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Abstract— This paper describes the implementation of an iris recognition algorithm based 

on hardware-software co-design. The system architecture consists of a general-purpose 32-

bit microprocessor and several slave coprocessors that accelerate the most intensive 

calculations. The whole iris recognition algorithm has been implemented on a low-cost 

Spartan 3 FPGA, achieving significant reduction in execution time when compared to a 

conventional software-based application. Experimental results show that with a clock 

speed of 40 MHz, an IrisCode is obtained in less than 523 ms from an image of 640x480 

pixels, which is just 20% of the total time needed by a software solution running on the 

same microprocessor embedded in the architecture. 

1. INTRODUCCTION 

Recent years have seen the growth of new application domains for image processing and 

pattern recognition in the field of automated human identification, for security purposes and for 

logical or physical access control, based on personal biometric characteristics. Authentication 

systems based on biometrics determine the user’s identity on the principle that some 

physiological or behavioral characteristics are unique for each person, and are more tightly 
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bound to a person than a token object or a secret, which can be lost or transferred. Automated 

real-time biometric systems such as fingerprint or iris recognition have been successfully 

deployed in several large-scale public applications, increasing reliability and convenience for 

users, and reducing identity fraud. Usually the implementation of biometric algorithms is 

carried out using high-performance microprocessors working at clock frequencies in the GHz 

range. These devices are designed with an advanced architecture based on several pipeline 

stages, cache memory, high-speed communication buses and additional units that facilitate rapid 

execution of complex algorithms. On an Intel Pentium 4 at 3.2GHz, with 1GB of RAM 

memory, the average execution time of a fingerprint recognition algorithm, including 

enrollment and matching, is about 778 ms and on a similar microprocessor the computing time 

for iris image analysis and creation of an IrisCode is about 30 ms [1][2]. However, such 

software implementations could restrict the application of biometrics to specific markets due to 

the microprocessor cost.   

Devices available in the low-cost consumer market are generally too slow for applications 

requiring intensive computations. For example, an iris recognition algorithm running on an 

ARM922T at 160MHz executes in 3162 ms, which is about 80 times slower than the execution 

of the same code on a high-performance microprocessor. The use of dedicated hardware is an 

alternative for implementing operations that require high-speed parallel processing [3]-[12]. 

Additionally, outstanding results can be achieved if the structure of the algorithm allows the 

hardware to employ several pipeline stages. For example, under certain conditions, an image 

enhancement routine usually employed in a fingerprint recognition algorithm can be processed 

in dedicated hardware faster than on a Pentium clocked at a frequency 30 times higher [7]. 

However, designing such a hardware solution is less justifiable for algorithms requiring floating 

point computations or when sequential operations hinder the application of pipeline and 

parallelism. In these cases, the area and the effort devoted to design the system might not be 

justified by the benefits gained.  

Architectures based on hardware-software co-design combine the advantages of both 
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hardware and software solutions. Such systems contain an embedded microprocessor and 

several dedicated hardware units connected via a communication bus. By offloading processor 

intensive tasks to dedicated hardware and assigning operations that require high-speed serial 

processing to the microprocessor, the performance and cost of the whole system are 

substantially improved. For instance, this methodology has been successfully applied to 

designing a biometric fingerprint verification system. That architecture, implemented on a 

Virtex II FPGA, is composed of a general purpose fixed-point processor and a DFT (Discrete 

Fourier Transform) hardware accelerator used to determine the dominant ridge flow direction. 

Results show that the coprocessor permits a 55% and 60% execution time reduction for the 

minutiae extraction and matching, respectively [8]-[10]. Other publications show similar 

improvements when dedicated hardware units are used in order to implement different 

fingerprint algorithms or systems based on other biometric modalities such as face or speaker 

recognition [5][11][12].  

The purpose of this paper is to describe an implementation of an iris recognition algorithm 

based on a hardware-software co-design methodology, suitable for integration either in ASIC 

(Application Specific Integrated Circuit) or FPGA. The experimental results reported in this 

paper were obtained using a low-cost Spartan-3 FPGA clocked at 40 MHz.   

This paper is organized in 5 sections. Section 2 reviews briefly the basic principles underlying 

the iris recognition algorithm. Section 3 analyzes the functions involved in the algorithm, 

assessing which ones are suitable to be executed on the microprocessor and which ones should 

be implemented in dedicated hardware. Section 4 describes the internal structure of the 

embedded system, and finally Section 5 presents the experimental results.  

