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Abstract: The authors propose a novel approach for the description of objects based on contours in their images using real-
valued feature vectors. The approach is particularly suitable when objects of interest have high contrast and texture-free images
or when the texture variations are high so textural cues are nuisance factors for classification. The proposed descriptor is
suitable for nearest neighbour classification still popular in embedded vision applications when the power considerations
outweigh the performance requirements. They describe object outlines purely based on the histograms of contour tangent
directions mimicking many of the design heuristics of texture-based descriptors such as scale-invariant feature transform (SIFT).
However, unlike SIFT and its variants, the proposed approach is directly designed to work with contour data and it is robust to
variations inside and outside the object outline as well as the sampling of the contour itself. They show that relying on tangent
direction estimation as opposed to gradient computation yields a more robust description and higher nearest neighbour
classification rates in a variety of classification problems.

1௑Introduction
Description of locally defined image features such as interest
points and edges is a long standing problem. For object
classification purposes, description of edges and contours has a
particular appeal since a variation of object outlines within a single
class is generally less than textural differences between instances
of the same class. Moreover, high contrast images captured under
low light and infrared images contain considerably less texture.
Unfortunately, robust description of image contours is a
challenging problem since such a description has to rely on mostly
ambiguous low-level intensity information.

In this study, we propose a simple and effective algorithm for
the description of image contours that does not depend on textural
information such as image gradients. The proposed description is
purely based on the histograms of contour tangent directions. We
show that avoiding gradient information inside, along, and outside
the extracted contour is essential to increased performance on tasks
such as character and shape classification.

Our approach belongs to the group of heuristically designed
descriptors such as shape context (SC) [1]. Such approaches
require a relatively small number of operations. Therefore, they are
suitable when the power considerations outweigh performance
requirements such as in embedded vision applications. Moreover,
the descriptors are usually classified using the nearest neighbour
(NN) approach, which requires only Euclidean distance
computations. Therefore, classification can be very efficiently
implemented and ported to existing and novel hardware. Efficient
algorithms for approximate NNs [2] exist to scale these approaches
to very large descriptor data sets.

The dominant approach for shape description – the SC
descriptor and its variations [3–5] – is based on a sampling of the
contours and representing the relative positions of the samples with
respect to each other by histograms. This is a powerful approach
that is invariant to variations in object texture and robust to
geometric deformations; however, including relative positions of
all points with respect to all others in the description results in a
global representation. This means that if a certain part of the
contour is significantly altered or occluded, the description at every
point is affected by this change. This is in contrast to descriptors
such as scale-invariant feature transform (SIFT) [6], where the
histograms only store local gradient orientation information. If an

image patch is partially changed due to lighting or occlusion, its
SIFT description is only partially affected. Since SIFT is designed
to work with textured image patches, it is not directly suitable for
the description of image contours and it does not perform well for
shape classification when intra-class texture information varies a
lot.

There are many approaches that are tailored directly for curve
description. Some approaches such as [3, 5] build on SC to
improve its characteristics, some others exploit shape skeletons [4,
7], while others partition the shape contour and describe the
resulting sub-contours [8, 9]. However, these do not take advantage
of the heuristics exploited by SIFT-like texture descriptors that
yield impressive performance for the key point matching task. The
key design heuristics that drive that performance are the
discriminative power of direction information and the robustness of
histograms computed on a spatial grid.

Based on this insight, we have designed a descriptor that
gathers only local tangent distributions along the curve to be
described. Fig. 1 illustrates the steps of the proposed descriptor
computation. We call the resulting descriptor as histograms of
tangent directions (HOTD). In the experiments section, we show
that such a local approach yields improved robustness compared to
global descriptors. Moreover, we demonstrate that, at least for
shape description applications, HOTD outperforms histograms of
gradient directions even when gradients are only taken at the shape
boundary.

2௑Related work
Various approaches have been developed to describe shapes using
numerical vectors. One alternative is to simply exploit intensity/
texture-based descriptors such as the SIFT descriptor for this
purpose. However, when the shape outline is more discriminative
and the texture of the objects of interest varies a lot, a contour-
based approach is arguably more suitable. Therefore, specific
approaches targeting curves have been developed, SC [1] being one
of the most prominent ones. The main advantage of both lines of
work is their implicit simplicity. They are fast to compute and
effective even when used in combination with a NN classifier. In
this study, we show that HOTD have all the same benefits and they
are an effective description for several applications from letter
outlines to shape boundaries.
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The simplest way to describe image patches is to encode the
intensity information and compare it using a metric such as cross
correlation [10] or variations [11]. By gaining invariance to local
deformations, it is possible to compute moments [12], normalised
histograms [13], or colour histograms [14] of the intensity values.
The disadvantage is the variance due to the viewing direction and
the inability to effectively describe binary object masks or high
contrast images.

