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Abstract: The bag-of-words(BoW) model has been widely used for scene classification in recent state-of-the-art methods. How-
ever, inter-class similarity among scene categories and very high spatial resolution imagery makes its performance limited in the
remote-sensing domain. Therefore, this research presents a new KAZE based image descriptor that makes use of the BoW
approach to substantially increase classification performance. Specifically, a novel multi-neighborhood KAZE is proposed for
small image patches. Secondly, the spatial pyramid matching (SPM) and bag-of-words representation can be adopted to use
the extracted features and make an innovative Bag of Words KAZE (BoWK) descriptor. Third, two bags of multi-neighborhood
KAZE features are selected in which each bag is regarded as separated feature descriptors. Next, canonocial correlation analysis
(CCA) is introduced as feature fusion strategy to further refine the BOWK features, which allows a more effective and robust fusion
approach than the traditional feature fusion strategies. Experiments on three challenging remote-sensing data sets show that the
proposed BoWK descriptor not only surpasses the conventional KAZE descriptor, but also yields significantly higher classifica-
tion performance than the state-of-the-art methods used now. Moreover, the proposed BoWK appraoch produces rich informative

features to describe the scene images with low computational cost and much lower dimension.

1 Introduction

The currently available instruments (e.g., multi/hyper spectral, syn-
thetic aperture radar, etc.,) for earth observation not only provide
high spatial resolution remote-sensing images but also allow us
to study the ground surface in greater detail. However, the large-
scale nature, intra-class variability or inter-class similarity makes
the classification task very challenging. Different scene categories
may share some identical thematic classes. For instance, images
from harbor and beach, which are two different scene categories,
may both consist of ships, water, and trees at the same time but
differ in the density and spatial distribution of these three thematic
classes [1]. Under this situation, the spatial information plays a key
role in the analysis and understanding of remotely sensed datasets.
Infact, it is more semantically meaningful to collect the information
from different parts of the images. For example, ’sky’ in scene cat-
egory exists on the upper side of images, while *water’ lies on the
lower part of the images. In order to encode local features expedi-
tiously, we argue this spatial information is important and should
be combined efficiently to get better performance. In this regard,
selecting suitable features for scene classification is a crucial task for
researchers and the existing methods can be generalized into three
main classes, namely: low-level visual features, mid-level visual fea-
tures and methods based on high-level visual information. Low-level
feature approaches are based on shape, color or textual information,
and the most popular descriptors are scale invariant feature trans-
form (SIFT), color histogram (CH), local binary pattern (LBP) and
GIST [2]. Although these approaches have been applied success-
fully in different applications, but the pixelwise information or only
object cannot accomplish the entire scene understanding due to high-
diversity and non-homogenous spatial distributions.

Mid-level feature-based approaches attempt to develop a global
scene representation based on the distribution of the features, and
bring the necessary flexibility to cope with deformations. A well-
known approach is the bag-of-words model. It was first introduced
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for text analysis and then extended to represent images by the fre-
quency of "visual words" using a clustering scheme (k-means) [3].
In order to improve the k-means clustering codebook, several vari-
ant coding methods such as multi-task joint sparse coding [4], fisher
kernel (FK) framework [5], kernel collaborative representation [2],
and multi-scale CLBP (MS-CLBP) descriptor [6] have been intro-
duced in the BOW model for improving the reconstruction accuracy
of local features. On the other hand, local descriptor such as KAZE
[7], which is handcrafted and designed to describe 2D features in
a nonlinear scale space by means of nonlinear diffusion filtering,
is generally utilized in many applications, but how to merge with
BoW effectively and efficiently still remains a challenge. The work
reports in [42] that KAZE features are invariant to rotation, scale,
and have more distinctiveness at varying scales with the cost of
moderate increase in computational time. Therefore, this research
attempts to explore KAZE with three basic steps in the BoW pipeline
for scene classification: extracting KAZE features based on the pro-
posed multi-neighborhood strategy, constructing the codebook and
encoding KAZE features on the codebook.

High-level methods are usually based on deep learning models,
which have gained great popularity due to stack of learned con-
volutional filters. Since the introduction of ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC), the pre-trained convolu-
tional neural networks (CNNs) such as AlexNet [27], VGG-Net [25],
GooglLeNet [31], etc., provide the scene classification as an end-to-
end problem. However, the backpropagation process, the stochastic
gradient descent (SGD) strategy or training from scratch is a highly
time consuming process, and limited training samples often cause an
overfitting issue in deep learning model.