2. ALGORITHM REVIEW 

The implemented iris recognition system is based on the algorithms developed by Daugman, 

which are documented in [13]-[15]. These algorithms are the basis of all currently deployed iris 

recognition systems and they will be only briefly reviewed here.  
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The iris image is acquired usually within a distance of about 50 cm by a camera using 

infrared light in the 700nm-900nm band and resolving about 100-200 pixels in iris diameter. 

Specular reflections of the illumination on the cornea or eyeglasses are detected and removed, 

and the boundaries of the iris are determined. Fig. 1 illustrates such a captured iris image, with 

overlaid graphics showing the automated detection of the iris inner and outer boundaries as well 

as its eyelid occlusion boundaries. The centers and radii of iris and pupil are approximated 

initially by applying an integrodifferential operator that behaves as a circular edge detector:  

∫∂
∂

yoxo,r,  σyo)xo,(r, ds
2ππ

y)I(x,

r
*(r)Gmax       (1) 

where I(x,y) is the image that contains the eye, symbol * denotes convolution and )r(Gσ  is a 

smoothing function of scale σ. The operator is applied iteratively in a multi-scale, coarse-to-fine 

strategy to converge rapidly on estimates of the three parameters of each circular model. Then, 

the upper and lower eyelid boundaries may be described as quadratic or cubic splines, whose 

parameters are estimated by statistical model-fitting techniques.  

Following the initial approximation of the iris and pupil boundaries as circles for purposes of 

iris localization, their actual shapes are recalculated using active contour models [2]. This finer 

analysis allows a more precise description of these boundaries which are often significantly 

non-circular (see Fig. 2). The box in the lower-left corner of Fig. 2 shows curvature maps for 

the inner and outer iris boundaries. Dotted curves in the box and on the iris are Fourier series 

approximations to the actual boundaries, enabling a flexible and appropriate coordinate system 

to be embedded in the iris. 

The defined region between the inner and outer boundary of the iris is normalized into a 

doubly-dimensionless, not necessarily concentric, pseudo-polar coordinate system (r,θ), where r 

lies in the unit interval [0,1] and θ is a cyclic angular variable over [0,2π]. This mapping 

normalizes the iris and compensates for deformations caused by pupil dilation or constriction. 

This mapping also achieves invariance to the user distance from the camera and to the position 

of the eye. Let (((( )))))(y),(x pp θθθθθθθθ  and (((( )))))(y),(x ss θθθθθθθθ  be the set of points corresponding to the pupil 
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and limbus (outer) boundaries. The generalized, non-concentric coordinate system can be 

described as the following linear combination:  
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Once the iris has been segmented from the image and mapped into normalized dimensionless 

coordinates, the iris texture is encoded into an IrisCode through a process of demodulation that 

extracts phase sequences. The IrisCode contains 2048 data bits, derived by projecting local 

regions of the iris onto quadrature 2-D Gabor wavelets. Additionally, a mask array of the same 

size is computed to mark those bits obscured by eyelids, eyelash occlusions detected by 

statistical inference, or corneal reflections. After this encoding stage, the iris template can be 

stored or matched against a database that contains previously enrolled templates. The matching 

engine is based on computing the Hamming distance (fraction of disagreeing bits) between two 

different IrisCodes gated by their associated mask vectors. This search engine mainly performs 

simple Boolean operations using XOR and AND gates that can be implemented with large bit-

wise parallelism either on a microprocessor or in dedicated hardware.   

The algorithm discussed in this paper has been tested on a database of 632,500 different iris 

images, leading to 200 billion pair comparisons proving extreme robustness against false 

matches [2][13]. For example, with a Hamming distance threshold of 0.30 the observed false 

match rate was 1 in 8 million, and at a threshold of about 0.25 the false match rate was 0 in 200 

billion. 

3. PROFILING AND HARDWARE-SOFTWARE PARTITIONING 

3.1 Architecture description 

Fig. 3 shows the generic architecture of a system based on hardware-software co-design. The 

system consists of a microprocessor acting as master that manages the organized execution of a 

program, the communication between input/output devices and the control of information 

through the system’s buses [16].   
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Hardware coprocessors cooperate actively with the software application executed on the 

microprocessor and are designed to provide a specific functionality regarding some part of the 

application. The degree of complexity of the functionality depends on the architecture 

partitioning level, which can range from simple operations or instructions (fine granularity) to 

complex processes related to functions or routines (coarse granularity). In any case, the 

partitioning task consists in determining which parts of the system are best suited for execution 

by software or for synthesis in dedicated hardware, in order to satisfy a set of constraints and 

goals such as performances, cost or area.  

