

ψ2
Γrr

) 1

Γ1

e
− γ1

Γ1
1

Γ2

e
− γ2

Γ2 dγ1 dγ2.

We can divide the integration region ψ2 ≥ 0 with integration limits ΓT ≤ γ2 < ∞

and γlt ≤ γ1 <∞, where γlt = ΓT (γ2 + 1)/ (γ2 − ΓT )

Pr

(
γ1γ2

γ1 + γ2 + 2γrr + 1
≤ ΓT

)
= 1−

∫ ∞
γ2=ΓT

∫ ∞
γ1=γlt

(
1− e−

ψ2
Γrr

) 1

Γ1
e
− γ1

Γ1
1

Γ2
e
− γ2

Γ2 dγ1 dγ2

= 1−
∫ ∞
γ2=ΓT

1

Γ1Γ2
e
− γ2

Γ2 dγ2

∫ ∞
γ1=γlt

(
1− e−

ψ2
Γrr

)
e
− γ1

Γ1 dγ1.

(3.23)
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For the purpose of simplification, let us consider the RHS of (3.23),

1−
∫ ∞
γ2=ΓT

1

Γ1Γ2

e
− γ2

Γ2 dγ2

∫ ∞
γ1=γlt

(
1− e−

ψ2
Γrr

)
e
− γ1

Γ1 dγ1

= 1−
∫ ∞
γ2=ΓT

1

Γ1Γ2

e
− γ2

Γ2 dγ2

[∫ ∞
γ1=γlt

e
− γ1

Γ1 dγ1 −
∫ ∞
γ1=γlt

e
−
(
ψ2
Γrr + γ1

Γ1

)
dγ1

]

= 1 +

∫ ∞
γ2=ΓT

1

Γ1Γ2

e
− γ2

Γ2 dγ2

Γ1e
− γ1

Γ1

∣∣∣∞
γ1=γlt

+
1

− 1
Γrr

(
γ2−ΓT

2ΓT

)
− 1

Γ1

e
−
(
ψ2
Γrr + γ1

Γ1

)∣∣∣∞
γ1=γlt


= 1 +

∫ ∞
γ2=ΓT

1

Γ1Γ2

e
− γ2

Γ2 dγ2

−Γ1e
− ΓT (γ2+1)

Γ1(γ2−ΓT ) +
1

1
Γrr

(
γ2−ΓT

2ΓT

)
+ 1

Γ1

e
− ΓT (γ2+1)

Γ1(γ2−ΓT )


= 1−

∫ ∞
γ2=ΓT

1

Γ2

e
− γ2

Γ2 dγ2

[
Γ1 (γ2 − ΓT )

Γ1 (γ2 − ΓT ) + 2ΓrrΓT
e
− ΓT (γ2+1)

Γ1(γ2−ΓT )

]
= 1−

∫ ∞
z=0

1

Γ2

e
−ΓT−z

Γ2

[
Γ1z

Γ1z + 2ΓrrΓT
e
−ΓT (ΓT+z+1)

Γ1z

]
dz

= 1− e
−ΓT

Γ2 e
−ΓT

Γ1

Γ2

∫ ∞
z=0

e
− z

Γ2 e
−Γ2

T+ΓT
Γ1z

Γ1z

Γ1z + 2ΓrrΓT
dz,

(3.24)

where, z = γ2−ΓT . Let us consider two different cases. First, when 2ΓrrΓT/(Γ1Γ2)�

1 i.e., RSI is relatively moderate, we approximate

Γ1z

Γ1z + 2ΓrrΓT
' 1− 2ΓrrΓT

Γ1

1

z
, (3.25)

Substituting (3.25) into (3.24) and applying [76, Eq. 3.471.9],

Pr(γeq ≤ ΓT ) / 1− e
−ΓT

Γ2 e
−ΓT

Γ1

Γ2

∫ ∞
z=0

e
− z

Γ2 e
−Γ2

T+ΓT
Γ1z

(
1− 2ΓrrΓT

Γ1

1

z

)
dz

≈ 1− e
(
−ΓT

Γ2

)
e

(
−ΓT

Γ1

) [
ξ2K1(ξ2)−K0(ξ2)

4ΓTΓrr

Γ1Γ2

]
. (3.26)

Using small-ξ2 approximations of K1(ξ2) and K0(ξ2) u −γ− log ξ2
2

, where, γ is the

Euler-Gamma constant, we get,

Pr(γeq ≤ ΓT ) ≈ 1− e−
ΓT
Γ2 e
−ΓT

Γ1

1−
4ΓrrΓT (−γ − log ξ2

2
)

Γ1Γ2︸ ︷︷ ︸
=Leq

 . (3.27)
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The above outage probability expression has a form similar to outage probability ex-

pression using MF (3.18). However, unlike LMF , the outage performance degradation

due to the RSI, denoted by Leq, now decreases as Γ2 grows. Thus, under the moder-

ate RSI, we can expect that equalizing the RSI leads to more graceful performance

degradation.