Recently, the BoW model has been investigated by using the
spatial information based on the local features [8]. However, the
traditional SIFT-based BoW model uses the Gaussian scale space
framework, and Gaussian derivatives for deriving the Gaussian ker-
nel for scale-space smoothing, but the Gaussian blurring does not
repect the distinctive boundaries of objects, smoothes information
and noise to the same extent at all scale levels, which causes decrease
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Fig. 1: (a) Displays the KAZE keypoints which are densely dis-
tributed while the SIFT keypoints around the regions. (b) Displays
the four 4-neighborhood masks used for computing KAZE descrip-
tor.

in localization accuracy and distinctiveness [9]. To alleviate this lim-
itation, KAZE features are proposed which blur the noise and keep
the details or edges at the same time. Our main contributions include
four aspects.

(1) The multi-neighborhood strategy is proposed to compute
KAZE features from each image.

(2) An iterative keypoint selection algorithm [2] is selected to
ignore unhelpful keypoints, which may have a negative effect on
computational efficiency and image representation.

(3) Two bags of KAZE features are selected in which each bag is
regarded as separated feature descriptors.

(4) We introduce the canonical correlation analysis as a feature
fusion strategy to fuse KAZE features in a BoW model, which helps
us to achieve an improved classification performance.

In the rest of the work, we explain the proposed framework in
Section II, and present experimental results in Section III. Finally, in
Section IV, we draw conclusions for the proposed framework.

2 The Proposed Methodology

First, we give a brief introduction about KAZE descriptor, and then
explain the process of computing the proposed Bag of Words KAZE
(BoWK) descriptor with canonical correlation analysis.

2.1 KAZE Features

The main difference between traditional SIFT-base BoW descrip-
tor and the proposed KAZE is the construction of the scale space.
KAZE features are extracted on non-linear scale space while SIFT is
based on Gaussian scale space (GSS). Equation 1 shows the classic
nonlinear diffusion formulations [7]:

oL )
i div(c(z,y,t).VL) (1)

where div and V are respectively the divergence and gradient oper-
ators. c¢ is the conductivity function which depends on the local
image differential structure while ¢ is scale parameter. c is depen-
dent on the gradient magnitude as shown in (Eq.(2)), helping in the
reduction of diffusion at edges, and encouraging smoothing within
a region instead of smoothing across boundaries, thus resulting in
more smoothening of regions as compared to edges.

o(z,y,t) = g(| VLo (2,9,1) |) @)

where o is the amount of blur, and the luminance function V L. is
the gradient of a Gaussian smoothed version of the original image
L. This property of the conductivity function preserves the boundary
and reduces image noises in BoW model. The KAZE approach is
more sensitive to the original image resolution, without applying any
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Fig. 2: Effect of changing the vocabulary size.

downsampling at each new octave as done in SIFT. From Fig.1(a), it
can be seen that KAZE not only focus on objects keypoints but also
concentrate at the boundary.

2.2 Dense Sampling: A modified KAZE for Small Image
Patches

The first step while computing the proposed BoWK descriptor is to
choose sampling strategy (e.g. densely, randomly, using a keypoint
detector). The sampler is a vital element of any bag-of-feature meth-
ods. Researchers are using multiscale keypoints detectors ((Lapla-
cian of Gaussian, SIFT, Harris-affine, etc.) as samplers to select
regions of interest within the image but surprisingly the randomly
sampled or dense patches are often more discriminant than key-
point based sampling methods [10]. In the proposed framework,
the image is partitioned into several equal sized blocks using a uni-
form gird and each block is treated as a separate region for feature
extraction. In order to improve classification performance, overlap-
ping image blocks are proposed. Suppose an image S be represented
by a set of z; (KAZE) at P locations placed with their indices
i =1,---, P. L the regions of interest with Py, defining the set of
locations/indices inside the region m. Let ¢ and g represent some
coding (vector quantization) and sampling operators, respectively.
The vector v expressing the whole image, which is extracted by
sequentially coding, sampling over all regions, and concatenating
[11]:

a’L:q(ml)7Z:177P (3)
hm:g({ai}ier)7m:17"' aL (4)
vl =[] ---hi] ®)

The target is to decide which operators g and g provide adequate
classification performance using v as input to either a non-linear
classifier (SVM), or a liner classifier. ¢ minimizes the distance to
a codebook, formed by an unsupervised algorithm (K-means), and g
computes the average over the sampling region:

K . . . 2
a; €{0,1}7 5 = 1,iffj = argming<g || x; — dy, |3 (6)

1
hm = 5] > i, )

1€ Py,

where dj. defines the k-th codeword. Different strategies have been
proposed to select discriminant neighborhoods using local binary
patterns (LBP) [12], [13]. In our work, we propose a four 4-pixel
neighborhoods strategy as shown in Fig.1(b) to generate the multi-
neighborhood KAZE descriptor. If the traditional KAZE is applied
to small image patches, it will become more sensitive to distortions
and consumes more time. To alleviate this problem, four smaller
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Fig. 3: Overall architecture of the proposed method.

neighborhoods of four pixels each are utilized. These four neighbor-
hoods, resulting in 128-dimensional feature vector, which is used to
describe each image patch. The 128-dimension of improved descrip-
tor may seem high, but it performs better than the lower-dimensional
ones based on the results of the experiments.