Partitioning can be considered from two different viewpoints. A software-oriented approach 

initially considers the whole application as running on the microprocessor. In the partitioning 

process, parts of the software application whose sizes depend on the granularity of the 

partitioning are moved to hardware until constraints are met. Conversely, in a hardware-oriented 

approach the migration is done in the reverse direction, from hardware to software [17]. In our 

particular case, given that the whole algorithm exists in ANSI C, the partitioning process is 

undertaken with a software-oriented approach. Since the arithmetic operations (integer or float) 

and the programming structure at block and control level are different in each function, a fine-

grained partitioning would entail designing a large number of dedicated hardware units, which 

requires major design effort and excessive area for system implementation. The hardware-

software partitioning discussed in this paper is carried out at function level. The advantage of a 

coarse-grained partitioning is that it requires a small number of hardware coprocessors and 

reduces communication delays. 

3.2 Design criteria for hardware-software partitioning 

Determining which functions described in section 2 are most suited for hardware 

implementation depends on the following design criteria:  

• Time needed by the microprocessor to execute a function as a percentage of the execution 

time of the whole algorithm.   
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• Hardware speed-up factor (acceleration), defined as the ratio of execution times of software 

to hardware implementations.   

• Complexity of hardware design and need to incorporate specific IP cores (reusable units of 

logic used as building blocks in FPGA or ASIC designs) for certain arithmetic operations.   

The percentage of the total execution time consumed by each function was directly calculated 

running the algorithm on four different processors. The  first one is an Intel Centrino 1.7 GHz, a 

high-performance microprocessor suitable for use in applications that manage a database with 

hundred of thousands of users (e.g. airport check-points), and where the microprocessor cost 

and its power consumption are not relevant factors. The second profile was obtained using a 32-

bit ARM922T at 160 MHz, a medium-performance microprocessor whose architecture is the 

most widely employed in consumer electronics such as mobile phones and PDAs [18]. The third 

microprocessor chosen to evaluate the execution times was an Intel Pentium at 133 MHz. This 

device is currently used by the PIER handheld camera, a commercial portable device for iris 

recognition developed by Securimetrics [19]. The last benchmark was obtained using 

Microblaze at 40 MHz, a soft-core microprocessor developed by Xilinx suitable for designing 

embedded systems, allowing easy connection of custom coprocessors [20].  

On the other hand, predicting the acceleration ratio (speed-up factor) between software and 

hardware implementations is an elaborate process. In order to illustrate the process that we 

proposed in this paper for estimating the execution time of a function implemented in hardware, 

let us consider the simple piece of code shown in Fig. 4.a. (For clarity, Fig. 4.b shows a semi-

unrolled version of the same code). This example code is a nested loop that calculates the 

variance of an image of size NxM pixels (8-bit grey-level). The hardware implementation of 

this code basically requires several adders, one multiplier and a memory controller that manages 

access to the image located in external SRAM memory (usually the size of an image requires 

that it resides outside the FPGA). Any operation can be carried out in one clock cycle, except 

memory reading which needs two cycles. We assume that hardware is configured with only one 

external memory. Under this assumption the most critical resource in terms of time 
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consumption is the memory access (implemented by means of a memory controller) that limits 

the best timing performance to 2*N*M cycles.   

The key to achieving execution time as near as possible to this limit is to design pipelined 

hardware that prioritizes memory access. In Fig. 4.b, the inner loop associated with index j 

contains six operations that are distributed in two groups (the number of groups coincides with 

the latency in cycles of the critical resource). The operations involved in each group are 

calculated in parallel, according to the scheduling scheme shown in Fig. 5. Clearly the 

approximate hardware execution time is 2*N*M cycles.    

The method of estimating execution time shown in this example can be formulated in a 

general way as follows: 

• Given a function, finding its most time-consuming operation. The total time consumed by 

this resource is equal to the number of times that the resource is used multiplied by its 

associated latency (number of cycles needed by the resource to give a result). 

• When several independent loops are present in the function, the total time consumed is the 

sum of their individual time consumptions. 

• Coprocessors are able to read and write directly in external SRAM, by means of a memory 

controller that allows one access every two clock cycles (only one memory controller is 

available). 

• Additions, subtractions and multiplications involving integer operands are carried out in one 

clock cycle (multiplications are implemented by using the specific internal hardware 

multipliers of the FPGA). 

• Integer division requires a number of clock cycles equal to the bit length of the operands. 

Unlike multiplication, this block cannot be directly synthesized on the FPGA and requires 

design of a specific arithmetic unit for its implementation.  