On the other hand, when RSI is very strong, i.e., Γ1Γ2/(2ΓrrΓT )� 1, we have

Γ1z

Γ1z + 2ΓrrΓT
' Γ1z

2ΓrrΓT
, (3.28)

Substituting (3.28) into (3.24), after some simplifications using [76, Eq. 3.471.9] and

K2(ξ2) ≈ 2ξ−2
2 , we get,

Pr(γeq ≤ ΓT ) / 1− Γ1Γ2

2ΓrrΓT
e
−ΓT

Γ1 e
−ΓT

Γ2 . (3.29)

Since Γ1Γ2/(2ΓrrΓT )� 1, the outage probability remains close to one. This is because

of the fact that under strong RSI, the relay wastes most of its transmit power to

amplify the RSI.

We performed the outage probability analysis considering only a single relay (two-

hop system). Now let us consider two relays (three-hop system) between the source

and the destination and perform outage probability analysis.

3.3.2 Outage Probability Analysis of Three-hop System

Consider a three-hop system (N=2 relay) as shown in Fig. 3.2. When the relays

operate in the full-duplex scheme, equations (2.20) and (2.22) can be used to obtain
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(a) Block diagram (b) Signal-flow graph

Figure 3.2: System Model of Three-hop System

the expressions for H(z) and Hni(z) as,

H(z) =

h1z
−2

2∏
k=1

hk+1gk

1 +
2∑

k=1

z−k(−1)k
∑
A∈Sk

∏
j∈A

hrr
j gj

=
h1h2g1h3g2z

−2

1− (hrr
1 g1 + hrr

2 g2) z−1 + hrr
1 g1hrr

2 g2z−2
,

(3.30)

Hni(z) =

z−(3−i)
2∏
k=i

hk+1gk

1 +
2∑

k=1

z−k(−1)k
∑
A∈Sk,i

∏
j∈A

hrr
j gj

. (3.31)

From (3.31), we can obtain expressions for Hn1(z) and Hn2(z) as

Hn1(z) =
h2g1h3g2z

−2

1− (hrr
1 g1 + hrr

2 g2) z−1 + hrr
1 g1hrr

2 g2z−2
, Hn2(z) =

h3g2z
−1

1− hrr
2 g2z−1

. (3.32)

The overall transform-domain input-output relationship of the system corresponding

to both information-bearing signal and noise signal inputs can be obtained from (3.30)

and (3.32) as,

Y (z) = H(z)X(z) +Hn1(z)V1(z) +Hn2(z)V2(z) + VD(z). (3.33)

By taking inverse z-transform of (3.33), the received symbol at the destination at

time n can be determined, which can be used to find the signal and noise components.

Using these components, we can calculate the output SNR of the matched filter.
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Taking inverse z-transform of (3.33) gives,

y[n] = h[n] ∗ x[n] + hn1[n] ∗ v1[n] + hn2[n] ∗ v2[n] + vD[n]. (3.34)

The impulse response h[n] can be obtained from (2.29), hn1[n] and hn2[n] can be

obtained from (2.34) as,

h[n] = h1h2h3g1g2

(
mn−2

1

1− m2

m1

+
mn−2

2

1− m1

m2

)
u[n− 2], (3.35)

hn1[n] = h2h3g1g2

(
mn−2

1

1− m2

m1

+
mn−2

2

1− m1

m2

)
u[n− 2], (3.36)

hn2[n] = h3g2m
n−1
2 u[n− 1], (3.37)

where, m1 = hrr
1 g1 and m2 = hrr

2 g2. Substituting the expression for h[n], hn1[n] and

hn2[n] into (3.34), we obtain

y[n] =h1h2h3g1g2

(
mn−2

1

1− m2

m1

+
mn−2

2

1− m1

m2

)
u[n− 2] ∗ x[n]

+ h2h3g1g2

(
mn−2

1

1− m2

m1

+
mn−2

2

1− m1

m2

)
u[n− 2] ∗ v1[n]

+ h3g2m
n−1
2 u[n− 1] ∗ v2[n] + vD[n]

=h1h2h3g1g2

(
mn−2

1

1− m2

m1

u[n− 2] ∗ x[n] +
mn−2

2

1− m1

m2

u[n− 2] ∗ x[n]

)

+ h2h3g1g2

(
mn−2

1

1− m2

m1

u[n− 2] ∗ v1[n] +
mn−2

2

1− m1

m2

u[n− 2] ∗ v1[n]

)

+ h3g2m
n−1
2 u[n− 1] ∗ v2[n] + vD[n]

=h1h2h3g1g2

(
1

1− m2

m1

∞∑
k=2

mk−2
1 x[n− k] +

1

1− m1

m2

∞∑
k=2

mk−2
2 x[n− k]

)

+ h2h3g1g2

(
1

1− m2

m1

∞∑
k=2

mk−2
1 v1[n− k] +

1

1− m1

m2

∞∑
k=2

mk−2
2 v1[n− k]

)

+ h3g2

∞∑
k=1

mk−1
2 v2[n− k] + vD[n].

