
 1

Hardware-Software Co-Design of an Iris
Recognition Algorithm

Mariano López* (contact author): Technical University of Catalonia, Avda. Victor Balaguer,

s/n, 08800 Vilanova i Geltrú, Spain, Phone: +34938967737; fax: +34938967700, e-mail:

lopezg@eel.upc.edu.

John Daugman: University of Cambridge, Computer Laboratory, William Gates Building, 15

JJ Thomson Avenue, Cambridge CB3 0FD, UK., e-mail: john.daugman@cl.cam.ac.uk.

Enrique Cantó: Rovira Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain, e-

mail: enrique.canto@urv.net.

Abstract— This paper describes the implementation of an iris recognition algorithm based

on hardware-software co-design. The system architecture consists of a general-purpose 32-

bit microprocessor and several slave coprocessors that accelerate the most intensive

calculations. The whole iris recognition algorithm has been implemented on a low-cost

Spartan 3 FPGA, achieving significant reduction in execution time when compared to a

conventional software-based application. Experimental results show that with a clock

speed of 40 MHz, an IrisCode is obtained in less than 523 ms from an image of 640x480

pixels, which is just 20% of the total time needed by a software solution running on the

same microprocessor embedded in the architecture.

1. INTRODUCCTION

Recent years have seen the growth of new application domains for image processing and

pattern recognition in the field of automated human identification, for security purposes and for

logical or physical access control, based on personal biometric characteristics. Authentication

systems based on biometrics determine the user’s identity on the principle that some

physiological or behavioral characteristics are unique for each person, and are more tightly

 2

bound to a person than a token object or a secret, which can be lost or transferred. Automated

real-time biometric systems such as fingerprint or iris recognition have been successfully

deployed in several large-scale public applications, increasing reliability and convenience for

users, and reducing identity fraud. Usually the implementation of biometric algorithms is

carried out using high-performance microprocessors working at clock frequencies in the GHz

range. These devices are designed with an advanced architecture based on several pipeline

stages, cache memory, high-speed communication buses and additional units that facilitate rapid

execution of complex algorithms. On an Intel Pentium 4 at 3.2GHz, with 1GB of RAM

memory, the average execution time of a fingerprint recognition algorithm, including

enrollment and matching, is about 778 ms and on a similar microprocessor the computing time

for iris image analysis and creation of an IrisCode is about 30 ms [1][2]. However, such

software implementations could restrict the application of biometrics to specific markets due to

the microprocessor cost.

Devices available in the low-cost consumer market are generally too slow for applications

requiring intensive computations. For example, an iris recognition algorithm running on an

ARM922T at 160MHz executes in 3162 ms, which is about 80 times slower than the execution

of the same code on a high-performance microprocessor. The use of dedicated hardware is an

alternative for implementing operations that require high-speed parallel processing [3]-[12].

Additionally, outstanding results can be achieved if the structure of the algorithm allows the

hardware to employ several pipeline stages. For example, under certain conditions, an image

enhancement routine usually employed in a fingerprint recognition algorithm can be processed

in dedicated hardware faster than on a Pentium clocked at a frequency 30 times higher [7].

However, designing such a hardware solution is less justifiable for algorithms requiring floating

point computations or when sequential operations hinder the application of pipeline and

parallelism. In these cases, the area and the effort devoted to design the system might not be

justified by the benefits gained.

Architectures based on hardware-software co-design combine the advantages of both

 3

hardware and software solutions. Such systems contain an embedded microprocessor and

several dedicated hardware units connected via a communication bus. By offloading processor

intensive tasks to dedicated hardware and assigning operations that require high-speed serial

processing to the microprocessor, the performance and cost of the whole system are

substantially improved. For instance, this methodology has been successfully applied to

designing a biometric fingerprint verification system. That architecture, implemented on a

Virtex II FPGA, is composed of a general purpose fixed-point processor and a DFT (Discrete

Fourier Transform) hardware accelerator used to determine the dominant ridge flow direction.

Results show that the coprocessor permits a 55% and 60% execution time reduction for the

minutiae extraction and matching, respectively [8]-[10]. Other publications show similar

improvements when dedicated hardware units are used in order to implement different

fingerprint algorithms or systems based on other biometric modalities such as face or speaker

recognition [5][11][12].

The purpose of this paper is to describe an implementation of an iris recognition algorithm

based on a hardware-software co-design methodology, suitable for integration either in ASIC

(Application Specific Integrated Circuit) or FPGA. The experimental results reported in this

paper were obtained using a low-cost Spartan-3 FPGA clocked at 40 MHz.