• The number of clock cycles required for floating point operations is given in Table I. 
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Latencies and hardware resources presented in this table have been obtained from the 

single-precision floating point core designed by Xilinx [21]. Note as the multiplication 

requires less cycles and area than the addition due to the internal hardware multipliers 

available on Spartan 3.  

TABLE I 

AREA AND NUMBER OF CYCLES FOR OPERATIONS WITH SINGLE-PRECISION FORMAT ON SPARTAN 3E FPGA 

Floating-point operation Cycles 
LUTs 

(Look-up table) 

FFs 

(Flip-flops) 

Add/Sub 13 580 591  

Multiplication 6 185 275 

Division 28 234 229 

Sqrt (square root) 28 214 206 

Fixed to float conversion 6 221 227 

Float to fixed conversion 5 251 237 

 

3.3 Hardware-software partitioning based on Microblaze 

Tables II and III show the execution times for the microprocessors detailed in section 3.2,  for 

the enrollment and matching processes, for verification and identification mode, respectively, as 

well as the percentage that each function represents of the total execution time of the algorithm. 

These results have been obtained using images with 640x480 pixels. Note that these results 

depend strongly on the specific architecture of each microprocessor, the presence of a floating 

point unit (FPU), the distribution of the executable code between on-chip and external memory 

and the functions and parameters used to solve the algorithm. The profiler provides execution 

times for each function, but only data obtained with Microblaze are considered for hardware-

software partitioning, since this is the microprocessor actually used to build the embedded 

system.   

Intel Centrino is by far the fastest microprocessor, executing all the functions in less than 40 

ms. The execution time on ARM922T is 3162 ms, which is about 18% slower than Microblaze 

working at a clock frequency four times lower. Note as the ARM922T architecture used in this 
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paper lacks a floating point unit (basically to save on power and area when using ARM in low-

cost applications), unlike more advanced architectures in the same family [18]. This fact has a 

significant influence on the execution time of those functions using floating-point operations. 

TABLE II 

EXECUTION SPEEDS OF VARIOUS FUNCTIONS IN THE IRIS RECOGNITION ALGORITHM RUNNING ON FOUR DIFFERENT 

MICROPROCESSORS 

Function name 

Time / % percentage 

Centrino 1.7GHZ 

1MB Cache 

External 512 MB 
DDRAM 

ARM922T  32-bit 
160MHz 

On-chip 40kB 
BRAM 

External 32MB 
SDRAM 

Pentium 133MHz 

8kB+8kB Cache 

External  65 MB 

SDRAM 

Microblaze 32-bit 
40MHz 

On-chip 64kB 
BRAM 

External 2MB 
SRAM 

Scrub specular reflections 4,5 ms/ 11.4% 85 ms / 2.7% 117 ms / 10.5% 334 ms / 12.9% 

Localize iris 14.4 ms / 36.6% 670 ms / 21.2% 447 ms / 40.2% 1157 ms / 44.7% 

Localize pupil boundary 6.4 ms /  16.3% 280 ms / 8.8% 198 ms / 17.8% 369 ms / 14.2% 

Detect and fit eyelids 1.8 ms/ 4.6% 95 ms / 3.1% 34 ms / 3.1% 113 ms / 4.4% 

Fine-tune models of iris 
inner & outer boundaries 

7.3 ms / 18.6% 1870 ms / 59.1% 210 ms / 18.9% 440 ms / 17.0% 

Dimensionless sampling 0.85 ms / 2.2% 10 ms / 0.32% 37 ms / 3.3% 43 ms /  1.6% 

Remove eyelashes 0.75 ms / 1.9% 12 ms / 0.38% 23 ms / 2.1% 32 ms / 1.2% 

Create IrisCode 3.3 ms / 8.4% 140 ms / 4.4% 46 ms / 4.1% 103 ms / 4.0% 

Overall algorithm 39.3 ms / 100% 3162 ms / 100% 1112 ms / 100% 2591 ms / 100% 

TABLE III 

EXECUTION TIMES OF THE MATCHING ENGINE RUNNING ON FOUR DIFFERENT MICROPROCESSORS FOR VERIFICATION AND 

IDENTIFICATION AGAINST A DATABASE OF 512 IRISCODES 

Function name 
Time  

Hw/Sw 
Centrino 1.7GHZ ARM922T 160MHZ Pentium 133MHZ Microblaze 40MHz 

Verification 60 µs 580 µs 535 µs 1.32 ms  Sw 

Identification 2.4 ms 68 ms 61 ms 131.7 ms Sw 

The ISE design suite 10.1, the Xilinx software used to build the system, allows the integration 