(3.38)
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When the RSI channels hrr
i is not known at the destination, the receiver performs

matched filtering (MF) with respect to the strongest tap of the channel, treating all

the other taps due to RSI as noise [39]. The effective SNR, γMF, at the output of the

matched filter is given by the ratio of the output signal power to the output noise

power.

By noting that |hrr
i |2g2

i < 1, |m1|2 = |hrr
1 |2g2

1, |m2|2 = |hrr
2 |2g2

2, g2
1 = 1/(σ2(γ1 +

γrr
1 + 1)) and g2

2 = 1/(σ2(γ2 + γrr
2 + 1)), signal power can be determined from (3.38)

as,

output signal power = |h1|2|h2|2|h3|2g2
1g

2
2. (3.39)

Similarly, noise power can be determined from (3.38) as,

output noise power =

|h1|2|h2|2|h3|2g2
1g

2
2

(
|m1|2

|m1|2 − |m2|2
|m1|2

1− |m1|2
+

|m2|2

|m2|2 − |m1|2
|m2|2

1− |m2|2

)
+ σ2|h2|2|h3|2g2

1g
2
2

(
|m1|2

|m1|2 − |m2|2
1

1− |m1|2
+

|m2|2

|m2|2 − |m1|2
1

1− |m2|2

)
+

(
|h3|2g2

2

1− |m2|2
+ 1

)
σ2.

(3.40)

Taking ratio of (3.39) and (3.40), after rearranging some terms, we get the expression

for effective output SNR of the MF to be,

γMF =
|h1|2|h2|2|h3|2g2

1g
2
2

|h2|2|h3|2g2
1g

2
2

(|m1|2−|m2|2)

(
|h1|2|m1|4
(1−|m1|2)

− |h1|2|m2|4
(1−|m2|2)

+ σ2|m1|2
1−|m1|2 −

σ2|m2|2
1−|m2|2

)
+
(
|h3|2g2

2
1−|m2|2 + 1

)
σ2

=
1

1
(|m1|2−|m2|2)γ1

(
γ1|m1|4+|m1|2

1−|m1|2 − γ1|m2|4+|m2|2
1−|m2|2

)
+

γ1+γrr
1 +1

γ1γ2(1−|m2|2)
+

(γ1+γrr
1 +1)(γ2+γrr

2 +1)
γ1γ2γ3

.

(3.41)

Though (3.41) is for the three-hop case only, but it can be extended to other cases

with multiple hops by following same derivation steps as above. Since MF treats

RSI as noise, it does not use the useful information present in RSI. On the other

hand, equalizers can be used at the destination which takes advantage of the useful

information in RSI.
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We consider that the frequency-selective channel introduced by RSI is equalized by

employing different types of equalizers at the destination. We can see that the output

SNR expression of the equalizers (3.1),(3.2) and(3.3), contains the ratio Ss(f)/Sn(f)

which can be determined from (3.30) and (3.31) by noting that Ss(f) = |H(ej2πf )|2

and Sni(f) = |Hni(e
j2πf )|2. Using (3.6), one can obtain the ratio Ss(f)/Sn(f) as

Ss(f)

Sn(f)
=

∣∣∣∣∣∣∣
e−j4πf

√
γ1γ2γ3
PQ

1−
(√

γrr
1

P
+

√
γrr
2

Q

)
e−j2πf+

√
γrr
1 γ

rr
2

PQ
e−j4πf

∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣
e−j4πf

√
γ2γ3
PQ

1−
(√

γrr
1

P
+

√
γrr
2

Q

)
e−j2πf+

√
γrr
1 γ

rr
2

PQ
e−j4πf

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣ e−j2πf
√
γ3
Q

1−
√
γrr
2

Q
e−j2πf

∣∣∣∣∣∣
2

+ 1

=
γ1

1 +

∣∣∣∣∣∣ e−j2πf
√
γ3

Q

1−
√
γrr

2

Q e−j2πf

∣∣∣∣∣∣
2

+ 1


︸ ︷︷ ︸

Aeq

∣∣∣∣∣∣∣∣
1−

(√
γrr

1

P +

√
γrr

2

Q

)
e−j2πf +

√
γrr

1 γ
rr
2

PQ e−j4πf

e−j4πf
√
γ2γ3

PQ

∣∣∣∣∣∣∣∣
2

︸ ︷︷ ︸
Beq

,

(3.42)

where, P =
√
γ1 + γrr

1 + 1 and Q =
√
γ2 + γrr

2 + 1. Let, R =
√
γrr

1 Q +
√
γrr

2 P , we

consider Aeq and Beq separately to simplify them. Consider Aeq as in (3.42)

Aeq =

∣∣∣∣∣∣ e−j2πf
√
γ3

Q

1−
√
γrr

2

Q
e−j2πf

∣∣∣∣∣∣
2

+ 1

=

∣∣∣∣ √
γ3

Qej2πf −
√
γrr

2

∣∣∣∣2 + 1

=

∣∣∣∣ √
γ3

Q cos(2πf)−
√
γrr

2 + iQ sin(2πf)

∣∣∣∣2 + 1. (3.43)