This paper is organized in 5 sections. Section 2 reviews briefly the basic principles underlying

the iris recognition algorithm. Section 3 analyzes the functions involved in the algorithm,

assessing which ones are suitable to be executed on the microprocessor and which ones should

be implemented in dedicated hardware. Section 4 describes the internal structure of the

embedded system, and finally Section 5 presents the experimental results.

2. ALGORITHM REVIEW

The implemented iris recognition system is based on the algorithms developed by Daugman,

which are documented in [13]-[15]. These algorithms are the basis of all currently deployed iris

recognition systems and they will be only briefly reviewed here.

 4

The iris image is acquired usually within a distance of about 50 cm by a camera using

infrared light in the 700nm-900nm band and resolving about 100-200 pixels in iris diameter.

Specular reflections of the illumination on the cornea or eyeglasses are detected and removed,

and the boundaries of the iris are determined. Fig. 1 illustrates such a captured iris image, with

overlaid graphics showing the automated detection of the iris inner and outer boundaries as well

as its eyelid occlusion boundaries. The centers and radii of iris and pupil are approximated

initially by applying an integrodifferential operator that behaves as a circular edge detector:

∫∂
∂

yoxo,r, σyo)xo,(r, ds
2ππ

y)I(x,

r
*(r)Gmax (1)

where I(x,y) is the image that contains the eye, symbol * denotes convolution and)r(Gσ is a

smoothing function of scale σ. The operator is applied iteratively in a multi-scale, coarse-to-fine

strategy to converge rapidly on estimates of the three parameters of each circular model. Then,

the upper and lower eyelid boundaries may be described as quadratic or cubic splines, whose

parameters are estimated by statistical model-fitting techniques.

Following the initial approximation of the iris and pupil boundaries as circles for purposes of

iris localization, their actual shapes are recalculated using active contour models [2]. This finer

analysis allows a more precise description of these boundaries which are often significantly

non-circular (see Fig. 2). The box in the lower-left corner of Fig. 2 shows curvature maps for

the inner and outer iris boundaries. Dotted curves in the box and on the iris are Fourier series

approximations to the actual boundaries, enabling a flexible and appropriate coordinate system

to be embedded in the iris.

The defined region between the inner and outer boundary of the iris is normalized into a

doubly-dimensionless, not necessarily concentric, pseudo-polar coordinate system (r,θ), where r

lies in the unit interval [0,1] and θ is a cyclic angular variable over [0,2π]. This mapping

normalizes the iris and compensates for deformations caused by pupil dilation or constriction.

This mapping also achieves invariance to the user distance from the camera and to the position

of the eye. Let (((()))))(y),(x pp θθθθθθθθ and (((()))))(y),(x ss θθθθθθθθ be the set of points corresponding to the pupil

 5

and limbus (outer) boundaries. The generalized, non-concentric coordinate system can be

described as the following linear combination:








 −−−−









θθθθθθθθ
θθθθθθθθ

====








θθθθ
θθθθ

r

r1
.

)(y)(y

)(x)(x

),r(y

),r(x

sp

sp (2)

Once the iris has been segmented from the image and mapped into normalized dimensionless

coordinates, the iris texture is encoded into an IrisCode through a process of demodulation that

extracts phase sequences. The IrisCode contains 2048 data bits, derived by projecting local

regions of the iris onto quadrature 2-D Gabor wavelets. Additionally, a mask array of the same

size is computed to mark those bits obscured by eyelids, eyelash occlusions detected by

statistical inference, or corneal reflections. After this encoding stage, the iris template can be

stored or matched against a database that contains previously enrolled templates. The matching

engine is based on computing the Hamming distance (fraction of disagreeing bits) between two

different IrisCodes gated by their associated mask vectors. This search engine mainly performs

simple Boolean operations using XOR and AND gates that can be implemented with large bit-

wise parallelism either on a microprocessor or in dedicated hardware.

The algorithm discussed in this paper has been tested on a database of 632,500 different iris

images, leading to 200 billion pair comparisons proving extreme robustness against false

matches [2][13]. For example, with a Hamming distance threshold of 0.30 the observed false

match rate was 1 in 8 million, and at a threshold of about 0.25 the false match rate was 0 in 200

billion.

3. PROFILING AND HARDWARE-SOFTWARE PARTITIONING

3.1 Architecture description

Fig. 3 shows the generic architecture of a system based on hardware-software co-design. The

system consists of a microprocessor acting as master that manages the organized execution of a

program, the communication between input/output devices and the control of information

through the system’s buses [16].

