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Abstract— This paper describes the implementation foan iris recognition algorithm based
on hardware-software co-design. The system architeae consists of a general-purpose 32-
bit microprocessor and several slave coprocessorhat accelerate the most intensive
calculations. The whole iris recognition algorithmhas been implemented on a low-cost
Spartan 3 FPGA, achieving significant reduction inexecution time when compared to a
conventional software-based application. Experime results show that with a clock
speed of 40 MHz, an IrisCode is obtained in lessdh 523 ms from an image of 640x480
pixels, which is just 20% of the total time neededby a software solution running on the

same microprocessor embedded in the architecture.
1. INTRODUCCTION

Recent years have seen the growth of new applicatinains for image processing and
pattern recognition in the field of automated huri@entification, for security purposes and for
logical or physical access control, based on peidsbiometric characteristics. Authentication
systems based on biometrics determine the usegestiig on the principle that some

physiological or behavioral characteristics arequai for each person, and are more tightly



bound to a person than a token object or a seghéth can be lost or transferred. Automated
real-time biometric systems such as fingerprintir@@ recognition have been successfully
deployed in several large-scale public applicationsreasing reliability and convenience for
users, and reducing identity fraud. Usually the lenmgentation of biometric algorithms is

carried out using high-performance microprocessaking at clock frequencies in the GHz
range. These devices are designed with an advamrobitecture based on several pipeline
stages, cache memory, high-speed communicatiors laikadditional units that facilitate rapid
execution of complex algorithms. On an Intel Pantid at 3.2GHz, with 1GB of RAM

memory, the average execution time of a fingerpmatognition algorithm, including

enrollment and matching, is about 778 ms and dm#éas microprocessor the computing time
for iris image analysis and creation of an IrisCasleabout 30 ms [1][2]. However, such
software implementations could restrict the applicaof biometrics to specific markets due to

the microprocessor cost.

Devices available in the low-cost consumer marketgenerally too slow for applications
requiring intensive computations. For example, @ liecognition algorithm running on an
ARM922T at 160MHz executes in 3162 ms, which iswal8® times slower than the execution
of the same code on a high-performance microproce3$se use of dedicated hardware is an
alternative for implementing operations that reguiigh-speed parallel processing [3]-[12].
Additionally, outstanding results can be achieviethé structure of the algorithm allows the
hardware to employ several pipeline stages. Fompl& under certain conditions, an image
enhancement routine usually employed in a fingatpgcognition algorithm can be processed
in dedicated hardware faster than on a Pentiunketb@at a frequency 30 times higher [7].
However, designing such a hardware solution isjlestifiable for algorithms requiring floating
point computations or when sequential operationgddr the application of pipeline and
parallelism. In these cases, the area and thet efémoted to design the system might not be

justified by the benefits gained.

Architectures based on hardware-software co-desigmbine the advantages of both



hardware and software solutions. Such systems icoata embedded microprocessor and
several dedicated hardware units connected viamantmication bus. By offloading processor
intensive tasks to dedicated hardware and assigmiegations that require high-speed serial
processing to the microprocessor, the performanteé eost of the whole system are
substantially improved. For instance, this methodgl has been successfully applied to
designing a biometric fingerprint verification sgst. That architecture, implemented on a
Virtex Il FPGA, is composed of a general purposedipoint processor and a DFT (Discrete
Fourier Transform) hardware accelerator used terdeéhe the dominant ridge flow direction.
Results show that the coprocessor permits a 55%6886 execution time reduction for the
minutiae extraction and matching, respectively [[&}. Other publications show similar
improvements when dedicated hardware units are usedrder to implement different
fingerprint algorithms or systems based on othemieiric modalities such as face or speaker

recognition [5][11][12].

The purpose of this paper is to describe an imphtatien of an iris recognition algorithm
based on a hardware-software co-design methodotagtgble for integration either in ASIC
(Application Specific Integrated Circuit) or FPGAhe experimental results reported in this

paper were obtained using a low-cost Spartan-3 FEIGeked at 40 MHz.

This paper is organized in 5 sections. Sectiorvigves briefly the basic principles underlying
the iris recognition algorithm. Section 3 analyzbe functions involved in the algorithm,
assessing which ones are suitable to be executdfteanicroprocessor and which ones should
be implemented in dedicated hardware. Section £ritbes the internal structure of the

embedded system, and finally Section 5 presentexperimental results.
2. ALGORITHM REVIEW

The implemented iris recognition system is basetheralgorithms developed by Daugman,
which are documented in [13]-[15]. These algoritrans the basis of all currently deployed iris

recognition systems and they will be only briefiyiewed here.