For simplification, let us multiply and divide the first term in (3.43) byQ cos(2πf)−

46



√
γrr

2 − iQ sin(2πf),

Aeq =

∣∣∣∣ √
γ3

Q cos(2πf)−
√
γrr

2 + iQ sin(2πf)
× Q cos(2πf)−

√
γrr

2 − iQ sin(2πf)

Q cos(2πf)−
√
γrr

2 − iQ sin(2πf)

∣∣∣∣2 + 1

=
γ3

[
(Q cos(2πf)−

√
γrr

2 )
2

+ (Q sin(2πf))2
]

[
(Q cos(2πf)−

√
γrr

2 )
2

+ (Q sin(2πf))2
]2 + 1

=
γ3

γ2 + 2γrr
2 + 1− 2Q

√
γrr

2 cos(2πf)
+ 1

=
γ3 + γ2 + 2γrr

2 + 1− 2Q
√
γrr

2 cos(2πf)

γ2 + 2γrr
2 + 1− 2Q

√
γrr

2 cos(2πf)
.

(3.44)

Consider Beq as in (3.42)

Beq =

∣∣∣∣∣∣∣∣
1−

(√
γrr

1

P
+

√
γrr

2

Q

)
e−j2πf +

√
γrr

1 γ
rr
2

PQ
e−j4πf

e−j4πf
√
γ2γ3

PQ

∣∣∣∣∣∣∣∣
2

=
1

γ2γ3

∣∣∣∣∣∣∣PQej4πf − ej2πf
(√

γrr
1 Q+

√
γrr

2 P
)

︸ ︷︷ ︸
R

+
√
γrr

1 γ
rr
2

∣∣∣∣∣∣∣
2

=
1

γ2γ3

[
PQ cos(4πf)−R cos(2πf) +

√
γrr

1 γ
rr
2

]2

+ [PQ sin(4πf)−R sin(2πf)]2 .

(3.45)

After some simplification, we get

Beq =
1

γ2γ3

[
(PQ)2 +R2 − 2R

(
PQ+

√
γrr

1 γ
rr
2

)
cos(2πf)

]
+

1

γ2γ3

[
2PQ

√
γrr

1 γ
rr
2 cos(4πf) + γrr

1 γ
rr
2

]
.

(3.46)

Substituting (3.44) into (3.42),

Ss(f)

Sn(f)
=

γ1

1 +

(
γ2+γ3+2γrr

2 +1−2
√
γrr

2 Q cos(2πf)

γ2+2γrr
2 +1−2

√
γrr

2 Q cos(2πf)

)
Beq

, (3.47)

where, Beq is as given in (3.46). Substituting (3.47) into (3.1), (3.2) and (3.3), we

can get the exact output SNR expression of the respective equalizers.
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One can see that for a multi-hop network after the substitution of (3.47) into

(3.1), (3.2) and (3.3), the complexity of solving the integrals increases as the number

of relays in the network increases. Therefore, for simplicity one can assume that there

will be perfect self-interference cancellation at one of the relays and it is seen that

for the case of a three-hop system, the integral in (3.3) can be solved easily to get a

closed-form upper bound on output SNR of MMSE-DFE.

Perfect Self-interference Cancellation at R1:

Considering a full-duplex amplify-and-forward three-hop network with MMSE-DFE

at the destination, by assuming that there will be perfect self-interference cancellation

at R1, we derive an upper bound on the output SNR.

Substituting γrr
1 = 0 into (3.46),

B′eq =
1

γ2γ3

[
(γ1 + 1)Q2 + γrr

2 (γ1 + 1)− 2Q (γ1 + 1)
√
γrr

2 cos(2πf)
]
. (3.48)

Substituting (3.48) into (3.47) in the place of Beq and subsequently into (3.3), we

obtain

γeq ≤ −1 + exp

(∫ 1
2

− 1
2

log

(
1 +

γ1

1 + AeqB′eq

)
df

)
. (3.49)

The equation (3.49) can be rewritten as given in (3.50) by defining,

U = γ2γ3 + (γ1 + 1) (γ2 + γ3 + 2γrr
2 + 1). Using [76, Eq. 4.224.9], (3.50) can be

simplified to obtain upper bound on the output SNR as given in (3.51).

Perfect Self-interference Cancellation at R2:

Considering a full-duplex amplify-and-forward three-hop network with MMSE-DFE

at the destination, by assuming that there will be perfect self-interference cancellation

at R2, we derive an upper bound on the output SNR.
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γeq ≤ −1 + exp
(∫ 1

2

− 1
2

log
(
γ1γ2γ3 + U − 2Q (γ1 + 1)

√
γrr2 cos(2πf)

)
df
)

exp
(
−
∫ 1

2

− 1
2

log
(
U − 2Q (γ1 + 1)

√
γrr2 cos(2πf)

)
df
)
. (3.50)

γeq ≤ −1 +
γ1γ2γ3+γ2γ3+(γ1+1)(γ2+γ3+2γrr

2 +1)+
√

[γ1γ2γ3+γ2γ3+(γ1+1)(γ2+γ3+2γrr
2 +1)]

2−4γrr
2 Q

2(γ1+1)2

γ2γ3+(γ1+1)(γ2+γ3+2γrr
2 +1)+

√
[γ2γ3+(γ1+1)(γ2+γ3+2γrr

2 +1)]
2−4γrr

2 Q
2(γ1+1)2

.