Apart from SIFT, several descriptors exploit gradients and their
directions to characterise an image neighbourhood. Gradient
location orientation histogram (GLOH) [10] bins gradient
orientations on a circular grid. Steerable filters [15] and differential
invariants [16, 17] extend the filters used to directional and higher-
order ones. Schiele and Crowley [18] compute rotation invariant
gradient histograms at multiple scales. Principal component
analysis (PCA)–SIFT [19] applies dimensionality reduction on top
of gradient histograms. We exploit the design of these texture
descriptors, but we replace gradients with robust tangent
computation along the curve. We show that this is very effective to
encode only relevant information for a given object outline.

There are many approaches developed specifically for the
description of object contours. SC [1] encodes the positions of
points on the curve with respect to a reference in log-polar space.

Inner distance SC [3] is a variant of SC that changes how the
distance to the reference is computed. Geometric blur [20] and
curvature scale space [21] filter the curve with Gaussians and
record various statistics of the resulting shapes. Similar to SC,
contour points distribution histogram [5] relies on point position
histograms on a circular grid. Revollo et al. [22] exploit bilateral
and radial symmetries in the object contour to better describe the
shape of objects.

Instead of the contour boundary, skeletal context [4] and shock
edit [7] describe curves based on the skeleton of the region they
enclose. Distance set [23] computes a distance set for each point
and its neighbours and selects significant ones for description. Our
approach bears similarity with these since we also restrict
computations to the contour boundary. However, instead of point
locations, we compute and record tangent orientations.

Some contour-based approaches require pairwise matching
and/or normalisation of curves. Curve edit [24] matches high
curvature points of aligned curves before description. Tu and Yuille
[25] measure the similarity of two curves based on the
transformation required to compute one from the other. These
approaches certainly increase the matching performance, but they
require pairwise processing. As a result, they are not immediately
scalable to larger databases, unlike description based on a
numerical vector in a Euclidean space, which can potentially
employ approximate NN approaches [2].

Several recent approaches describe shapes by first partitioning
the contour into sub-parts. Wang et al. [9] split the contour after
fitting a parametric curve and finding critical points of this
representation. The fragments are then encoded with their SC
descriptors and these are vector quantised and histograms of the
resulting codebooks represent the overall shape of the curve.
Laiche et al. [8] fit a polynomial to the contours and compute sub-
curves based on high curvature points. The sub-curves are
normalised and further described by cubic polynomials. Such
approaches work well for certain data sets, however splitting the
curves into sub-curves is risky, since curvature and other metrics
used in the splits are not affine invariant.

3௑Description of curves
Our approach computes a real-valued descriptor vector for a curve
given as a discretely closed chain of points. Depending on the
application, this curve might be computed using a segmentation
mask corresponding to the object boundary or it might be extracted
by a region detector such as one computed by maximally stable
extremal regions (MSERs) [26]. In the latter case, if multiple
regions are detected on the object, we take the outermost one as
input to our algorithm, ignoring inner holes and structures. During
the computation of the descriptor, points on this input curve are
traversed in the counter-clockwise direction.

3.1 HOTD descriptor

Since our descriptor is based on tangent directions, a tangent
direction is estimated for each point on the input curve. For this
purpose, we employ the median filtered differencing algorithm
[27], which we found to be quite robust to variations of the object
shape and point sampling. To compute the tangent direction at a
given point p on the curve, m vectors to the preceding points, vp

−,
and m vectors to the following points, vp

+, are taken into
consideration each one starting at point p. The vectors vp

− and vp
+ are

converted to their polar representations and the tangent direction is
taken to be the median of their angles. As m increases, the
calculated tangent direction becomes more robust to discretisation
errors along the curve, but the accuracy is reduced due to
smoothing. In practice, we take m to be three, which we found to
present a good balance between robustness and accuracy. However,
the value of m should be considered as a hyper-parameter that
depends on the contour resolution and noise levels. As a result, it
should be optimised based on the input characteristics.