The iris image is acquired usually within a diseraf about 50 cm by a camera using
infrared light in the 700nm-900nm band and resg\va@bout 100-200 pixels in iris diameter.
Specular reflections of the illumination on therwa or eyeglasses are detected and removed,
and the boundaries of the iris are determined. Fijustrates such a captured iris image, with
overlaid graphics showing the automated detectfdhepiris inner and outer boundaries as well
as its eyelid occlusion boundaries. The centersradd of iris and pupil are approximated
initially by applying an integrodifferential opecatthat behaves as a circular edge detector:
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wherel(x,y) is the image that contains the eye, symbol * desiobnvolution ands(r) is a

smoothing function of scale The operator is applied iteratively in a multakx coarse-to-fine
strategy to converge rapidly on estimates of theettparameters of each circular model. Then,
the upper and lower eyelid boundaries may be de=tras quadratic or cubic splines, whose

parameters are estimated by statistical modehdjttechniques.

Following the initial approximation of the iris apaipil boundaries as circles for purposes of
iris localization, their actual shapes are recalad using active contour models [2]. This finer
analysis allows a more precise description of tHemendaries which are often significantly
non-circular (see Fig. 2). The box in the lowet-l&brner of Fig. 2 shows curvature maps for
the inner and outer iris boundaries. Dotted cuimethe box and on the iris are Fourier series
approximations to the actual boundaries, enablifigx@ble and appropriate coordinate system

to be embedded in the iris.

The defined region between the inner and outer daynof the iris is normalized into a
doubly-dimensionless, not necessarily concentsepgdo-polar coordinate systény), where r
lies in the unit interval0,1] and 8 is a cyclic angular variable ové®,2x]. This mapping
normalizes the iris and compensates for deformateaused by pupil dilation or constriction.
This mapping also achieves invariance to the ustartte from the camera and to the position

of the eye. Letlx, (8),y,(6)) and (x;(8),y,(8)) be the set of points corresponding to the pupil



and limbus (outer) boundaries. The generalized,-aumtentric coordinate system can be

described as the following linear combination:
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Once the iris has been segmented from the imagenapged into normalized dimensionless
coordinates, the iris texture is encoded into &Clvde through a process of demodulation that
extracts phase sequences. The IrisCode contairts @4 bits, derived by projecting local
regions of the iris onto quadrature 2-D Gabor wetgelAdditionally, a mask array of the same
size is computed to mark those bits obscured byidsyeeyelash occlusions detected by
statistical inference, or corneal reflections. Aftieis encoding stage, the iris template can be
stored or matched against a database that com@m®usly enrolled templates. The matching
engine is based on computing the Hamming distainaetion of disagreeing bits) between two
different IrisCodes gated by their associated meskors. This search engine mainly performs
simple Boolean operations using XOR and AND gates tan be implemented with large bit-

wise parallelism either on a microprocessor oradidated hardware.

The algorithm discussed in this paper has beeadast a database of 632,500 different iris
images, leading to 200 billion pair comparisonsvprg extreme robustness against false
matches [2][13]. For example, with a Hamming dis&athreshold of 0.30 the observed false
match rate was 1 in 8 million, and at a threshéldbmut 0.25 the false match rate was 0 in 200

billion.
3. PROFILING AND HARDWARE-SOFTWARE PARTITIONING

3.1  Architecture description

Fig. 3 shows the generic architecture of a systaseth on hardware-software co-design. The
system consists of a microprocessor acting as méistemanages the organized execution of a
program, the communication between input/outputiaesv and the control of information

through the system’s buses [16].



Hardware coprocessors cooperate actively with tifevare application executed on the
microprocessor and are designed to provide a $pdaiictionality regarding some part of the
application. The degree of complexity of the fuontlity depends on the architecture
partitioning level, which can range from simple @®ns or instructions (fine granularity) to
complex processes related to functions or routif@smrse granularity). In any case, the
partitioning task consists in determining whichtpasf the system are best suited for execution
by software or for synthesis in dedicated hardwar@rder to satisfy a set of constraints and

goals such as performances, cost or area.