2.3 Histogram of Visual Words

To obtain a compact representation of the scene images, the popular
k-means clustering method is proposed to code the extracted features
into a visual vocabulary without losing too many details. The vocab-
ulary size is very crucial because an inappropriate choice of k may
yield poor results. It varies from a few hundreds to several thousands.
If the codebook is too small, different dissimilar local regions could
be merged to the same visual word, which can limit the discrimina-
tion of local features. On the other hand, if we keep the codebook
size too high, many similar local regions could be mapped to dif-
ferent visual words. In order to find the optimum vocabulary size,
we have compared with different sizes to get the final vocabulary
size . The results for UC Merced dataset are shown in fig.2. We used
a relatively larger codebook size for all three datasets (10000 for
WHU-RS, 150000 for UC Merced, 180000 for NWPU-RESISC45),
because we want to increase the amount of information by using
more dimensions for canonical correlation analysis space which may
result in increasing the accuracy. Moreover, the variance of classifi-
cation performance over different sizes of vocabulary is 1% to 1.5%
which proves that the proposed approach is not so sensitive to size
of vocabulary.

During the construction of the visual vocabulary, each patch in an
image is mapped to a specific codeword through the k-means cluster-
ing process and the image, thus, can be represented by a histogram of
visual words. The histogram becomes a feature vector for the image..

In order to introduce spatial information, the scheme proposed by
Lazebnik et al. [14] which is based on spatial pyramid matching
is proposed. An image is tiled into a number of smaller rectangu-
lar blocks and the proposed KAZE is computed for each block and
concatenated. In our work, we follow only the second level of this
pyramid to keep the computational complexity low.

2.4  lterative Keypoint Selection

To remove unhelpful keypoints, an iterative keypoint selection
method is proposed in [2]. Authors use response value with neigh-
boring keypoints to reflect the saliency of keypoints. Thus, keypoints
will remove according to Equation (8).

N 1907 9°D~! oD
DX)=D+-—F——— =<0 8

(X)=D+355% ax2 ax < ®)
where D is the function value [15] in the location of keypoints and
X = (z,y,0) is the offset of keypoints. This strategy helps us to
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choose discriminative keypoints which are not different from neigh-
boring keypoints. The representative keypoints are those which are
closest to the cluster center. Keypoints whose Euclidean distance in
KAZE feature space are within a threshold T of those representative
keypoints will be removed. This is how the first iteration is per-
formed. On the basis of the first iteration, the initial keypoints are
selected and will be used in the second iteration and the process will
be the same as in the first iteration. The iteration performs continu-
ally until no keypoints will be filtered out or rest of the keypoints are
insufficient to be clustered.

2.5  Canonical Correlation Analysis

Feature fusion is the process of combining two or more feature vec-
tors to obtain a single feature vector, where the fused features contain
rich information to describe the image scene well. How to properly
integrate feature vectors is always a challenge. In order to extract
more discriminant descriptors to represent the structure of scene
images, different methods have been introduced in the literature for
feature fusion. Among them, two famous approaches are serial fea-
ture fusion and parallel strategy . Serial fusion strategy [39] simply
fuses two feature vectors into a single one. Let’s consider that @ and b
are two features obtained from an input image with ¢,d vector dimen-
sion, respectively, and then the concatenated feature is v with size
equal to (¢ + d).

Parallel strategy [40], [41] that concatenates the two features vec-
tor into a complex vector. Each input image I generated two sets
of features, that is, A1 and Ao comprising two sets of features. The
final fused feature representation is formulated as

Aa(I) = Ar(I) +iA2(1) ©

where ¢ is the imaginary unit.

Sun et al [16] introduces a robust feature fusion method based on
canonical correlation analysis (CCA). This method establishes the
correlation criterion function between the two groups of feature vec-
tors, to extract their canonical correlation features. The dimension
of the fused vector will be equal to or less than the dimension of
the two vectors. It has some resemblance to principal component
analysis (PCA) and linear discriminant analysis (LDA), but PCA
searches for patterns only within single multivariate data. In order
to perform CCA fusion successfully, dimension of two features set
should be same. Suppose that X € RP*™ and Y € R?*" represent
two matrices, each consists of n training feature vectors from two
different sets. p and q are the dimensions of each vector.