Once tangent directions are computed at each point, the
proposed HOTD descriptor is computed in two steps, orientation
estimation followed by spatial and angular binning. To estimate an

Fig. 1௒ Summary of the descriptor computation. We describe shapes by
extracting their outer contours. The tangent directions for the contour are
computed and the peaks of their orientation histogram determine the major
orientations for the shape. A grid is fitted to a rotation normalised contour
to fix the scale of description. The parts of the contour that fall in a specific
grid cell contribute to a tangent orientation histogram within that cell. The
concatenation of the histograms from each cell yields the histograms of
oriented directions (HOTD), which mimics the key design heuristics of
texture descriptors but it is tuned to the contour shape and robust to
variations inside and outside the object contour
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orientation for the curve, the histogram of the tangent directions is
computed using 64 bins that approximately yield ±5.6° angular
resolution. We use linear interpolation to compute contributions to
several bins corresponding to the calculated tangent orientation.
The histogram is smoothed to remove small local minima by twice
convolving with a box filter of size three. We have observed that
the amount of smoothing affects the descriptor performance
although not by a large percentage, so it should be considered as a
hyper-parameter of the approach that might potentially be tuned
based on input characteristics.

The maxima of the histogram are taken to be the primary curve
orientation. Since multiple local maxima are possible, we also store
a list of secondary orientations containing angles for all local
maxima that is higher than 60% of the primary peak. This scheme
is illustrated by Fig. 2 and it replicates the one used by a gradient-
based detector and descriptors for point features. Estimating
potentially multiple dominant orientations and extracting more than
one descriptor is not an optimal solution. Nevertheless, this is a
common solution to rotation invariance employed for key point
matching and our experiments show that it works reasonably well
for shape recognition. Since the computation of the proposed
descriptor is independent of the way orientation is estimated, if a
more suitable approach exists for the problem at hand, the steps
outlined above could be replaced by it.

For each computed orientation (be it primary or secondary), we
extract a separate descriptor by performing the following three
operations: shape orientation normalisation, shape scale
normalisation by fitting a spatial grid, and shape descriptor
computation.

In the first step, the shape is normalised by rotating according to
the estimated orientation to achieve robustness to planar rotations
of the object. This corresponds to multiplying points along the
curve with a rotation matrix. Fig. 3 illustrates an example shape
and its normalised versions corresponding to each estimated
orientation.

Once orientation is normalised, in the second step, we also scale
normalise the shape and rescale the spatial grid that will be used
for descriptor computation according to the estimated scale. The
scale is estimated by computing the bounding box for the
orientation normalised shape. Since we use a 4 × 4 spatial grid for
descriptor computation each cell is of width and height set to one-
fourth of the bounding box width and height, respectively.

Once the cells of the spatial grid are determined, each point
along the curve is assigned to one or more spatial cells according to
their spatial location. We use bilinear interpolation to compute
multiple cell weights for a single curve point to improve robustness
to small deformations and localisation errors.

In the third and last step, we recomputed the tangent directions
as before on the normalised curve with m set to two. For each grid
cell, we compute an orientation histogram with eight bins again by
linearly interpolating the tangent orientation to determine the
contribution to each histogram bin. The histograms are
concatenated and the resulting vector is normalised to unit
Euclidean length. The resulting HOTD descriptor is a robust
description of the curve shape.

Fig. 4 visualises the computed HOTD descriptors for each
normalised shape shown in Fig. 3. As is evident from the
visualisations, the HOTD descriptor encodes both the distribution
of the curve point over the spatial grid cells as well as the dominant
tangent directions within each cell. As the experiments demonstrate
this leads to a robust and discriminative representation of the curve
shape. All the steps in the descriptor computation are summarised
in Fig. 1.

3.2 Comparing gradient and tangent orientations

In order to clearly separate the description power of tangent
orientations from the particular way the HOTD descriptor is
computed, we present an alternative formulation based on gradient
orientations that are similar to feature descriptors in the existing
literature. The only difference between the proposed HOTD
descriptor and the description below is the use of gradient
information as opposed to tangent directions.