Partitioning can be considered from two differeigwpoints. A software-oriented approach
initially considers the whole application as rurgnion the microprocessor. In the partitioning
process, parts of the software application whogessidepend on the granularity of the
partitioning are moved to hardware until constraerte met. Conversely, in a hardware-oriented
approach the migration is done in the reverse tiimecfrom hardware to software [17]. In our
particular case, given that the whole algorithmsexin ANSI C, the partitioning process is
undertaken with a software-oriented approach. Sineearithmetic operations (integer or float)
and the programming structure at block and coména| are different in each function, a fine-
grained partitioning would entail designing a largenber of dedicated hardware units, which
requires major design effort and excessive areasystem implementation. The hardware-
software partitioning discussed in this paper isied out at function level. The advantage of a
coarse-grained partitioning is that it requiresnaals number of hardware coprocessors and

reduces communication delays.

3.2 Design criteria for hardwar e-software partitioning
Determining which functions described in section aBe most suited for hardware

implementation depends on the following desigredat

« Time needed by the microprocessor to execute difumas a percentage of the execution

time of the whole algorithm.



* Hardware speed-up factor (acceleration), definetth@satio of execution times of software

to hardware implementations.

« Complexity of hardware design and need to incotgospecific IP cores (reusable units of

logic used as building blocks in FPGA or ASIC desigfor certain arithmetic operations.

The percentage of the total execution time consuoyeghch function was directly calculated
running the algorithm on four different processdise first one is an Intel Centrino 1.7 GHz, a
high-performance microprocessor suitable for usepplications that manage a database with
hundred of thousands of users (e.g. airport cheaktg), and where the microprocessor cost
and its power consumption are not relevant facfine. second profile was obtained using a 32-
bit ARM922T at 160 MHz, a medium-performance micamgessor whose architecture is the
most widely employed in consumer electronics sicimabile phones and PDAs [18]. The third
microprocessor chosen to evaluate the executioastivas an Intel Pentium at 133 MHz. This
device is currently used by the PIER handheld cam@rcommercial portable device for iris
recognition developed by Securimetrics [19]. Thet ldbenchmark was obtained using
Microblaze at 40 MHz, a soft-core microprocessoretigped by Xilinx suitable for designing

embedded systems, allowing easy connection of ikustprocessors [20].

On the other hand, predicting the acceleratioro réggpeed-up factor) between software and
hardware implementations is an elaborate processrder to illustrate the process that we
proposed in this paper for estimating the executiioe of a function implemented in hardware,
let us consider the simple piece of code shownign 4&a. (For clarity, Fig. 4.b shows a semi-
unrolled version of the same code). This examplgecis a nested loop that calculates the
variance of an image of size NxM pixels (8-bit gteyel). The hardware implementation of
this code basically requires several adders, oriipter and a memory controller that manages
access to the image located in external SRAM merfusyally the size of an image requires
that it resides outside the FPGA). Any operation ba carried out in one clock cycle, except
memory reading which needs two cycles. We assuatehdrdware is configured with only one

external memory. Under this assumption the mosticali resource in terms of time



consumption is the memory access (implemented lnmef a memory controller) that limits

the best timing performance to 2*N*M cycles.

The key to achieving execution time as near asilgles® this limit is to design pipelined
hardware that prioritizes memory access. In Fig, the inner loop associated with index |
contains six operations that are distributed in gmaups (the number of groups coincides with
the latency in cycles of the critical resource).eTperations involved in each group are
calculated in parallel, according to the schedulsgpeme shown in Fig. 5. Clearly the

approximate hardware execution time is 2*N*M cycles

The method of estimating execution time shown iis #xample can be formulated in a

general way as follows:

Given a function, finding its most time-consumingecation. The total time consumed by
this resource is equal to the number of times thatresource is used multiplied by its

associated latency (number of cycles needed byemirce to give a result).

* When several independent loops are present inuthaidn, the total time consumed is the

sum of their individual time consumptions.

» Coprocessors are able to read and write directBxtarnal SRAM, by means of a memory
controller that allows one access every two clog&les (only one memory controller is

available).

e Additions, subtractions and multiplications invaigiinteger operands are carried out in one
clock cycle (multiplications are implemented by ngsithe specific internal hardware

multipliers of the FPGA).

* Integer division requires a number of clock cyatgsial to the bit length of the operands.
Unlike multiplication, this block cannot be dirgcgynthesized on the FPGA and requires

design of a specific arithmetic unit for its implentation.

« The number of clock cycles required for floatinginhooperations is given in Table I.