Let’s assume that Szo € RP*P and Syy € R?*? contain the
within-sets covariance matrices of X and Y and Sy € RP*9 con-
tains the between-set covariance matrix (note that Sy, = Sgy). The
overall covariance matrix (p + ¢) X (p + ¢) is then computed:

B cov(z) cov(z,y) \ _ [ Sex Suy 10
—\ cov(y,xz)  cou(y) -~ \ Syz Sy (o



Table 1 Number of average remaining keypoints in our method and other methods

Table2 Comparison in average computational time for vector quantization

Method UC MERCED Dataset  WHU-RS Dataset Dataset  The proposed Method Class-Specific Codebook [2]  IKS [21]
BoWK without keypoint selection  6,879,3924+10,255  8,039,1204+12,665 UC Merced 60.14+1.2 min 135+2.5 min 478+3.3 min
IKS [21] 356,952+10,403 575,168+29,110 WHU-RS 90.57+2.5 min 22142.9 min 630+5.1 min
Class-Specific Codebook [2] 403,857+£11,259 635,497+14,227
The proposed Method 260,934+6,500 320,000+9,130

It is complicated [17] to follow the relationship between these two
sets of vector from matrix .S because these feature vectors may not
follow a consistent pattern. The objective of CCA is to find the linear

* *
combinations, X = W X and Y = W, X, which maximizes the
pair-wise correlations across the two feature sets:

* ok
cov(X,Y)

* ok
corr(X,Y) = —_—
var(X).var(Y)

(11)

*
Where cov(X,Y) = WL SpyWy,var(X) = WISy Wy and

Uar( )= WTSyy Wy. Max1mlzat10n is conducted by maximizing

the covariance between X and Y using Lagrange multipliers sub-
*

ject to satisfy the following constraints var(X )=wvar(Y) = 1. Both
transformation matrices, W, and W), are then computed by using
the eigenvalue equations:

{Smlsxysyylsyrwm = R°W, 12)

where WT and Wy are the eigenvectors and R2 is the diagonal
matrix of eignvalues or it could be defined as squares of the canon-
ical correlations. The number of non-zero eignvalues can be find in
each equation, that is d = rank(Szy < min(n,p,q), which will
be fixed in descending order, 71 > 71 > --- > r4. As mentioned
earlier, both the transformation matrices, W, and Wy, composed

of the sorted eigenvectors corresponding to the non-zero eigneval-
* ok

ues. X,Y € R¥™ are consider as canonical variates. It could be
observed that the sample covariance matrix denoted in Eq.(9) will
be of the form:

10 0
0 1 0 0 r 0

. 0 0 10 0 rq

e (13)
o0 01 0 0
0 ro 0 0 1 0
0 0 - 74 0 0 - 1

The matrix explains that the canonical variates have nonzero corre-
lation only on their corresponding indices. It also express that the
canonical variates are uncorrelated within each other because of
identity matrices in the upper left and lower right corners. Hence,
it is possible to perform feature-level fusion either by concatenation
or summation of the transformed feature vectors:

Z1 = )*( —(WEX)_<WJ,‘ O)T(X)
- * - T fr
v Wy, Y 0 Wy Y
(14)
or
Zo=X+V=wlx+wly we \' (X 5

where Z1 and Z5 are called the Canonical Correlation Discrimi-
nant Features (CCDFs). The overall proposed framework is given
in Algorithm 1.

Table 3 Overall classification accuracy (%) of each feature set

Method UC MERCED Dataset WHU-RS Dataset NWPU dataset
KAZE with four neighborhoods 91.85 £1.20 92.60+0.50 62.80+0.80
KAZE with three neighborhoods 89.80 £0.90 91.274+0.80 60.40+1.20
The proposed BOWK (Fusion by addition) 97.52+0.80 99.47+0.60 66.87+0.90

Table 4 Description of the fused features used for final classification

Dataset Size
WHU-RS 802
UC Merced 1680

NWPU 6299

2.6  Two-Step classification description

In order to employ canonical correlation analysis, two distinctive
visual words vocabularies based on four neighborhoods using the
size of 13 x 13 with 4 pixels spacing from each block, and three
neighborhoods using the size of 11 x 11 with 8 pixels spacing from
each block are used. Fig.3. describes the feature fusion procedure,
where features are extracted from the input scene image. Then, two
distinctive visual words vocabularies are selected and their trans-
formations were calculated based on CCA. After that, we combine
(concatenation/addition) the transformed features to represent the
input images by single informative features. The overall BoW scene
classification framework is given in Algorithm I.