To replace tangent orientations with gradient information, we
simply calculate the image gradient using forward differences at
each point along the curve. We do so both before orientation
estimation and also during descriptor computation for the
orientation and scale normalised shapes. While this is similar to the
HOTD computation, in contrast to feature descriptors such as SIFT,
the gradient information is confined to the curve boundary and the
gradients inside and outside the curve do not affect the descriptor
computation. In Section 4, we contrast the performance of HOTD

Fig. 2௒ To estimate the shape orientation, the histogram of the tangent
directions of the shape contour is computed. The peaks are found after
smoothing the histogram with a box filter multiple times. The peaks of the
smoothed histogram marked by the red line are given by the green circles.
The highest peak determines the primary orientation and the threshold for
secondary orientations given by the dotted black line. For this sample
shape, the primary orientation is at 167.5°, and the secondary orientations
are at 317.5° and 27.5°

 

Fig. 3௒ Orientation normalisation
(a) Original curve, a region in the image detected by the MSER detector whose
contour is drawn in light blue, (b)–(d) Rotated curves according to the computed
primary and secondary orientations, respectively, at 167.5°, 317.5°, and 27.5°

 

Fig. 4௒ Rotated shapes are scale normalised by fitting a rectangular grid to
their bounding boxes. This creates 16 spatial grid cells and a separate eight
bin histogram is computed in each one. The final descriptor is visualised
under each shape by a grey-scale map that encodes the weight of each
histogram bin. There are four rows in the map and each row contains the
four histograms corresponding to a single row of the grid. As a result, there
are 32 columns in each row. The top-left eight boxes in the first row of the
visualisation correspond to the eight histogram bins of the histogram at the
top-left grid cell. Grid cells that do not intersect any parts of the shape
contour are left empty
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with that of the gradient-based variant and show that tangent
directions yield higher performance in several classification tasks.

To visualise the differences between these two alternative
approaches, we visualise the corresponding descriptors for various
letter shapes in Fig. 5. For simplicity, the letter images are
generated synthetically and we only visualise the descriptors for
the upright orientation. Note that the descriptors for ‘E’ and ‘F’ are
very similar except the missing segment in ‘F’. In this idealised
high contrast situation, the gradient and tangent information are
nearly identical. However, as can be observed from the
visualisations, the tangent direction computation is more robust to
discretisation artefacts and yields a richer description of the curve.

4௑Experiments
The description of curves is usually associated with classification
problems that involve the outline of objects of interest. For
different kinds of classification tasks, the type of input image and
how the curve is specified varies. To account for such differences,
we test the proposed approach on three application domains:
character classifications from outlines, shape recognition from
segmentation masks and object recognition from boundary curves.

In each case, we describe the input images and how the curves
to be described are extracted from them. Depending on the data set,
sometimes image intensity values are also available and sometimes
only a binary segmentation mask is provided. The object
boundaries might be provided or a region detector or an automatic

segmentation algorithm might be required to extract the image
curves.

Once a curve is computed for each image, we compute the
proposed descriptor as detailed in Section 3 and possibly the
variant based on image gradients. Usually, the classification is
performed by finding one or more NNs in the Euclidean descriptor
space. However, different data sets have different performance
evaluation criteria as described separately for each data set.

4.1 Character classification from outlines

To test the suitability of the HOTD descriptor for character
classification, we have used the standard Chars74k data set and
created a data set based on the popular ICDAR 2013 scene text
recognition images that we call the modified ICDAR 2013. Since
the ICDAR 2013 challenge aims end-to-end text detection and
classification, the available ground truth is limited to bounding
boxes for the letters. To prepare the ground truth for letter
recognition based on curve description, we have run the MSER
detector on the ICDAR 2013 images and extracted the MSER
curves corresponding to letters in the scene text images. This yields
extremal regions corresponding to 3141 of the 4419 existing
characters. These characters mostly correspond to upper and lower
case English letters with an uneven distribution. Fig. 6 depicts
selected images with the detected characters outlined.

We could have used all the character bounding boxes in ICDAR
2013 and segmented curves corresponding to the character outlines
in a preprocessing stage. The reason we restrict the experiment to
MSER detector output is to separate the descriptor performance
from the preprocessing stages. This lets us estimate the value of the
HOTD descriptor for scene text recognition pipelines that also
exploit the MSER detector for character detection [28]. On the
Chars74k data set, we also test the classification performance
coupled with segmentation algorithms, which is the standard
protocol for the natural images subset of Chars74k.

We use the modified ICDAR 2013 data set to compare the
proposed descriptor to existing descriptors of similar complexity.
For each detected character, we take the extended boundary and the
ellipse representation of the detected region. The executables
kindly provided by Mikolajczyk et al. [10] are used to compute
state-of-the-art texture and curve descriptors such as scalable
invariant feature transform (SIFT) [6], GLOH [10], SC [1], PCA-
SIFT [19], spin images (SPIN) [13], steerable filters (JLA) [15],
differential invariants (KOEN) [16], complex filters (CF) [29],
moment invariants (MOM) [12], and cross-correlation (CC) [10].