Latencies and hardware resources presented intahis have been obtained from the
single-precision floating point core designed byink [21]. Note as the multiplication
requires less cycles and area than the additiontalube internal hardware multipliers

available on Spartan 3.

TABLE |
AREA AND NUMBER OF CYCLES FOR OPERATIONS WITH SINGEBRECISION FORMAT ONSPARTAN 3BEFPGA

) ) ) LUTs FFs

Floating-point operation  Cycles ]
(Look-up table): (Flip-flops)

Add/Sub 13 580 591
Multiplication 6 185 275
Division 28 234 229
Sgrt (square root) 28 214 206
Fixed to float conversion 6 221 227
Float to fixed conversion 5 251 237

3.3  Hardware-software partitioning based on Microblaze

Tables Il and Il show the execution times for thigroprocessors detailed in section 3.2, for
the enrollment and matching processes, for vetiioeand identification mode, respectively, as
well as the percentage that each function represdrihe total execution time of the algorithm.
These results have been obtained using images 64480 pixels. Note that these results
depend strongly on the specific architecture oheacroprocessor, the presence of a floating
point unit (FPU), the distribution of the execuwbbde between on-chip and external memory
and the functions and parameters used to solvaltfeegithm. The profiler provides execution
times for each function, but only data obtainedhwiticroblaze are considered for hardware-
software partitioning, since this is the micropresm actually used to build the embedded

system.

Intel Centrino is by far the fastest microprocessxecuting all the functions in less than 40
ms. The execution time on ARM922T is 3162 ms, whichbout 18% slower than Microblaze

working at a clock frequency four times lower. Nagethe ARM922T architecture used in this



paper lacks a floating point unit (basically toesan power and area when using ARM in low-

cost applications), unlike more advanced architestin the same family [18]. This fact has a

significant influence on the execution time of tadgnctions using floating-point operations.

TABLE Il

EXECUTION SPEEDS OF VARIOUS FUNCTIONS IN THE IRIS RBGNITION ALGORITHM RUNNING ON FOUR DIFFERENT
MICROPROCESSORS

Function name

Time / % percentage

Centrino 1.7GHZ
1MB Cache

External 512 MB
DDRAM

ARM922T 32-bit
160MHz

On-chip 40kB
BRAM

External 32MB
SDRAM

Pentium 133MHz
8kB+8kB Cache

External 65MB
SDRAM

Microblaze 32-bit
40MHz

On-chip 64kB
BRAM

External 2MB
SRAM

Scrub specular reflections

4,5ms/ 11.4%

85ms/2.7%

117 ms/10.5%

334 ms/12.9%

Localizeiris

14.4 ms/ 36.6%

670 ms/21.2%

447 ms / 40.2%

1157 ms/ 44.79

Localize pupil boundary

6.4 ms/ 16.3%

280 ms/8.8%

198 ms/17.8%

369 ms/14.2%

Detect and fit eyelids

1.8 ms/ 4.6%

95 ms/3.1%

34 ms/3.1%

113 ms%4.4

Fine-tune models of iris 7.3 ms/18.6% 1870 ms/59.1% 210 ms/ 18.9% 440 177 .0%
inner & outer boundaries

Dimensionless sampling 0.85ms/2.2% 10 ms/0.32% 37ms/3.3% 43 h$%
Remove eyelashes 0.75ms / 1.9% 12 ms/ 0.38% 23 ms/2.1% 32 m2%1
Create IrisCode 3.3ms/8.4% 140 ms / 4.4% 46 ms / 4.1% 103 mB%4

Overall algorithm

39.3 ms/ 100%

3162 ms / 100%

1112 ms/ 100%

2591 ms/ 100%

TABLE IlI

EXECUTION TIMES OF THE MATCHING ENGINE RUNNING ON FOR DIFFERENT MICROPROCESSORS FOR VERIFICATION AND

IDENTIFICATION AGAINST A DATABASE OF512IRISCODES

Time
Function name Hw/Sw
Centrino 1.7GHZ. ARM922T160MHz | Pentium 133MHZ: Microblaze 40MHz
Verification 60 us 580 us 535 us 1.32 ms Sw
Identification 2.4 ms 68 ms 61 ms 131.7 ms S

The ISE design suite 10.1, the Xilinx software usetuild the system, allows the integration
of Microblaze 7.10.d configured with an IEEE-754gmatible single-precision floating point

unit. In contrast to previous versions of the sanieroprocessor, its FPU allows a cast between

10



float and integer signed type (and vice versa) leams of a single assembler instruction. These
and other floating point operations are frequen#gd in some functions of the iris algorithm,
which permits Microblaze to compensate for its mlaker clock frequency by more efficient
execution of these computations. As we will seerlat section 4, to speed-up the execution
time we have designed our own memory controlleadeess the external SRAM memory. This
memory controller prevent the configuration of Miblaze with cache memory that is only
compatible when using a Multi-Cannel OPB controfipecifically designed by Xilinx. On the
other hand, the Pentium clocked at 133 MHz exedhesverall algorithm in 1112 ms. Note
that the ratio between the clock frequency of thisroprocessor and Microblaze is 3.325, but

the execution is only 2.33 times faster.