(3.51)

Substituting γrr
2 = 0 into (3.44) and (3.46),

A′eq =
γ3 + γ2 + 1

γ2 + 1
, (3.52)

B′′eq =
1

γ2γ3

[
(γ2 + 1)P 2 + γrr

1 (γ2 + 1)− 2P (γ2 + 1)
√
γrr

1 cos(2πf)
]
. (3.53)

Substituting (3.52) and (3.53) into (3.47) in the place of Aeq and Beq respectively

and subsequently into (3.3), we obtain

γeq ≤ −1 + exp

(∫ 1
2

− 1
2

log

(
1 +

γ1

1 +A′eqB
′′
eq

)
df

)

= 1 + exp

(∫ 1
2

− 1
2

log

(
1 +

γ1γ2γ3

γ2γ3 + (γ3 + γ2 + 1)
(
P 2 + γrr

1 − 2P
√
γrr

1 cos(2πf)
)) df

)
.

(3.54)

Using [76, Eq. 4.224.9], (3.54) can be simplified to obtain upper bound on the output

SNR (3.55).

γeq ≤ −1 +
γ1γ2γ3+γ2γ3+(P 2+γrr

1 )(γ2+γ3+1)+
√

[γ1γ2γ3+γ2γ3+(P 2+γrr
1 )(γ2+γ3+1)]

2−4γrr
1 P

2(γ2+γ3+1)2

γ2γ3+(P 2+γrr
1 )(γ2+γ3+1)+

√
[γ2γ3+(P 2+γrr

1 )(γ2+γ3+1)]
2−4γrr

1 P
2(γ2+γ3+1)2

.

(3.55)

Using (3.51) and (3.55), we can calculate a bound on the outage probability of the

end-to-end network using Monte Carlo simulations. The bounds on outage probabil-

ity obtained are lower bounds since the outage probability decreases as the output

SNR of the MMSE-DFE increases due to perfect self-interference cancellation. The
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benefit of these bounds compared to exact outage calculation is that they require less

simulation time as compared to solving the integral in (3.3) to get the exact value.

In the simulations we see that the bound in (3.55) is tighter. This is because even

though there is perfect self-interference cancellation at R2, RSI from R1 propagates

to subsequent relays.

When the relays operate in the half-duplex scheme, the output SNR of the end-

to-end system is given by [78, Eq. 2],

γout =

(
N+1∏
i=1

(
1 +

1

γi

)
− 1

)−1

, (3.56)

where, γi is the SNR of the ith hop. We consider that the end-to-end link is in outage

when the output SNR, γout, is below a threshold ΓT, which is given by ΓT = 22RT −1.

3.4 Outage Probability Analysis of Multi-hop Amplify-and-forward Full-duplex

Relaying Systems with Frequency-selective Fading Channels

We now consider frequency-selective fading on each link between consecutive relays

as shown in Fig. 3.3 and Fig. 3.4 so that those channels are now functions of z

represented by a degree ν − 1 polynomial representing a length ν channel. We can

Figure 3.3: System Model with (N + 1) hops and Frequency-selective Fading Chan-
nels

still use (2.20) and (2.22) with the substitution hi → Hi(z), where Hi(z) is given by

Hi(z) =
ν−1∑
l=0

hi[l]z
−l . (3.57)
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Figure 3.4: Signal-flow Graph with Frequency-selective Fading Channels

This yields,

H(z) =

H1(z)z−N
N∏
k=1

Hk+1(z)gk

1 +
N∑
k=1

z−k(−1)k
∑
A∈Sk

∏
j∈A

hrr
j gj

, (3.58)

Hni(z) =

z−(N−i+1)

N∏
k=i

Hk+1(z)gk

1 +
N∑
k=1

z−k(−1)k
∑
A∈Sk,i

∏
j∈A

hrr
j gj

. (3.59)

We define mean SNR of the hops for the case of frequency-selective channels as,

Γi = E

[∑ν−1
l=0 |hi[l]|2

σ2
v

]
=
σ2
h

σ2
v

, (3.60)

where, the last equality is because the impulse response co-efficients hi[l] are assumed

to be complex Gaussian with zero mean and variance σ2
h/ν.