We set aside 80% of the descriptor data as the training set and
the remaining are placed in the test set. The NN classifier is used to
retrieve the closest descriptor for each test shape. The matching
score is computed as the correctly classified test samples divided
by the total number of test cases. Since the train/test split is
random, we repeat the same process 20 times and report both the

Fig. 5௒ Comparison of the description using the computed tangent and gradient directions. The descriptors for four characters demonstrate the differences
between the gradient and tangent direction histograms. We compute the descriptors in the figure for upright characters so that it is easier to visually match the
descriptor bins to the image of the letters. In all the experiments, the characters are rotated such that their dominant orientations point upwards before the
descriptor is computed to handle arbitrary rotations in the image plane. While the tangent and gradient information is very similar in each case, the tangent
estimation relies on a robust metric that takes into account the discrete nature of the curve, which is represented as a sequence of point samples. As a result,
the descriptors based on estimated tangent orientations yields a richer representation of the underlying curve than those based on calculated image gradients

 

Fig. 6௒ Samples from the modified ICDAR 2013 data set. The scene text
images from the original ICDAR 2013 data set are processed by the MSER
region detector. We only keep the characters that are successfully detected
by the MSER detector whose outlines are depicted in light blue. These
curves are placed in the modified ICDAR 2013 data set with the ground
truth character codes provided in the ICDAR 2013 data set. This process
mimics an actual character recognition pipeline based on the MSER
detector
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mean matching score together with the standard deviation in
Table 1. 

The texture-based descriptors such as SIFT and GLOH require
a scale of extraction as their input. Since different descriptors
compute the scale differently, for each descriptor we have
experimented with a range of scale settings to be fair in our
comparison. The reported results correspond to the scale that
achieves the highest matching score for each texture descriptor. For
curve description, the sampling and locations of the contour points
determine the scale implicitly, so such a scale sweep is not
required. Overall, the proposed HOTD descriptor based on tangent
directions achieves the best matching score of 88.75% followed by
GLOH with a score of 81.53% and closely followed by SIFT. The
gradient-based variant of the proposed descriptor achieves 75.04%,
which shows that tangent directions are better for description than
simply taking the gradients along the curve.

Other than the modified ICDAR 2013 data set we have prepared,
we have also tested the proposed approach on the publicly
available Chars74k character data set. We use the English
characters and digits for evaluation yielding a total of 62 classes.
Chars74k has three types of data in three subsets: 62,992 images of
synthetically generated characters from fonts, binary images
corresponding to handwritten characters, and finally 7705 cropped
image patches of scene text. For the first two subsets, we already
have the binary image masks and use the contour extraction code
from OpenCV [30] to compute the image curves. To extract the
curves in the last subset, we first segment the images into
foreground and background masks using the approach proposed in
[31]. Once we obtain the binary mask, the curves are extracted in
the same manner with the other subsets of Chars74k. Fig. 7 shows
examples from each subset.

For Chars74k, we use the same standard experimental protocol
proposed by de Campos et al. [32]. For each one of the three
subsets, 15 randomly selected samples for each class are set aside
as test data. For each test sample, the NN descriptor is found within
the remaining training examples. The matching score is calculated
as in the experiments of the modified ICDAR 2013 data set.

The proposed method is compared to the stated results that use
the NN classifier in Table 2. 

Each column gives the results for a different subset. The HOTD
descriptor achieves matching rates of 87.83, 77.18, and 60.40%,
which is the best in all the subsets of Chars47k. The gradient-based
variant of the HOTD descriptor yields 85.78, 75.55, and 56.45%
showing that the tangent directions are again the better choice.
Fig. 8 shows the confusion matrix for the natural images subset of
the Chars74k data set.

In the last group, the natural character subset, we would like to
note that the results depend on the segmentation approach
employed. While the texture-based descriptors in [33] do not
require such a step, contour descriptors expect a curve as their
input. As a result, the matching scores of contour descriptors are
functions of both segmentation and descriptor quality. Our initial
experiments using a simple segmentation approach based on the
intensity histogram yielded lower classification accuracy. A more
suitable segmentation approach [31] improves the quality of the
contours hence the descriptor classification accuracy is higher.

We believe that one of the biggest advantages of our approach
for character classification is the restriction of the description to the
letter outline. Texture descriptors such as SIFT risk including too
much information from the surrounding context such as nearby
letters and unrelated image features. The contour descriptors such
as SC do not have this disadvantage, but they rely on different
heuristics than SIFT that makes use of orientation histograms. Our
approach combines the advantages of both, it does not take into
account anything beyond the letter outline and it exploits the
powerful heuristics from the SIFT design. Coupled with robust
tangent estimation, the proposed descriptor is really suitable for
classification of character images from a computed character
outline.