Table IV presents the execution time of a potentiatdware implementation using our
estimation method and the acceleration ratio batvgeéware and dedicated hardware based on
the profiler provided with Microblaze. The accurasyeded in some operations, and primarily
the wide dynamic range of some variables usednmesimnctions shown in Table Il, force such
variables to be defined as floats. The hardwar@dexf these functions requires incorporating
a dedicated floating point unit different from tR@U available on the microprocessor. There
are some vendors of IP cores that provide relidegns of FPUs easily adaptable to particular
custom requirements. This option simplifies theigle®ffort but generally is only valid for a
specific technology related to a FPGA family anchofacturer. Another possibility is to design
our own floating point unit, usually at low-costtbadding a major complexity and offering
poorer performance. An additional factor to be aered is the extra area needed for inclusion
of this core. In the floating point unit preseniadTable I, this area basically depends on the
latency associated with the operations and the width of the operands, occupying
approximately 840 CLB slices. As the next sectialh show, this result is similar to the area
needed by the iris and pupil localization coprooessDue to these disadvantages, generally the
inclusion of a floating point unit as part of a oopessor is only justifiable when functions

represent a high percentage of the total exectiioa and when such a design substantially

11



improves the acceleration ratio between softwacehamdware implementations.

The subroutines to remove eyelashes, to detectfin@yelids, to perform dimensionless
sampling and to create the IrisCode, are executedhe microprocessor. Note that these
functions mainly contain floating point operatiotisey represent a reduced percentage of the
total execution time (each one less than 5%) aeid theoretical acceleration ratio is fairly low
(less than 6 as table IV shows). Conversely, tireautines to scrub specular reflections and to
localize the iris and pupil boundaries are suitdbtehardware implementation. These functions
contribute substantially to the total executiongiftogether they represent about the 71% of the
total time), they are based on integer arithmepierations and they have an acceleration ratio

higher than 11 compared with their software execuiti

TABLE IV
CRITICAL RESOURCE ESTIMATION TIME, HARDWARE ACCELERATION ANDHW/SW PARTITIONING
Operations involved
. Critical in the function Estimated: Acceleration
Function name . . Hw/Sw
resource (Integer or/and time ratio
floating)
Scrub specular reflections Mem. Access Int: add,div,mult 18.9 ms 17.7 Hw
Localizeiris Mem. Access Int: add,mult 69.5 ms 16.6 Hw
Localize pupil boundary Mem. Access Int: add,div,mult 32.5ms 11.3 Hw
Detect and fit eyelids Mem. access + Int: add,mult 249 ms 4.5 Sw
floati int
oating poin Float:
add,div,mult,sqrt
Fine-tune iris Integer Mem. Access Int: add,div 35.8 ms 10.2 Hw
inner and outer
boundaries (active  Floating | Floating point =~ Float: add,div,mult  56.9 ms 1.2 Sw
contours) point
Dimensionless sampling Mem. access + Int: add,mult 7.9 ms 54 Sw
floating point
Remove eyelashes Mem. access + Int; add,mult 5.4 ms 5.9 Sw
floating point - o+t add,divmult
Create IrisCode Mem. access +;  Int: add,mult,div 28.7 ms 3.6 Sw
floating point -y +t: add,divmult

The active contours function (fine-tuning of theén and outer iris boundaries) presents a

significant computational cost when executed onMheoblaze microprocessor. However, its

12



implementation requires a floating point unit. Aeger analysis shows that this function can be
divided into two different parts. The first one &ns only integer operations whereas the
second one mainly uses floating point computati@msthe other hand, their execution times as
a percentage of the global function are signifisadifferent (83.5% and 16.5% for the integer
and floating part, respectively). Likewise, the gadure for estimating execution time reveals
important differences in the acceleration ratiojolhis about 10.2 times and 1.2 times for the
integer and floating point parts, respectively. §hior this function with these particular
features we propose a partitioning into two bloekth a hardware implementation for the
integer part and a software execution for the iihgaipoint part. Table IV summarizes the

proposed hardware-software partitioning of the whHasCode algorithm (enrollment phase).