of Microblaze 7.10.d configured with an IEEE-754 compatible single-precision floating point 

unit. In contrast to previous versions of the same microprocessor, its FPU allows a cast between 
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float and integer signed type (and vice versa) by means of a single assembler instruction. These 

and other floating point operations are frequently used in some functions of the iris algorithm, 

which permits Microblaze to compensate for its much lower clock frequency by more efficient 

execution of these computations. As we will see later in section 4, to speed-up the execution 

time we have designed our own memory controller to access the external SRAM memory. This 

memory controller prevent the configuration of Microblaze with cache memory that is only 

compatible when using a Multi-Cannel OPB controller specifically designed by Xilinx. On the 

other hand, the Pentium clocked at 133 MHz executes the overall algorithm in 1112 ms. Note 

that the ratio between the clock frequency of this microprocessor and Microblaze is 3.325, but 

the execution is only 2.33 times faster.  

Table IV presents the execution time of a potential hardware implementation using our 

estimation method and the acceleration ratio between software and dedicated hardware based on 

the profiler provided with Microblaze. The accuracy needed in some operations, and primarily 

the wide dynamic range of some variables used in some functions shown in Table II, force such 

variables to be defined as floats. The hardware design of these functions requires incorporating 

a dedicated floating point unit different from the FPU available on the microprocessor. There 

are some vendors of IP cores that provide reliable designs of FPUs easily adaptable to particular 

custom requirements. This option simplifies the design effort but generally is only valid for a 

specific technology related to a FPGA family and manufacturer. Another possibility is to design 

our own floating point unit, usually at low-cost but adding a major complexity and offering 

poorer performance. An additional factor to be considered is the extra area needed for inclusion 

of this core. In the floating point unit presented in Table I, this area basically depends on the 

latency associated with the operations and the bit width of the operands, occupying 

approximately 840 CLB slices. As the next section will show, this result is similar to the area 

needed by the iris and pupil localization coprocessors. Due to these disadvantages, generally the 

inclusion of a floating point unit as part of a coprocessor is only justifiable when functions 

represent a high percentage of the total execution time and when such a design substantially 
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improves the acceleration ratio between software and hardware implementations.  

The subroutines to remove eyelashes, to detect and fit eyelids, to perform dimensionless 

sampling and to create the IrisCode, are executed on the microprocessor. Note that these 

functions mainly contain floating point operations, they represent a reduced percentage of the 

total execution time (each one less than 5%) and their theoretical acceleration ratio is fairly low 

(less than 6 as table IV shows).  Conversely, the subroutines to scrub specular reflections and to 

localize the iris and pupil boundaries are suitable for hardware implementation. These functions 

contribute substantially to the total execution time (together they represent about the 71% of the 

total time), they are based on integer arithmetic operations and they have an acceleration ratio 

higher than 11 compared with their software execution.    

TABLE IV 

CRITICAL RESOURCE, ESTIMATION TIME, HARDWARE ACCELERATION AND HW/SW PARTITIONING 

Function name 
Critical 
resource 

Operations involved 
in the function 
(Integer or/and 

floating) 

Estimated 
time 

Acceleration 
ratio 

Hw/Sw 

 Scrub specular reflections Mem. Access Int: add,div,mult 18.9 ms 17.7 Hw 

Localize iris Mem. Access Int: add,mult 69.5 ms 16.6 Hw 

Localize pupil boundary Mem. Access Int: add,div,mult 32.5 ms 11.3 Hw 

Detect and fit eyelids Mem. access + 
floating point 

Int: add,mult 

Float: 
add,div,mult,sqrt 

24.9 ms 4.5 Sw 

Fine-tune  iris 
inner and outer 

boundaries (active 
contours) 

Integer Mem. Access Int: add,div 35.8 ms 10.2 Hw 

Floating 
point 

Floating point Float: add,div,mult 56.9 ms 1.2 Sw 

Dimensionless sampling Mem. access + 
floating point 

Int: add,mult 7.9 ms 5.4 Sw 

Remove eyelashes Mem. access + 
floating point 

Int: add,mult 

Float: add,div,mult 

5.4 ms 5.9 Sw 

Create IrisCode Mem. access + 
floating point 

Int: add,mult,div 

Float: add,div,mult 

28.7 ms 3.6 Sw 

The active contours function (fine-tuning of the inner and outer iris boundaries) presents a 

significant computational cost when executed on the Microblaze microprocessor. However, its 



 13 

implementation requires a floating point unit. A deeper analysis shows that this function can be 

divided into two different parts. The first one contains only integer operations whereas the 

second one mainly uses floating point computations. On the other hand, their execution times as 

a percentage of the global function are significantly different (83.5% and 16.5% for the integer 

and floating part, respectively). Likewise, the procedure for estimating execution time reveals 

important differences in the acceleration ratio, which is about 10.2 times and 1.2 times for the 

integer and floating point parts, respectively. Thus, for this function with these particular 

features we propose a partitioning into two blocks with a hardware implementation for the 

integer part and a software execution for the floating point part. Table IV summarizes the 

proposed hardware-software partitioning of the whole IrisCode algorithm (enrollment phase).  