4.2 Shape classification from segmentation masks

The main challenge in character classification is the number of
classes and the similarities between characters. The shape and
viewpoint variations are relatively smaller compared to the more
general shape recognition task. The outlines of various shapes
might contain an increased number of protrusions and gaps. The
objects might also be arbitrarily rotated.

We evaluate the shape classification performance of the HOTD
descriptor on the Kimia-99 data set. It has 11 examples for nine
classes and a total of 99 images each containing object silhouettes
as shown in Fig. 9. Similar to previous cases where the object mask
is available, we extract a contour curve using OpenCV.

The evaluation protocol is the same as in [3], which is a leave-
one-out variant of k-NNs for k from one to ten. Table 3 lists the
matching scores obtained by our approach as well as several
existing approaches. HOTD descriptor achieves the best results
except for k = 6, so it has the highest overall performance. Its score
of 981 means that only nine images out of 990 test cases were
misclassified. The gradient- based variant makes ∼200 more
mistakes.

These results indicate that the histogram-based approach that
we propose is able to capture the finer details of the classes, such
as the fingers in the hand class and the feet of the cat class, at least
for these low-resolution binary images. Moreover, the orientation
estimation and peak determination work well enough to capture the
different possible main orientations of a wide range of shape
classes.

We also evaluate the effect of changing the value of m and input
resolution. The results in Table 4 show that the optimal value of m
is quite robust to changes in resolution down to a certain level
beyond which the value of m needs to be adjusted. 

4.3 Object classification from boundary curves

The test data for the previous experiments were mostly binary
segmentation masks except for the natural subset of the Chars74k
data set. When only a binary image is provided contour-based
approaches such as ours has a clear advantage since the intensity
gradients are not informative. To better evaluate the proposed
HOTD in the context of natural images, we test its performance on
the ETH-80 object classification data set.

ETH-80 contains 41 images per each of the 80 objects from ten
categories. Fig. 10 shows the images of the objects, which contain
a simple background, and the boundary curves of the objects are
also provided in the training and test data. The images have higher
resolution and contain colour data, which the algorithms may or
may not exploit. The experimental protocol is similar to that of
Kimia-99. For each category, we compute a separate recognition
rate and also report the average recognition rate over all categories.

Table 5 shows recognition rates achieved by our approach and
others. The recent shape normalisation approach of Laiche et al.
[8] outperforms others including ours. Comparing these to the
results on Kimia-99 data set where our approach outperforms [8],
we can confirm that the type of shape present and the existence of
intensity information affect the descriptor performance. This is
further evident from the confusion table given in Table 6. The
mistakes of our approach are mostly a result of the confusion
between tomato and apple classes which have similar outlines but
differ in texture and colour distribution.

Moreover, the three categories that represent animals, horse,
cow, and dog, are confused with each other albeit to a lesser extent.
One possible explanation is that our descriptor is only able to
describe the coarser shape here and does not capture the smaller
variations in the heads and the tails for these animals, which
contain the most discriminating information. Therefore, smaller
grid cells and a larger number of histograms might need to be used
for higher performance. However, this would also increase the
number of dimensions and as a result the classification time and
power cost.

An alternative might be to increase the number of training
samples. This might especially be helpful since the three-
dimensional nature of the animal classes creates an additional layer
of complexity. More samples from varying viewpoints might help
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to better distinguish these classes. Since approximate NN methods
work well with descriptors like ours, the number of training
samples per class in the ETH-80 data set is much lower than what
can actually be used in practice.

5௑Discussion and conclusion
The description of curves has been a longstanding problem in
computer vision. We have proposed a curve descriptor that carries
the same spirit and complexity of the classical SC and the SIFT
descriptors. Our descriptor is simple to compute and it captures the
essential contour information in a robust and discriminative way. It
is well suited for applications that require low computational power
and small memory print. In the following, we briefly discuss
limitations and possible extensions of the presented descriptor.

Since we only consider the outermost boundary of objects,
objects with different internal structures might be confused with
each other. It should be possible to extend our approach to multiple
possibly overlapping curves, either by accumulating tangent
directions in the same grid cells or by concatenating descriptors for
the individual curves.

Due to the scale and orientation normalisation, characters with
similar lower and upper case forms are confused with each other.
Usually, such ambiguities might be dealt with in a post-processing
stage that takes into account the surrounding context.