The execution time of the search engine (the midcphase) depends on the size of the
database that contains N IrisCodes associated Nvithfferent iris images. In a verification
process (N=1), whose aim is to confirm or deny@i@#ar asserted identity, the execution time
for the matcher on the 40 MHz Microblaze is 1.32 (@snuine user). In an identification
process for recognizing a person by exhaustivedyckéng a list of previously enrolled users,
the execution time on the same device is 131.7 onsafsearch database containing 512
IrisCodes. In identification mode (searching the oleh database), IrisCode bytes are
undersampled to speed-up the comparisons by ptédyinug only good candidate matches for
fully detailed comparison. This speed-up is impatrta large databases because the IrisCode
comparisons must be done in each of many oriensgtiosually 21 rotations, since the actual
tilt angles of heads and eyes are not known in raclvalt is appropriate for the search and
matching function to be executed by software sihdée already so efficient, but if databases
grew to the scale of national populations thenrtlea dedicated hardware implementation

would be appropriate.
4. HARDWARE DESING

The overall internal structure of the system isicteg in Fig. 6. Microblaze accesses data and

instructions by means of a dedicated bus called LMi&&al Machine Bus), which connects the

13



microprocessor to an internal dual-port 64Kbyte RAMmMory that requires at least two clock
cycles for reads and for data writes. The limitee@ ®f on-chip memory forces long arrays and
images to reside in external 2Mbyte SRAM, whichdsnected through a memory controller to
an OPB bus (On-chip Peripheral Bus). This bus setdan the standard CoreConnect of IBM,
whose speed is limited by off-chip memory accedaydeor bus arbitration overheads resulting

in five to seven clock cycles per read.

The external SRAM memory is a common resource shhyethe microprocessor and the
coprocessors. The system was designed so thabghmecessors have direct access to external
memory, without requiring use of the OPB bus. Thissign is more efficient, since
coprocessors can read and write faster (2 clockesy@and thereby avoid delays due to bus
communication overheads. Since we adopted a cgaaseed hardware-software partitioning,
these overheads are mainly due to the communicastablished between Microblaze and the
four dedicated coprocessors, which can be considergligible compared to the total execution

time.

Any peripheral connected to the OPB bus has agsdcéamemory space ranging from a base
address, which establishes its lower bound, to gh taddress upper bound. The system
architecture has been designed in such a way tmbcessors and RAM memory share the
same memory space. This feature requires an dititramechanism that allows the
microprocessor to establish a bidirectional commaton with SRAM memory and

coprocessors. This mechanism must consider thanfimiy scenarios:

e The microprocessor reads or writes to external nigraad requires control of the input

lines of the memaory controller.

e The microprocessor sends information to coprocessarch as image pointers or data,

necessary for executing a function implementechinivare.

e The coprocessor is activated by means of a signargted by the microprocessor through

the OPB bus.

14



* An activated coprocessor takes control of the mgrmontroller in order to read or write in

external SRAM memory.

e The coprocessor finishes execution of a functiath e microprocessor reads the returned

information through the OPB bus.

The input lines of the memory controller are mankhgg a multiplexer that assigns their
control depending on signal select, which is geedray means of a decoder that considers the
OPB bus signals read/write and address. The finst positions in memory are reserved as
registers for exchanging information between miooopssor and coprocessors. As the decoder

truth table of Fig. 7 shows, when the microprocessaites on SRAM memory
(oPB_R/Wand SRAM_select have value 1) the multiplexer diyeconnects the controller

input lines to the OPB bus. In this working mode ticroprocessor takes control of memory
and is able to transmit information to the coprsoes using the reserved memory positions, or
to write to the rest of memory. Moreover, when théroprocessor reads from memory

(oPB_R/Wand SRAM_select take value 0 and 1, respectively) different situations can

arise. If the microprocessor addresses one of #served memory positions (signal
Copro_select equal to 1), the two least significhitt of the address line determine the
coprocessor that must be activated. Once the adilonlis finished the result is placed in the
proper reserved memory position and is read and ase parameter for subsequent stages. In
contrast, if a non-reserved address is selectgdglkiCopro_select equal to 0), the multiplexer
assigns the input lines of the controller to theroprocessor so that it can read from external

memory.
5. EXPERIMENTAL RESULTS

The coprocessors were defined in the VHDL highdleslescription language and were
implemented using the EDK (Embedded development &dftware package of Xilinx.
Experimental results were obtained with the AVNEFdware development board that contains

a Xilinx FPGA Spartan 3 XC3S2000, 2MB of SRAM memand several communication

15



peripherals [22].