By assuming that the relays transmit at normalized average power of unity and

the relays have the control over their amplification factor gi, the amplification factor

at the relays when the relay channels undergo frequency-selective fading is given by

(3.61). In contrast, one can assume that the relays perform filtering operation and

thus gi can be functions of z. We have assumed that the relays do not perform filtering

for simplicity so that,

gi =

(
ν−1∑
l=0

|hi[l]|2 + |hrr
i |2 + σ2

v

)− 1
2

. (3.61)
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Substituting (3.58) and (3.59) into (3.10) one can obtain the input-output relation

of multi-hop system with frequency-selective fading channels. As an example, for the

case of a three-hop network with 2 taps, using (3.61), equations in (3.58) and (3.59)

can be modified to get,

H(z) = σv

(√γa1+
√
γb1z

−1)(√γa2+
√
γb2z

−1)(√γa3+
√
γb3z

−1)√
(γ1+γrr

1 +1)(γ2+γrr
2 +1)

z−2

1−
(√

γrr
1

γ1+γrr
1 +1

+
√

γ2rr
γ2+γrr

2 +1

)
z−1 +

√
γrr

1 γ
rr
2

(γ1+γrr
1 +1)(γ2+γrr

2 +1)
z−2

, (3.62)

Hn1(z) = H(z)/H1(z), (3.63)

Hn2 =
(√

γa3 +
√
γb3z

−1
)
z−1/

(√
γ2 + γrr

2 + 1−
√
γrr

2 z
−1
)
. (3.64)

One can obtain the ratio Ss(f)/Sn(f) using (3.62), (3.63) and (3.64) as discussed

in the previous section and then substituting the resulting ratio into (3.1),(3.2) and

(3.3), one can obtain the output SNR of the equalizers. This SNR can be used to

simulate the outage performance of the three-hop network with the relay channels

undergoing frequency-selective fading.

3.5 Simulation Results

In this section, we present the outage performance of a two-hop full-duplex system

and a three-hop full-duplex system based on the output SNR of the equalizers and

MF at the destination. Also, we present simulation results for outage probability

comparison of half-duplex relaying and full-duplex relaying. For the case of three-

hop full-duplex system, we present the simulation results for the outage probability

bounds and we also discuss the effects of number of relays on the outage probability

in a multi-hop full-duplex amplify-and-forward relaying system.

Fig. 3.5 shows the outage probability of a two-hop system with different amplify-

and-forward schemes for RT = 1 bps/Hz with varying the RSI power. We can see that
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Figure 3.5: Outage Probability of a Two-hop System with Different Amplify-and-
forward Relaying (Γrr =0, 10 dB, RT=1 bps/Hz, Γ2=25 dB )

if the relays operate in full-duplex scheme with the matched filtering is quite vulner-

able to the RSI, which can be seen that when Γrr=10dB this scheme is outperformed

by half-duplex scheme. In contrast, equalizing the channel by using MMSE-DFE is

shown to make full duplex scheme more robust to RSI.

Fig. 3.6 shows the minimum Γ1 required to achieve 5% outage probability of a

two-hop system with RT=2 bps/Hz. When the RSI is strong, one can see that by

considering that the RSI has some useful information about transmitted symbols and

not as noise, full-duplex relaying scheme provides robust performance. In contrast,

when the RSI is weak, performance loss due to treating the RSI as noise is small.

Fig. 3.7 presents an outage comparison between half-duplex relaying and full-

duplex relaying with MF at the destination, or specific equalizers at the destination.

Full-duplex relaying with equalizers is seen to outperform half-duplex relaying for

RT > 1bps/Hz even with strong RSI. Full-duplex relaying with MF at the destination

also outperforms half-duplex relaying for target rates RT ≥ 3.5bps/Hz under strong

RSI. As Γrr decreases, the crossover point of half-duplex relaying and full-duplex
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Figure 3.6: Minimum Γ1 Required to Achieve 5% Outage Probability of a Two-hop
System with RT=2 bps/Hz.

Figure 3.7: Outage Probability vs Rate (RT ) of Three-hop Half-duplex and Full-
duplex Networks with all the Links having Flat Fading (RT = 1 bps/Hz, Γ1 = Γ2 =
Γ3 = 25 dB)

relaying with MF curves is observed to shift towards the lower outage probability

region in Fig. 3.7. At low RSI (Γrr=5dB), for sufficiently high target rates, both

full-duplex relaying with equalizers and MF outperform half-duplex relaying with
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different crossover points.

Figure 3.8: Outage Probability of a Three-hop System when the Destination Em-
ploys Various Types of Equalizers with all the Links having Flat Fading (Γrr

1 = Γrr
2 =

Γrr, RT = 1 bps/Hz, Γ1 = Γ2 = Γ3 = Γ)

Fig. 3.8 shows the outage performance of the system when the destination em-

ploys MF and different types of equalizers to equalize the effective channel. It is

seen that employing MMSE-DFE at the destination gives a better outage probability

performance compared to employing linear MMSE equalizer or zero-forcing equalizer

or MF for the same value of Γ. Since MF considers RSI as noise, which is in contrast

with equalizers, outage performance of MF is worse in comparison. We also see that

as Γrr increases, Pout also increases which is due to the decrease in end-to-end SNR.