Our approach disregards the grey scale and colour intensity
information. As such, it is more suitable in applications where high
contrast/binary images are provided or the categories have high
variance in their intensity/texture information. This result is
evidenced by the variance in the performance of our approach on
the Kimia-99 and ETH-80 data sets.

Since the histograms that we exploit only allow for robustness
to local deformations, they only perform well under two-
dimensional transformations and a limited range of three-
dimensional view changes. To truly achieve three-dimensional
shape and object classification, descriptors from multiple
orientations would need to be recorded and used during the
classification phase.

We have shown that the experiments convincingly show that the
proposed approach is quite robust to the sampling of the described
curves. However, in some applications, a much higher scale ratio
might exist between image samples to be classified. In such cases,

Table 1 NN matching scores of the common texture and
contour descriptors as computed on the modified ICDAR
2013 data set
Algorithm k = 1, % k = 3, % k = 5, %
CC [10] 79.44 ± 1.21 77.07 ± 1.28 80.06 ± 1.56
CF [29] 76.05 ± 2.24 77.07 ± 2.03 74.98 ± 1.72
GLOH [10] 81.53 ± 1.51 82.75 ± 1.53 81.13 ± 1.70
JLA [15] 74.28 ± 2.70 76.44 ± 3.22 74.52 ± 2.86
KOEN [16] 66.82 ± 2.44 68.75 ± 1.91 67.16 ± 2.04
MOM [12] 76.26 ± 2.22 77.05 ± 2.25 75.14 ± 2.38
PCA-SIFT [19] 77.30 ± 2.23 79.99 ± 2.56 78.38 ± 2.15
SC [1] 78.81 ± 2.23 79.73 ± 2.16 78.20 ± 1.96
SIFT [6] 81.16 ± 2.57 82.50 ± 2.57 80.24 ± 2.53
SPIN [13] 56.15 ± 3.23 57.88 ± 3.05 55.41 ± 3.00
ours gradient 75.04 ± 1.43 74.10 ± 1.39 74.25 ± 1.59
ours tangent 88.75 ± 1.21 87.03 ± 1.11 86.55 ± 1.26
The standard deviations correspond to 20 repetitions on the data set based on random
sampling of the test and training subsets.

 

Fig. 7௒ Examples from the Chars74k data set. The first row depicts the
samples from the synthetically generated subset corresponding to font data.
The second row shows the samples from the handwritten character subset.
These two subsets have ground truth masks, which we use in the
experiments. The last row illustrates patches for natural images containing
characters which we segment using the approach of [31]

 

Table 2 NN matching scores of the descriptor-based
approaches as computed on the Chars74k subsets
Algorithm Fonts, % Handwritten, % Natural

images, %
geometric blur (GB) [20] 69.71 ± 0.64 65.40 ± 0.58 47.09
maximum response 8
(MR8) [17]

30.71 ± 0.67 25.33 ± 0.63 10.43

patches [11] 44.93 ± 0.65 69.41 ± 0.72 21.40
SC [1] 64.83 ± 0.60 67.57 ± 1.40 34.41
SIFT [6] 46.94 ± 0.71 44.16 ± 0.79 20.75
SPIN [13] 28.75 ± 0.76 26.32 ± 0.42 11.83
histogram of oriented
gradients (HOG) [33]

— — 57.5

NATIVE + FERNS [34] — — 54.0
rank-1 tensor
decomposition (R1-TD)
[35]

73.0 — 56.0

ours gradient 85.78 ± 0.73 75.55 ± 1.08 56.45
ours tangent 87.83 ± 1.37 77.18 ± 0.50 61.40
The proposed descriptor achieves the best reported NN classification results in all the
subsets.

 

Fig. 8௒ Confusion matrix for natural image subset of the Chars74k data
set. The heavily weighted main diagonal corresponds to correctly classified
characters. Some characters are confused due to the similarity between
their scale normalised uppercase and lowercase versions or similar looking
numbers

 

Fig. 9௒ Samples from the Kimia-99 data set. The top row shows examples
from different shape classes. The bottom row illustrates the variations of
samples from a single class
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it might be prudent to interpolate all curves using an approach such
as splines and resample these to yield a fixed number of samples
per each curve before tangent direction estimation. The sampling
might be adaptive so that the tangent variations are adequately
captured by the contour points.