Table V presents the area occupied by each comamcesd its maximum clock frequency
due to the critical path. These results were obthirsing the Leonardo Spectrum synthesis tool,
selecting a Spartan 3 FPGA [23]. Table VI shows glkecution times of functions whether
implemented by software or hardware, given a cliveguency of 40MHz. The system needs
522.6 ms to culminate in an IrisCode, which is db®uimes faster than the software-only
solution presented in Table Il. Since the clodqtrency is 40MHz, the iris code is created in
20.9 Megacycles. As Table Il shows, the same peitgss done using an Intel Centrino at 1.7
GHz in 66.81 Megacycles, which is about 3.2 tinfesriumber of cycles needed by our system.
On the other hand, our implementation is 2.12 fabi@n the execution of the whole algorithm
on a Pentium 133 MHz, the current microprocess@duly the PIER handheld camera

developed by Securimetrics.

The capture of the iris by most cameras is a peotes requires active user cooperation in
order to obtain an good quality image. The avetage needed to position an eye in the right
place and distance from the camera is typicallyuailib seconds. Consequently, using our
proposed implementation the time needed to crémtdrisCode is less than 27% of the total

time for the identification process.

TABLE V
AREA AND MAXIMUM CLOCK SPEED OF EACH COPROCESSOR
Function name Area occupied (CLB slices) Maximum klsgeed
Scrub specularities 453 80.7 MHz
Localizeiris 797 89.3 MHz
Localize pupil boundary 981 69.7 MHz
Active contours (hardware) 1342 70.9 MHz

Table VI also shows that the acceleration ratioemfgaring software and hardware
implementations) are in all cases greater thanctorfaof 10, which represents an important
improvement and a substantial reduction of the ggsitig time. The function to scrub specular

reflection achieves the greatest ratio (maximumedp®), almost 17 times faster than its
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software execution. The functions iris and pupddtion have also a significant acceleration
ratio of 15.5 and 10.9, respectively. Moreover, finection active contours also achieves an
important acceleration. As noted previously, thibrsutine uses a mixed hardware-software
solution with part of the function running on thécroprocessor and the rest implemented in a
dedicated coprocessor. The software part has aoutae time of 72.6 ms, whereas the

coprocessor needs only 36 ms for the operatiorisatbige the most computationally expensive

in the hardware-software partitioning analysis.

TABLE VI

EXECUTION TIMES FOR SOFTWARE FUNCTIONS AND HARDWAREOPROCESSORS AND ACCELERATION RATIO WORKING AT A
CLOCK FREQUENCY OROMHz

Function name Hardware/software execution time Fezadon
Scrub specular reflections 19.6 ms (Hw) 17.04
Localizeiris 69.8 ms (Hw) 15.57
Localize pupil boundary 33.6 ms (Hw) 10.98
Detect and fit eyelids 113 ms (Sw) --
Active contourstofitirisinner & outer boundaries | 36ms (Hw) +72.6 ms (Sw) =108.6 ms 10.20
Dimensionless sampling 43 ms (Hw) -
Remove eyelashes 32 ms (Sw) --
Create IrisCode 103 ms (Sw) --
Overall algorithm 522.6 ms
TABLE VI
ACTUAL AND ESTIMATED HARDWARE EXECUTION TIMES AND FERCENT VARIANCE
Function name Actual execution time  Estimated tiiié Error
Scrub specular reflections 19.6 ms 18.9 ms 3.5%
Localizeiris 69.8 ms 69.5 ms 0.4%
Localize pupil boundary 33.6 ms 32.5ms 3.2%
Active contoursto fit irisinner & outer boundaries 36ms 35.8 ms 0.5%

Table VII shows actual execution times of thosecfioms implemented by hardware and also

their execution times as predicted by the estimagtimcedure presented in section 3. The Table
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also shows the percent variance between the sjpreeander to document the accuracy of the
estimation method. Note that the maximum valueti@ error is less than 4%, with the most

accurate estimate erring by only 0.4%.