Fig. 3.9 shows the comparison of the bounds on the outage probability of a three-

hop system when either γrr
1 = 0 or γrr

2 = 0. When γrr
2 = 0, RSI is amplified twice

before the signal is received at the destination. Once, in R1 due to the presence

of γrr
1 and a second-time in R2 due to RSI forwarded from R1. In contrast, when

γrr
1 = 0 RSI is amplified only in R2. Due to this effect of amplification of the RSI

signal at the relays, it is seen that achieving perfect self-interference cancellation at
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Figure 3.9: Comparison of Lower Bound on the Outage Probability of a Three-hop
System when the Destination uses MMSE-DFE with all the Links having Flat Fading
(RT = 1 bps/Hz, Γ2 = Γ3 = 20 dB)

the relays which are near to the transmitter can perform better in terms of achieving

lower outage probability. The bound obtained when γrr
2 = 0 is tighter since the exact

outage probability curve is the worst case when RSI is present at all the relays.

Fig. 3.10 shows the outage probability of the N=3 hop system with all the links

having frequency-selective fading for different equalizers. It is seen that MMSE-

DFE outperforms the LMMSE equalizer and ZFE in frequency-selective channels as

well as frequency-flat channels (ν = 1). The LMMSE equalizer and MMSE-DFE in

frequency-selective channels takes advantage of diversity, which can be seen in the

increased slope of their respective outage curves.

Fig. 3.11 shows the effect of number of relays on the outage probability when

the number of relays between S and D is increased and the end-to-end channel is

equalized by MMSE-DFE at the destination. We consider a fixed average SNR be-

tween consecutive relays, which corresponds to increased coverage but degradation of

performance with increased number of relays, due to noise amplification. It is seen
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Figure 3.10: Outage Probability of a Three-hop System with all the Relay Links
having Frequency-selective Fading (ν = 2,Γrr

1 = Γrr
2 = 10 dB, RT = 1 bps/Hz,

Γ1 = Γ2 = Γ3 = Γ (dB))

that especially for large average SNR Γ, there is a rapid degradation in outage when

the number of relays is increased beyond N=5 or N=6. This indicates that there

is a limit to increasing coverage by increasing N in full-duplex amplify-and-forward

multi-hop systems.

3.6 Conclusions

In this chapter, we performed the outage probability analysis of a multi-hop full-

duplex amplify-and-forward relaying system consider matched filtering and different

types of equalizers at the destination. For the case of a two-hop system, we derived

the bounds on the outage probability. For the case of a three-hop system, we derived

the exact output SNR of matched filter and also we derived the upper bounds on

the output SNR of MMSE-DFE. Using the derived SNR expressions we performed

the outage probability analysis of the system. In the simulation we showed that

MF suffers more from RSI compared to equalizers and among the different types of
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Figure 3.11: Effect of Number of Relays on the Outage Probability with all the
Relay Links having Frequency Flat Fading (Γrr

1 = Γrr
2 = · · · = Γrr

N = 0 dB, RT = 1
bps/Hz, Γ1 = Γ2 = · · · = ΓN = Γ (dB))

equalizers considered, the MMSE-DFE performs better.
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Chapter 4

CONCLUSIONS AND FUTURE RESEARCH

In this chapter first we present the conclusions and then we discuss the future scope for

research in areas related to multi-hop amplify-and-forward full-duplex relaying system

and we briefly discuss the scenarios where MGF approach simplifies the procedure in

finding the input-output relationship of such a system.

4.1 Conclusions

In Chapter 2 of this thesis, we proposed a signal flow graph approach to find the

z-transform domain input-output relationship of a multi-hop full-duplex amplify-and-

forward network by using MGF. This approach provides an easy method to find the

input-output relationship compared to the conventional recursive substitution method

which is tedious and complex especially when the end-to-end system has many relays

with inter-relay interference. Using this transform domain input-output relationship

we derived a generalized end-to-end effective channel equations with the information

signal and the noise inputs.

In Chapter 3 of this thesis, using the transform domain input-output relationship,

we derived the output SNR of different types of equalizers and matched filter at the

destination. Using the output SNR we performed the outage probability analysis of a

multi-hop full-duplex amplify-and-forward system with tow-hops and three-hops. For

the case of a three-hop system, we showed that the full-duplex amplify-and-forward

network performs better than the half-duplex amplify-and-forward network for high

target rates. Also, by considering different types of equalizers at the destination

to deal with the frequency-selective channel introduced by full-duplex relaying and
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matched filtering, we showed in simulations that, as the strength of RSI signal in-

creases, the outage probability of the end-to-end system also increases. Finally, for

the case of a three-hop network, by assuming perfect self-interference cancellation in

one the relay at a time, we simulated the lower bounds on the outage probability of

the end-to-end system and saw that they are tight for the three-hop example.

4.2 Future Works

Further works are discussed in the following subsections:

4.2.1 Continuous-time System Model

Instead of the discrete-time system model, one can consider a continuous-time

system model and still use the signal flow graph approach to find the effective channels

for information signal and noise at the destination of a multi-hop full-duplex amplify-

and-forward relaying system. One can consider processing delay e−sT , where T is the

processing time at the relays and propagation delay e−sτi , i = 1, ..., N −1, between ith

and (i + 1)th relays. e−sτ0 is the propagation delays between the source and R1 and

e−sτN is the propagation delays between RN and the destination. The corresponding

signal flow graph is shown in figure 4.1.