The execution time of the search engine (the matching phase) depends on the size of the 

database that contains N IrisCodes associated with N different iris images. In a verification 

process (N=1), whose aim is to confirm or deny a particular asserted identity, the execution time 

for the matcher on the 40 MHz Microblaze is 1.32 ms (genuine user). In an identification 

process for recognizing a person by exhaustively searching a list of previously enrolled users, 

the execution time on the same device is 131.7 ms for a search database containing 512 

IrisCodes. In identification mode (searching the whole database), IrisCode bytes are 

undersampled to speed-up the comparisons by pre-qualifying only good candidate matches for 

fully detailed comparison. This speed-up is important in large databases because the IrisCode 

comparisons must be done in each of many orientations, usually 21 rotations, since the actual 

tilt angles of heads and eyes are not known in advance. It is appropriate for the search and 

matching function to be executed by software since it is already so efficient, but if databases 

grew to the scale of national populations then clearly a dedicated hardware implementation 

would be appropriate. 

4. HARDWARE DESING 

The overall internal structure of the system is depicted in Fig. 6. Microblaze accesses data and 

instructions by means of a dedicated bus called LMB (Local Machine Bus), which connects the 
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microprocessor to an internal dual-port 64Kbyte RAM memory that requires at least two clock 

cycles for reads and for data writes. The limited size of on-chip memory forces long arrays and 

images to reside in external 2Mbyte SRAM, which is connected through a memory controller to 

an OPB bus (On-chip Peripheral Bus). This bus is based on the standard CoreConnect of IBM, 

whose speed is limited by off-chip memory access delays or bus arbitration overheads resulting 

in five to seven clock cycles per read.  

The external SRAM memory is a common resource shared by the microprocessor and the 

coprocessors. The system was designed so that the coprocessors have direct access to external 

memory, without requiring use of the OPB bus. This design is more efficient, since 

coprocessors can read and write faster (2 clock cycles) and thereby avoid delays due to bus 

communication overheads. Since we adopted a coarse-grained hardware-software partitioning, 

these overheads are mainly due to the communication established between Microblaze and the 

four dedicated coprocessors, which can be considered negligible compared to the total execution 

time.   

Any peripheral connected to the OPB bus has associated a memory space ranging from a base 

address, which establishes its lower bound, to a high address upper bound. The system 

architecture has been designed in such a way that coprocessors and RAM memory share the 

same memory space. This feature requires an arbitration mechanism that allows the 

microprocessor to establish a bidirectional communication with SRAM memory and 

coprocessors. This mechanism must consider the following scenarios: 

• The microprocessor reads or writes to external memory and requires control of the input 

lines of the memory controller.  

• The microprocessor sends information to coprocessors, such as image pointers or data, 

necessary for executing a function implemented in hardware. 

• The coprocessor is activated by means of a signal generated by the microprocessor through 

the OPB bus. 
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• An activated coprocessor takes control of the memory controller in order to read or write in 

external SRAM memory. 

• The coprocessor finishes execution of a function and the microprocessor reads the returned 

information through the OPB bus.  

The input lines of the memory controller are managed by a multiplexer that assigns their 

control depending on signal select, which is generated by means of a decoder that considers the 

OPB bus signals read/write and address. The first four positions in memory are reserved as 

registers for exchanging information between microprocessor and coprocessors. As the decoder 

truth table of Fig. 7 shows, when the microprocessor writes on SRAM memory 

( W/R_OPB and SRAM_select have value 1) the multiplexer directly connects the controller 

input lines to the OPB bus. In this working mode, the microprocessor takes control of memory 

and is able to transmit information to the coprocessors using the reserved memory positions, or 

to write to the rest of memory. Moreover, when the microprocessor reads from memory 

( W/R_OPB and SRAM_select take value 0 and 1, respectively) two different situations can 

arise. If the microprocessor addresses one of the reserved memory positions (signal 

Copro_select equal to 1), the two least significant bits of the address line determine the 

coprocessor that must be activated. Once the calculation is finished the result is placed in the 

proper reserved memory position and is read and used as a parameter for subsequent stages. In 

contrast, if a non-reserved address is selected (signal Copro_select equal to 0), the multiplexer 

assigns the input lines of the controller to the microprocessor so that it can read from external 

memory.   