Algorithm I : BOWK Algorithm.
Input :
1: The training category set Strqin = {Str1 - - -
2: The testing category set Stest = {Sts1 - -
visual dictionary D;
3:fori=1to Pdo
4: Extract dense features from Sy,q;n and Siest using multi-
neighborhoods KAZE features;
Xhtrainz{mhtrainl y Lhtraing ++
Xhtestz{xhtestl y Lhtesta -
5: Keypoints selection, T;
6: Generation of codebook using k-means clustering;
7: Select Cyrqin1 and Ciese1 using four 4-pixel neighborhoods
(Xhtrain7 gridsize = 4);
8: Select Ctpgina and Ciesto using three 8-pixel neighborhoods
(Xhtrain7 gridsize = 8);
9: Compute their transformation matrix Wy and Wy;
10: Project Ctrain1 » Ctrain2 into the CCA subspace. Cirqin1 =
Wz * Cirain1 s Ctrainz= Wy * Cirain2;
11: Project Ctest1 » Ctesta into the CCA subspace. Ciest1 =
Wz % Ctest1, Ctesto= Wy * Crest2;
12: Fuse Ctrainis Ctrain2 and Ctest1 » Ctest2 by concatenation.
13: end for
14: Perform SVM classification
15: Output: Overall Accuracy

StrP};
: StsP};

Thtrain, }7
s Lhtest, };

3 Datasets And Experimental Setup

In this section, we first describe three datasets, which are used to
evaluate our approach. Then, the parameters settings of all experi-
ments are defined. Finally, the results are compared for each dataset
and discussed.

3.1 Datasets

The proposed "NWPU-RESISC45’ dataset, represents 31,500 high
resolution images, classified into 45 scene classes, covering more
than 100 countries and regions all over the world. This benchmark
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Fig. 4: The images in the first row(a), second row(b) and thirds
row(c) belong to six different classes of the '"NWPU-RESISC45
dataset, the UC Merced (UCM) dataset, and the WHU-RS dataset,
respectively.

is recently introduced [18], and designed to alleviate the overfit-
ting issue in deep learning models, where each class consists of 700
images with the size of 256 x 256 pixels. The images are obtained
from Google Earth (Google Inc.), where the spatial resolution ranges
from 30 to 0.2 m per pixel. This dataset is consider as the largest
satellite scenes images dataset so far, and 15 times larger than the
most common and widely-used UC Merced dataset. Hence, the rich
image variations, highly overlapping classes, and the large scale
make the dataset rather challenging. Fig.4(a), displays some images
in the first row.

The second dataset is the UC Merced (UCM) dataset [19], which
is manually extracted from the USGS National Map Urban Area
Imagery collection for various urban areas around the country with
a pixel resolution of one foot. It is classified into 21 classes, and
each class is composed of 100 images with size of 256 x 256 x 3.
Inter-class similarity among categories, for instance, images from
beach and river can be easily mixed with other each, which make
this dataset a challenging one. Some example images are shown in
the second row of Fig.4 (b).

The third proposed dataset, WHU-RS dataset [20] , is compara-
tively smaller, and formed from satellite images of Google Earth. It
contains 950 images with 19 scene classes, and a size of 600 x 600.
Images are vary greatly in high depth of field, scale and orientation,
which makes it more complicated than the above datasets. Fig.4 (c)
displays some scenes images in the third row.

By observing the sample images in Fig. 4(b), we find the great
similarity between the dense residential, intersection, and the ten-
nis court categories. Fig. 4(a) shows some of the sea images, which
causes the classification to become very challenging even for a
human. Except for the desert and farmland categories in Fig.4(c),
other categories such as river, park, port, and pond also share similar
thematic classes. In summary, these data sets are challenging for the
BoW model.

3.2 Experimental Setup

To analyze the scene classification performance on the mentioned
datasets, the color images are converted to grayscale images. For
the UC Merced and WHU-RS datasets, the linear SVM classifier is
trained on a set of 80% images per category for training and remain-
ing 20% images for testing. The SVM classifier is trained on Matlab
by using statistics and machine learning toolbox with one-vs-all. As
described earlier, two bags of KAZE features are selected as two
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Fig. 5: The proposed KAZE with 4-neighborhoods, the dense
KAZE and their mean average classification performance on three
datasets.

different feature sets and the fusion is performed into two principal
phases: in the first phase the transformation matrices W, and Wy,
are calculated and projected the training feature sets into the CCA
subspace, and then fusion is performed by addition on two trans-
formed features sets. In the second phase, the testing feature sets are
projected into CCA subspace and fusion is performed on the two
transformed testing feature sets by addition. All the experiments are
performed in MATLAB 2017b by using an Intel Core i7-4370 (3.80
GHz) computer with a 8§ GB of RAM memory, and experiments are
repeated five times to obtain convincing classification performance.