6. CONCLUSIONS

Low cost and rapid response times are importanarpaters for practical authentication
systems. Usually developers of biometric algorithassume that hardware platforms have
enough computational capability to execute therélyos with acceptable speed, using in most
cases high-performance and high-cost microproces$be main purpose of the work described
in this paper was to implement an iris recognitidgorithm using a low-cost FPGA. The design
methodology was based on a hardware-software dgrgeas a viable alternative to the

traditional approach based only on software.

The system architecture consists of a 32-bit gérgugpose microprocessor and several
dedicated hardware units. The microprocessor egedut software the less computationally
intensive tasks, whereas the coprocessors spetedpnctions that have higher computational
cost. Design criteria for hardware-software pamtitng were based on the profiler, the proposed
method for estimating the hardware execution tiamel the need to incorporate specific cores.
The simple method proposed in this paper for estilpahe execution time of a function, gives
beforehand a valuable information to decide abbatdonvenience of its implementation in
hardware. Depending on the function implemented, designed coprocessors speed-up the
processing time in all cases by a factor greatam ttD compared to its software execution. The
profiler was obtained by executing the iris aldumt on four microprocessors, with different
performances and features such as clock frequémeynal and external memory or floating-
point unit availability. Except for the high-perfoance microprocessor, the execution time was

in all cases above 1100 ms with a maximum operédtegency of 160 MHz.

The proposed hardware-software co-design was ingieed on a low-cost Spartan 3 FPGA.

Results show that with a clock frequency of 40MHe system is able to execute the entire iris
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recognition algorithm in 522.6 ms from an image6af0*480 pixels. The best exclusively
software solution implemented on a microprocessoPentium 133 MHz gave an execution
time of 1112 ms, which is about 2.12 times slowsant our system operating at a clock

frequency 3.3 times lower.
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List of figure captions:

Fig. 1. Example of iris image, with graphics indicating results of localization of the
inner and outer boundaries and eyelids. The bit stream in the top left results from

demodulation by 2D Gabor wavelets to encode the iris pattern as a phase sequence.

Fig. 2. lllustration of non-circular boundaries for iris and pupil.

Fig 3.- General structure of a system based on hardware-software co-design.

Fig 4.- a) Algorithm for calculating the variance of an image of size NxM pixels, b)

Unrolled version for hardware scheduling.

Fig 5.- Pipelined hardware scheduling

Fig 6.- Internal hardware structure of the system.

Fig 7.- Generation of signal select for multiplex management
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Fig. 1. Example of irisimage, with graphics indicating results of localization of the inner and outer
boundaries and eyelids. The bit stream in the top left results from demodulation by 2D Gabor wavelets to

encode theiris pattern as a phase sequence.

Fig. 2. lllustration of non-circular boundaries for iris and pupil.
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Fig 3.- General structure of a system based on hardware-software co-design.

/I mean represents the average image intensity

/I im is the image pointer

int variance (unsigned char* im, unsigned char méan)

inti,j,irow,sum;

sum=0;
irow=0;

for (i=0; i<N; i++)Y{
for (j=0; j<M; j++) {

sum+=((im [irow+j]-mean) * (im [irow+j]-mean));

}

irow+=M;

}

return(sum/(N*M));

/I mean represents the average image intensity
/I im is the image pointer

int variance (unsigned char* im, unsigned char méan)
int i,j,irow,sum,pixel,image,dif,pow;

sum=0; irow=0;
for (i=0; i<N; i++){
for (j=0; j<M; j++) { I/ (operation 1, group 1)

pixel=irow+j; /{operation 2, group 2)
image=im [pixel]; /(operation 3, group 1 & group 2)
dif=image-mean; (bperation 4, group 1)
pow=dif * dif; I(operation 5, group 2)
sum-+=pow; (bperation 6, groupl)
}
irow+=M;
return(sum/(N*M));

Fig 4.- a) Algorithm for calculating the variance of an image of size NxM pixels, b) Unrolled version for

hardware scheduling.
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Fig 5.- Pipelined hardware scheduling.
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Fig 6.- Internal hardware structure of the system.
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Decoder truth table
Input | select

00xxx | xxx (address out of range)
01xxx | 000 (microprocessor)
10xxx | xxx (not possible)

111xx | 000 (microprocessor)
11000 | 001 (copro.1)

11001 | 010 (copro.2)

11010 | 011 (copro.3)

11011 | 100 (copro.4)

X means don't care

Fig 7.- Generation of signal select for multiplex management
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