5. EXPERIMENTAL RESULTS 

The coprocessors were defined in the VHDL high-level description language and were 

implemented using the EDK (Embedded development kit) software package of Xilinx. 

Experimental results were obtained with the AVNET hardware development board that contains 

a Xilinx FPGA Spartan 3 XC3S2000, 2MB of SRAM memory and several communication 
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peripherals [22].  

Table V presents the area occupied by each coprocessor and its maximum clock frequency 

due to the critical path. These results were obtained using the Leonardo Spectrum synthesis tool, 

selecting a Spartan 3 FPGA [23]. Table VI shows the execution times of functions whether 

implemented by software or hardware, given a clock frequency of 40MHz. The system needs 

522.6 ms to culminate in an IrisCode, which is about 5 times faster than the software-only 

solution presented in Table II.  Since the clock frequency is 40MHz, the iris code is created in 

20.9 Megacycles. As Table II shows, the same processing is done using an Intel Centrino at 1.7 

GHz in 66.81 Megacycles, which is about 3.2 times the number of cycles needed by our system. 

On the other hand, our implementation is 2.12 faster than the execution of the whole algorithm 

on a Pentium 133 MHz, the current microprocessor used by the PIER handheld camera 

developed by Securimetrics.  

The capture of the iris by most cameras is a process that requires active user cooperation in 

order to obtain an good quality image. The average time needed to position an eye in the right 

place and distance from the camera is typically about 2 seconds. Consequently, using our 

proposed implementation the time needed to create the IrisCode is less than 27% of the total 

time for the identification process.  

TABLE V 

AREA AND MAXIMUM CLOCK SPEED OF EACH COPROCESSOR 

Function name Area occupied (CLB slices) Maximum clock speed 

Scrub specularities 453 80.7 MHz 

Localize iris 797 89.3 MHz 

Localize pupil boundary 981 69.7 MHz 

Active contours (hardware) 1342 70.9 MHz 

Table VI also shows that the acceleration ratios (comparing software and hardware 

implementations) are in all cases greater than a factor of 10, which represents an important 

improvement and a substantial reduction of the processing time. The function to scrub specular 

reflection achieves the greatest ratio (maximum speed-up), almost 17 times faster than its 
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software execution. The functions iris and pupil location have also a significant acceleration 

ratio of 15.5 and 10.9, respectively. Moreover, the function active contours also achieves an 

important acceleration. As noted previously, this subroutine uses a mixed hardware-software 

solution with part of the function running on the microprocessor and the rest implemented in a 

dedicated coprocessor. The software part has an execution time of 72.6 ms, whereas the 

coprocessor needs only 36 ms for the operations that were the most computationally expensive 

in the hardware-software partitioning analysis.  

TABLE VI 

EXECUTION TIMES FOR SOFTWARE FUNCTIONS AND HARDWARE COPROCESSORS AND ACCELERATION RATIO WORKING AT A 

CLOCK FREQUENCY OF 40MHZ 

Function name Hardware/software execution time Acceleration 

Scrub specular reflections 19.6 ms (Hw) 17.04 

Localize iris  69.8 ms (Hw) 15.57 

Localize pupil boundary 33.6 ms (Hw) 10.98 

Detect and fit eyelids 113 ms (Sw) -- 

Active contours to fit iris inner & outer  boundaries 36ms (Hw) +72.6 ms (Sw) =108.6 ms 10.20 

Dimensionless sampling 43 ms (Hw) -- 

Remove eyelashes 32 ms (Sw) -- 

Create IrisCode 103 ms (Sw) -- 

Overall algorithm 522.6 ms  

 

TABLE VII 

ACTUAL AND ESTIMATED HARDWARE EXECUTION TIMES AND PERCENT VARIANCE 

Function name Actual execution time Estimated time % Error 

Scrub specular reflections 19.6 ms  18.9 ms 3.5% 

Localize iris  69.8 ms 69.5 ms 0.4% 

Localize pupil boundary 33.6 ms 32.5 ms 3.2% 

Active contours to fit iris inner & outer  boundaries 36ms 35.8 ms  0.5% 

Table VII shows actual execution times of those functions implemented by hardware and also 

their execution times as predicted by the estimation procedure presented in section 3. The Table 
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also shows the percent variance between the speeds in order to document the accuracy of the 

estimation method. Note that the maximum value for this error is less than 4%, with the most 

accurate estimate erring by only 0.4%.    