For the keypoint selection algorithm, we choose a threshold of
response value 0.080, a bit higher than [2], and keeps the same for
all datasets. Table 1 represents the average number of remaining key-
points which are considered in our approach and also compared with
baseline methods [21] [2] with their standard deviation. It can be
observed, multi-neighborhood strategy gives us large number of key-
points from the training set, 6,879,392 and 8,039,120 keypoints over
UC Merced and WHU-RS dataset, respectively. Although, the pro-
posed method aims a slightly lower selection rate, these keypoints
are more discriminant and achieve more than 90% accuracy on two
proposed datasets.

However, as can be seen in table 2, a large number of keypoints
were selected by [21], [2], but these approaches take a lot more
computational time to complete the vector quantization with a lit-
tle increase in classification accuracy. Hence, the proposed approach
is low cost, since the algorithm removes indiscriminative keypoints.

3.3 Comparative Assessment of the KAZE, the BOWK and
state-of-the-art approaches

To make a fair comparison with traditional KAZE, first, we compare
the performance without using feature fusion strategy. The classifi-
cation results in different visual vocabularies summarized in Table 3.
It could be observed that KAZE with four neighborhoods performs
better in comparison with most of the recent works such as [5], [22],
[34], [35], [36], [37], [24], [18], [6] and [38]. Moreover, using fea-
ture fusion strategy based on CCA achieves improvement beyond
the state-of-the-art (e.g., CNN-based methods) with a small size of
feature descriptor, which equals 802 for WHU-RS dataset, 1680 for
UC Merced dataset, and 6299 for NWPU dataset. The features size
based on CCA is reported in Table 4. Further detail is provided
in Fig.5, where the highest classification rate for the UC Merced,
WHU-RS, and NWPU dataset is 91%, 92% and 63%, respectively,
which is 14%, 12% and 11% higher than traditional dense KAZE
based BoW model. The proposed KAZE with four neighborhoods
produces decent classification performance on all the datasets and
outperforms the KAZE by a fair margin. In Fig.6, the category wise
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Fig. 6: The comparative mean average classification performance
of the proposed KAZE with 4-neighborhoods and the dense KAZE
descriptor on the 21 categories of the UC Merced dataset.

20 30 40 50

training sample ratios (%)

0 0O W W O v
a 0 O N b~ O

Classification accuracy

3
i

oo}
N

| m[2] [4] w[33] m[29] = [BoWK (ours)] |

Fig. 7: The influence of the training sample ratios with BoWK and
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classification rates for the UC Merced dataset are expressed. It could
be observed that the most confusion occurs in the "dense residential”,
"intersection"”, "river", "sparse residential", "storage tanks", "golf
course" and "tennis court" categories. Due to high similarity of ten-
nis court and dense residential images, it makes it challenging for
BoW model to classity efficiently. Except for the dense residential
category, the proposed KAZE with four neighborhoods out performs
the dense KAZE based BoW model by a fair margin.

A comparative assessment with the baseline BoW approaches
and deep learning methods is made after using feature fusion strat-
egy described earlier to evaluate the classification performance. The
number of training samples are taken as a key factor to demonstrate
our approach. A competent classification approach can achieve a fine
performance even with fewer training samples. Based on this logic,
the size of the training samples is decreased. To make a comparison
with previous methods on UC Merced dataset, we randomly select
20%, 30%, 40% and 50% as training samples, and remaining for test.
It could be seen from Fig.7, that proposed framework on UC Merced
dataset is superior in comparison with state-of-the arts approaches
right from the start (20% sample ratios). Infact, a substantial dif-
ference can be observed even with fewer training samples, and the
accuracy is increased with the addition of training samples, exceed-
ing 90% with just 30% training ratios.

In Table 5, results from some state-of-the-art methods are shown,
and summarized here for a comparison analysis. The work reported

Table 5 Overall classification accuracy (%) of reference
and the proposed BoWK on the UC-Merced dataset
and WHU-RS dataset with 80% ratios.