Figure 4.1: Signal-flow Graph of Continuous-time System Model

The transfer function of the system from S to D corresponding to the input signal

can be obtained from the signal flow graph given in Fig. 4.1, using Mason’s gain
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formula as,

H(s) =

h1e
−NsT

N∏
k=1

hk+1gke

−s


N∑
m=0

τk



1 +
N∑
k=1

e−ksT (−1)k
∑
A∈Sk

∏
j∈A

hrrj gj

. (4.1)

Here Sk represents set of all the non-empty subsets of {1, 2, ..., N} with k elements.

Following a similar procedure as in the previous case, the transfer function of the

system describing the input-output relationship corresponding to ith noise input vi at

the relay Ri can be formulated as,

Hni(s) =

h1e
−sT (N−i−1)

N∏
k=i

hk+1gke

−s


N∑
m=i

τk



1 +
N∑
k=1

e−ksT (−1)k
∑
A∈Sk

∏
j∈A

hrrj gj

. (4.2)

Here Sk,i represents set of all the non-empty subsets of {i, ..., N} with k elements.

Spectral densities of input signal and noise can we obtained from (4.1) and (4.2)

respectively and the outage probability analysis can be performed similarly to the

analysis we performed in Chapter. 3.

4.2.2 Outage Probability Analysis of MIMO Systems

Our signal flow graph approach to finding the input-output relationship of a multi-

hop full-duplex amplify-and-forward relaying system can be extended to find the

input-output relationship of multiple-input and multiple-output (MIMO) systems.

Consider a MIMO system as shown in Fig. 4.2. The relay has RSI term hrr
ij,

i = 1, · · · , t represents a transmitting antenna, j = 1, · · · , r represents a receiving

antenna, hij represents an inter-relay channel from the source to the relay, hR
ij rep-

resents an inter-relay channel from the relay to the destination and g represents the

61



Figure 4.2: MIMO System Model

amplification factor at the relay. By writing the corresponding signal-flow graph of

the MIMO system model, one can use the Mason’s gain formula to perform the outage

probability analysis.

MIMO relays usually incorporate a precoding stage in order to improve recep-

tion quality. Normally, these precoders are designed assuming that there is no self-

interference, resulting in a serious performance loss if interference is not sufficiently

mitigated. Authors in [40] proposed a spatio-temporal approach to the problem of

self-interference mitigation at full-duplex amplify-and-forward MIMO relays. Their

approach can deal with frequency-selective channels by exploiting the knowledge of

the auto-correlation of the useful transmitted signal from the main transmitter, thus

providing the relay protocol with an interference-free signal.

4.2.3 Ergodic Capacity of Multi-hop Amplify-and-forward Full-duplex Relaying

Systems

Using the output SNR expression assuming a matched filter or an equalizer at the

destination, one can calculate the ergodic capacity, E(C), of the multi-hop full-duplex

amplify-and-forward relaying system by using the relationship: E(C) = E [log2 (1 + γoutput)],

where, γoutput represents the end-to-end output SNR expression. Also, one can use

Jensen’s inequality to derive the bounds on the ergodic capacity.
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4.2.4 Diversity Analysis in Amplify-and-forward Full-duplex Systems with

Frequency-selective Fading Channels

Mathematical proofs of MMSE equalizer and MMSE-DFE taking advantage of

diversity in frequency-selective fading channels can be derived for a multi-hop full-

duplex amplify-and-forward relaying system.

4.2.5 Outage Probability Analysis Assuming Different Fading Models

Outage probability analysis can be performed by assuming Rician or Nakagami-m

fading models. In our thesis we have assumed that the line of sight component of

self-interference is mitigated by passive isolation techniques, therefore, the RSI fading

channel is Rayleigh distributed. But, the experiments in [38] have shown that the

most realistic model for RSI channel is the Rician fading model with low K-factor

(about -10dB to 10dB).

Figure 4.3: Three Relay System with Inter-relay Interference

Figure 4.4: Signal-flow Graph of Three Relay System with Inter-relay Interference
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4.2.6 Input-output Relationship of Multi-hop Relaying System with Inter-relay

Interference

One can consider the interference from the neighboring relays (inter-relay inter-

ference) in the system model and outage probability analysis of such a system can be

performed using the signal flow graph approach . As an example of such a system

model, a three relay system with inter-relay interference is shown in Fig. 4.3 and the

corresponding signal flow graph is as shown in Fig 4.4.

Figure 4.5: Signal-flow Graph of a System with Multi-hop Relays in Parallel

4.2.7 Input-output Relationship of a System with Multi-hops in Parallel

Consider a system with multi-hop relays in parallel as shown in Fig. 4.5, where,

Rij represents a relay with RSI term hrr
ij, hij represents a inter-relay channel and gij

represents the amplification factor at the Rth
ij relay, each j corresponds to a relay in

ith parallel branch. There can be inter-relay interference from the relays in the same

parallel branch or from different branch which are not shown in Fig. 4.5. One can

use the Mason’s gain formula to find the transfer function of the end-to-end system,

using which outage performance of the system can be studied.
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