We believe further work is necessary to design a handcrafted
simple curve descriptor that works well on a variety of data sets,

both with and without strong intensity/colour variations. Such a
descriptor would simplify the machine vision pipelines of contour-
based recognition and classification applications. We have shown
that the tangent direction information can be a valuable component
of such a descriptor especially for the recognition of character
images.

Table 3 NN matching scores of the existing approaches as computed on images of the Kimia-99 data set [3]
Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Total
contour points distribution histogram (CPDH) + Earth mover's distance (EMD) [5] 96 94 94 87 88 82 80 70 62 55 808
generative models [25] 99 97 99 98 96 96 94 83 75 48 885
inner distance shape context (IDSC) + dynamic programming (DP) [3] 99 99 99 98 98 97 97 98 94 79 958
multidimensional scaling (MDS) + SC + DP [3] 99 98 98 98 97 99 97 96 97 85 964
SC [1] 97 91 88 85 84 77 75 66 56 37 756
shock edit [7] 99 99 99 98 98 97 96 95 93 82 956
shape normalisation [8] 97 86 87 75 76 70 55 59 46 44 695
ours gradient 91 91 83 78 75 75 73 75 74 72 787
ours tangent 99 99 99 98 98 98 97 98 97 98 981
We use the experimental protocol of [3] to be able to compare our results to those reported in the literature.

 

Table 4 Effect of image resolution and parameter m on the
recognition performance on the Kimia-99 data set
Resolution m Total
100% 1 658

3 981
5 977
7 975

50% 1 695
3 949
5 940
7 922

25% 1 576
3 870
5 865
7 861

10% 1 583
3 557
5 676
7 675

For a wide range resolution, the setting m = 3 works well, however, for very low
resolution images, different settings outperform the default setting.

 

Fig. 10௒ Examples from the ETH-80 data set. The top row shows the
sample colour images of each class in the data set. The rest of the figure
shows four sample images with the corresponding boundary curve provided
in the data set. Our approach only relies on the boundary information,
disregarding any intensity and colour information provided in the training
and test samples

 
Table 5 NN matching scores of the descriptors as computed on images of the ETH-80 data set. Our approach yields fair
results largely due to a confusion between the apple and tomato classes
Algorithm Recognition Rate (%)
Categories Apple Car Cow Cup Dog Horse Pear Tomato Avg
colour histogram [14] 57.6 62.9 86.6 79.8 34.6 32.7 66.1 98.5 64.9
DxDy [18] 85.4 98.3 82.7 66.1 62.4 58.8 90.0 94.6 79.8
IDSC + DP [3] — — — — — — — — 88.1
mag – Lap [18] 80.2 77.6 94.4 77.8 74.4 71.0 85.4 97.1 82.2
MDS + SC + DP [3] — — — — — — — — 86.8
PCA grey [36] 88.3 97.1 62.4 96.1 66.3 77.3 99.8 76.6 83.0
PCA masks [36] 78.8 100.0 75.1 96.1 72.2 77.8 99.5 67.8 83.4
SC greedy [1] 77.1 99.5 86.8 99.8 82.0 84.6 90.7 70.7 86.4
SC + DP [1] 76.3 100.0 86.3 99.0 82.9 84.6 91.7 70.2 86.4
shape normalisation [8] 97.5 99.37 91.87 100.0 80.93 89.37 100 95 94.2
kernel edit [37] — — — — — — — — 91.3
bag of contour fragments (BoCF) [9] — — — — — — — — 91.5
ours gradient 78.5 99.0 73.9 90.5 43.7 59.8 93.2 90.2 78.6
ours tangent 76.1 99.8 88.5 99.3 76.3 86.3 90.2 64.1 85.1
The best results are achieved by Laiche et al. [8], which we outperform on Kimia-99. This shows that the relative descriptor performance depends on the particular variations in the
test data.
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Table 6 Confusion matrix for images of the ETH-80 data set. Descriptors are computed by the proposed approach when their
directions are the tangent direction

Predicted
Apple Car Cow Cup Dog Horse Pear Tomato

Actual apple 312 0 0 3 0 0 6 89
car 0 409 0 1 0 0 0 0
cow 0 11 363 5 14 15 1 1
cup 1 0 0 407 0 0 0 2
dog 0 3 35 0 313 59 0 0

horse 0 1 24 0 31 354 0 0
pear 14 0 0 12 0 0 370 14

tomato 131 2 0 6 2 2 4 263
In the table, the y-axis shows the actual values of the samples and the x-axis shows the predicted values for the samples. So samples that are shown in the diagonal axis of the matrix
are classified correctly.
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