Methods UC-Merced WHU-RS
LPCNN [34] 89.90 -
CCNN [36] 91.56 -
GoogLeNet + fine-tuning [31] 97.10 96.14
GoogLeNet [33] 92.80+0.61 93.00
D-CNN with AlexNet [27] 96.67+0.10 -
D-CNN with GoogLeNet [27] 97.0740.12 -
UFL [30] 95.7140.13 -
FBC [1] 85.53+1.24 -
FK-S [5] 91.63+1.49 -
FV+HCV [22] 91.80+1.30
SDSAE [44] 93.57+1.02 -
S-UFL [35] 82.7241.18 -
Fusion strategy 1 (GoogLeNet) [45] 96.17+0.90 -
Fusion strategy 2 (GoogLeNet) [45] 97.12:£0.96 -
OverFeat [37] 90.91+1.19 -
Partlets-based method [43] 91.33+£1.11 -
SPP-net+MKL [24] 96.384+0.92 95.074+0.79
Fusion by addition [23] 97.42+1.79 98.70+0.22
KCRC [2] 93.80+0.58 93.70+0.57
MTIJSLRC [4] 91.07£0.67 91.74£1.14
MS-CLBPI [6] 90.60+1.40 93.304+0.80
CaffeNet [25] 95.02+0.81 96.2440.56
VGG-VD-16 [25] 95.2141.20 96.054+0.91
D-DSML-CaffeNet [26] 96.76+0.36 96.6410.68
MLF [28] 89.6241.67 88.16+£2.76
AlexNet-SPP-SS [29] 96.67+0.94 95.00+1.12
salM3LBP-CLM [32] 95.7540.80 96.38+0.76
BoWK (ours) 97.5240.80 99.4740.60

Table 6 Overall classification accuracy (%)of reference
and the proposed BoWK on the NWPU-RESISC45 dataset with 20% ratios.

Methods NWPU-RESISC45
BoVW [18] 44.97+0.21
BoVW+SPM [18] 32.964+0.47
LLC [18] 40.03+0.34
BoVW with dense SIFT [38] 44.9740.28
AlexNet [38] 59.2240.18
BoWK (ours) 66.87+0.90

in [1], presents a fast binary coding scheme (FBC) for global fea-
ture representations using randomly-sampled image patches. To
generate a class-specific codebook, an improved class-specific code-
book using kernel collaborative representation based classification
(KCRC) is proposed [2]. Multiple features, e.g., shape, color and
textual features, are used in [4]. Then, a multi-task joint sparse and
low-rank representation is adopted to combine the features. The
fisher kernel (FK) coding framework is introduced to extend the
BOVW model in [5], by characterizing the low-level features with
a gradient vector. Authors report in [6], introducing the completed
local binary patterns (CLBP) operator for the first time on remote
sensing land-use scene classification. A new method based on hierar-
chically coding structures is introduced in [22], where multiple bags
of visual words (BoVW) coding layers and one fisher coding layer is
used to develop the coding structure. Then, semi-local features were
encoded with fisher vectors and aggregated to form a final global rep-
resentation. A large patch convolutional neural network (LPCNN) is
introduced in [34] , where authors replace the fully-connected layer
with global average pooling layer to decrease the kernels parame-
ters. An unsupervised feature learning approach to extract patches
based on a saliency detection algorithm is proposed in [35]. A new
convolutional neural network for dealing with the scale variation of
the patterns in the scenes is developed [36]. An effective partlets
based method is proposed in [43], and further training is performed
to enhance the VHR image land-use classification. The solution for
automatic semantic annotation is proposed by [44], based on a uni-
fied annotation framework by combining discriminative high-level
feature (sparse autoencoder) learning and weakly supervised feature
transferring.

Basically, feature fusion methods are showing great popular-
ity in deep learning models. The most relevant work is performed
by [23], [24] and [45]. In [23], discriminant correlation analysis
(DCA) is introduced showing that a feature fusion with few fea-
tures can be performed efficiently by fusing two fully connected
layers of VGG-Net architecture. However, the authors claimed that
the main drawback of CCA is to ignore the class information. Our
proposed approach uses manually labeled datasets. We aim to use
CCA to combine two bags of KAZE features into a single one,
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Fig. 8: Confusion matrix for the BOWK with NWPU-RESISC45 dataset.

Ylo|eofe|ofofe|ofe|e]e|e]=

o
o
o
o

5

f @ - -
o e s

%

v o | o P N N N N A I I R R O D

P N N N N N T S S I S o B I o [ o

. PR o o I S S ;
I g P S LR
o P o~

Fig. 10: Confusion matrix for the BOWK with UC Merced dataset.

and to maximize the correlation. Therefore, the class structures are
preserved and fusion can be performed either by addition or concate-
nation. CCA increases the performance by more than four percent on
each dataset. We also compared our proposed approach against serial
and parallel feature fusion strategies. With regard to the UC-Merced
dataset, the classification results in Table 5 once again show that the
proposed feature fusion strategy is better than the serial and paral-
lel feature fusion strategies using the GoogLeNet architecture. The
authors in [45] also used other deep learning models such as Caf-
feNet, VGG-Net-16 to perform fusion.