6. CONCLUSIONS 

Low cost and rapid response times are important parameters for practical authentication 

systems. Usually developers of biometric algorithms assume that hardware platforms have 

enough computational capability to execute the algorithms with acceptable speed, using in most 

cases high-performance and high-cost microprocessors. The main purpose of the work described 

in this paper was to implement an iris recognition algorithm using a low-cost FPGA. The design 

methodology was based on a hardware-software co-design, as a viable alternative to the 

traditional approach based only on software.  

The system architecture consists of a 32-bit general purpose microprocessor and several 

dedicated hardware units. The microprocessor executes in software the less computationally 

intensive tasks, whereas the coprocessors speed-up the functions that have higher computational 

cost. Design criteria for hardware-software partitioning were based on the profiler, the proposed 

method for estimating the hardware execution time, and the need to incorporate specific cores. 

The simple method proposed in this paper for estimating the execution time of a function, gives 

beforehand a valuable information to decide about the convenience of its implementation in 

hardware. Depending on the function implemented, the designed coprocessors speed-up the 

processing time in all cases by a factor greater than 10 compared to its software execution. The 

profiler was obtained by executing the iris algorithm on four microprocessors, with different 

performances and features such as clock frequency, internal and external memory or floating-

point unit availability. Except for the high-performance microprocessor, the execution time was 

in all cases above 1100 ms with a maximum operating frequency of 160 MHz. 

The proposed hardware-software co-design was implemented on a low-cost Spartan 3 FPGA. 

Results show that with a clock frequency of 40MHz the system is able to execute the entire iris 
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recognition algorithm in 522.6 ms from an image of 640*480 pixels. The best exclusively 

software solution implemented on a microprocessor as Pentium 133 MHz gave an execution 

time of 1112 ms, which is about 2.12 times slower than our system operating at a clock 

frequency 3.3 times lower.   
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List of figure captions: 
 
 

Fig. 1. Example of iris image, with graphics indicating results of localization of the 

inner and outer boundaries and eyelids. The bit stream in the top left results from 

demodulation by 2D Gabor wavelets to encode the iris pattern as a phase sequence. 

 

Fig. 2. Illustration of non-circular boundaries for iris and pupil. 

 

Fig 3.- General structure of a system based on hardware-software co-design. 

 

Fig 4.- a) Algorithm for calculating the variance of an image of size NxM pixels, b) 

Unrolled version for hardware scheduling. 

 

Fig 5.- Pipelined hardware scheduling 

 

Fig 6.- Internal hardware structure of the system. 

 
 
Fig 7.-  Generation of signal select for multiplex management 
 
 
 
 
 
 
 
 
 
 
 
 



 23 

 
 
 
 
 
 

 

Fig. 1. Example of iris image, with graphics indicating results of localization of the inner and outer 

boundaries and eyelids. The bit stream in the top left results from demodulation by 2D Gabor wavelets to 

encode the iris pattern as a phase sequence. 

 
 
 
 
 
 

 

Fig. 2. Illustration of non-circular boundaries for iris and pupil. 
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Fig 3.- General structure of a system based on hardware-software co-design. 

 

 

 

 

// mean represents the average image intensity
// im is the image pointer 

int variance (unsigned char* im, unsigned char mean) {
int i,j,irow,sum;

sum=0;
irow=0;

for (i=0; i<N; i++){
for (j=0; j<M; j++) {

sum+=((im [irow+j]-mean) * (im [irow+j]-mean));
}

irow+=M;
}

return(sum/(N*M));
}

 

// mean represents the average image intensity
// im is the image pointer 

int variance (unsigned char* im, unsigned char mean) {
int i,j,irow,sum,pixel,image,dif,pow;

sum=0; irow=0;
for (i=0; i<N; i++){

for (j=0; j<M; j++) {         // (operation 1, group 1)
pixel=irow+j;               // (operation 2, group 2)
image=im [pixel];        // (operation 3, group 1 & group 2)
dif=image-mean;          // (operation 4, group 1)
pow=dif * dif;              // (operation 5, group 2)
sum+=pow;                  // (operation 6, group1)

}
irow+=M;
}
return(sum/(N*M));
}

 

Fig 4.- a) Algorithm for calculating the variance of an image of size NxM pixels, b) Unrolled version for 

hardware scheduling. 
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Fig 5.- Pipelined hardware scheduling. 
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Fig 6.- Internal hardware structure of the system. 
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Fig 7.-  Generation of signal select for multiplex management 