VGG-Net-16 and CaffeNet seem to give a better performance
than our proposed approach by using parallel feature fusion strategy.
However, we should note that all these VGG-Net-16 and CaffeNet
are pre-trained models trained on ImageNet whose images are all
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natural images. Thus, the pre-trained neural networks seem to be
more suitable for handling natural images. This means that CCA
could be further explored by fusing convolutional or fully-connected
layer features in deep learning models. The Alex-Net is explored
with spatial pyramid pooling (SPP-net), and transfer learning is per-
formed to ensures the effectiveness of each layer. In order to fuse the
multi features, the multi-kernel learning is used [24], where authors
extract features from different layers of a pre-trained model and then
fuse them to get the final classification.

The work presented in [25], attempts to tune the weights of
CaffeNet using fine-tuning approach based on VGG-VD-16 archi-
tecture. Metric learning (ML) [26], [27], has been utilized frequently
into the convolutional neural models to further increase the dis-
crimination of deep representations. The mid-level features were
extracted via using sparse autoencoder in [28]. To increase the
depth of convolutional layers, the side supervision strategy (SS) is
proposed for AlexNet model [29]. Other approaches including, an
unsupervised representation for deconvolutional networks [30], fine-
tuned GoogLeNet [31], fine-tuned CaffeNet with VGG-VD-16 [25],
fusion of local and global features [32], OverFeat [37] and six fine-
tuned ConvNets [33]. Making a comparison with above methods, the
proposed approach achieves the best accuracy ( 99.47%) for WHU-
RS dataset using 80% samples as training data and obtained an
impressive accuracy (97.52%) for UC Merced dataset. For NWPU-
RESISC45 dataset, we select 20% training sample ratios for training
and rest for testing as same in [18]. Table 6, shows the performance
comparison of the BoWK with baselines models such as BoVW
[18], BOVW+SPM [18], LLC [18] and AlexNet [38]. The proposed
framework competes low-level or mid-level based approaches with
fair margin of over 20%. This is a significant improvement for
NWPU-RESISC45 dataset. Hence, the proposed BoWK framework
achieves very competitive accuracy in the literature of scene classifi-
cation when compared with low-level based approaches, high-level
methods, and deep learning frameworks.

For further analysis, a confusion matrix of NWPU-RESISC45
dataset, UC Merced dataset and WHU-RS dataset is shown in Fig.8,
Fig.9, and Fig.10 respectively. We use heat map function in Mat-
lab to visualize the confusion matrix. The rows and columns of the
matrix represent the actual and predicted classes. The class labels
range is 1:21 for UC Merced dataset, 1:19 for WHU-RS dataset
and 1:45 for NWPU dataset. The vertical color bar indicates the
proportion of samples over the actually total class samples. The
storage tanks category in UC Merced dataset, which is hard to
be classified because of inter-class similarity with sparse residen-
tial, and achieving lower accuracy. From the confusion matrix of
NWPU-RESISC45 dataset, It can be observe that other classes such
as wetland, thermal power station, tennis court, river, roundabout,



medium residential, industrial area, commercial area, church, or air-
port are easily confused due to similar structures and background
color. In summary, these datasets are challenging, even though we
have achieved a comparable performance.

4 Conclusion

Since the introduction of pre-trained CNN, the focus is shifting
to high-level semantic features rather than acquiring low-level and
mid-level features. However, limited training samples, the stochastic
gradient boosting or training a convolutional neural network (CNN)
from scratch is a highly time consuming process. Therefore, this
paper focuses on a BoW approach for remote-sensing scene clas-
sification, and introduces a novel neighborhood strategy to compute
two distinct KAZE based BoW features, with the objective that the
learned encodings are maximumly correlated. The original BoW
model discards the spatial information. In this regard, the proposed
approach not only overcomes the spatial information problem but
also takes advantage of canonical correlation analysis (CCA) to max-
imize the correlation, and to combine them into a final feature set. In
comparison with related fusion methods, the proposed fusion strat-
egy(CCA) proved to be more robust than other fusion methods.
Moreover, the proposed framework is low cost and has more dis-
criminative features with low dimension. This unsupervised learning
approach is well suited for off-line classification, where the classi-
fication accuracy is the prime goal. The proposed framework could
be used in various applications where deep learning models are not
easy to train such as biometrics (face recognition), Chinese char-
acter recognition, etc. It is also computational efficient as it could
be trained without GPU. However, this approach falls behind real-
time requirements and feature fusion process reduce the diversity of
feature representations. In future work, these challenges should be
further investigated.
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