 6

Hardware coprocessors cooperate actively with the software application executed on the

microprocessor and are designed to provide a specific functionality regarding some part of the

application. The degree of complexity of the functionality depends on the architecture

partitioning level, which can range from simple operations or instructions (fine granularity) to

complex processes related to functions or routines (coarse granularity). In any case, the

partitioning task consists in determining which parts of the system are best suited for execution

by software or for synthesis in dedicated hardware, in order to satisfy a set of constraints and

goals such as performances, cost or area.

Partitioning can be considered from two different viewpoints. A software-oriented approach

initially considers the whole application as running on the microprocessor. In the partitioning

process, parts of the software application whose sizes depend on the granularity of the

partitioning are moved to hardware until constraints are met. Conversely, in a hardware-oriented

approach the migration is done in the reverse direction, from hardware to software [17]. In our

particular case, given that the whole algorithm exists in ANSI C, the partitioning process is

undertaken with a software-oriented approach. Since the arithmetic operations (integer or float)

and the programming structure at block and control level are different in each function, a fine-

grained partitioning would entail designing a large number of dedicated hardware units, which

requires major design effort and excessive area for system implementation. The hardware-

software partitioning discussed in this paper is carried out at function level. The advantage of a

coarse-grained partitioning is that it requires a small number of hardware coprocessors and

reduces communication delays.

3.2 Design criteria for hardware-software partitioning

Determining which functions described in section 2 are most suited for hardware

implementation depends on the following design criteria:

• Time needed by the microprocessor to execute a function as a percentage of the execution

time of the whole algorithm.

 7

• Hardware speed-up factor (acceleration), defined as the ratio of execution times of software

to hardware implementations.

• Complexity of hardware design and need to incorporate specific IP cores (reusable units of

logic used as building blocks in FPGA or ASIC designs) for certain arithmetic operations.

The percentage of the total execution time consumed by each function was directly calculated

running the algorithm on four different processors. The first one is an Intel Centrino 1.7 GHz, a

high-performance microprocessor suitable for use in applications that manage a database with

hundred of thousands of users (e.g. airport check-points), and where the microprocessor cost

and its power consumption are not relevant factors. The second profile was obtained using a 32-

bit ARM922T at 160 MHz, a medium-performance microprocessor whose architecture is the

most widely employed in consumer electronics such as mobile phones and PDAs [18]. The third

microprocessor chosen to evaluate the execution times was an Intel Pentium at 133 MHz. This

device is currently used by the PIER handheld camera, a commercial portable device for iris

recognition developed by Securimetrics [19]. The last benchmark was obtained using

Microblaze at 40 MHz, a soft-core microprocessor developed by Xilinx suitable for designing

embedded systems, allowing easy connection of custom coprocessors [20].

On the other hand, predicting the acceleration ratio (speed-up factor) between software and

hardware implementations is an elaborate process. In order to illustrate the process that we

proposed in this paper for estimating the execution time of a function implemented in hardware,

let us consider the simple piece of code shown in Fig. 4.a. (For clarity, Fig. 4.b shows a semi-

unrolled version of the same code). This example code is a nested loop that calculates the

variance of an image of size NxM pixels (8-bit grey-level). The hardware implementation of

this code basically requires several adders, one multiplier and a memory controller that manages

access to the image located in external SRAM memory (usually the size of an image requires

that it resides outside the FPGA). Any operation can be carried out in one clock cycle, except

memory reading which needs two cycles. We assume that hardware is configured with only one

external memory. Under this assumption the most critical resource in terms of time

 8

consumption is the memory access (implemented by means of a memory controller) that limits

the best timing performance to 2*N*M cycles.

The key to achieving execution time as near as possible to this limit is to design pipelined

hardware that prioritizes memory access. In Fig. 4.b, the inner loop associated with index j

contains six operations that are distributed in two groups (the number of groups coincides with

the latency in cycles of the critical resource). The operations involved in each group are

calculated in parallel, according to the scheduling scheme shown in Fig. 5. Clearly the

approximate hardware execution time is 2*N*M cycles.

The method of estimating execution time shown in this example can be formulated in a

general way as follows:

• Given a function, finding its most time-consuming operation. The total time consumed by

this resource is equal to the number of times that the resource is used multiplied by its

associated latency (number of cycles needed by the resource to give a result).

• When several independent loops are present in the function, the total time consumed is the

sum of their individual time consumptions.

• Coprocessors are able to read and write directly in external SRAM, by means of a memory

controller that allows one access every two clock cycles (only one memory controller is

available).

• Additions, subtractions and multiplications involving integer operands are carried out in one

clock cycle (multiplications are implemented by using the specific internal hardware

multipliers of the FPGA).

• Integer division requires a number of clock cycles equal to the bit length of the operands.

Unlike multiplication, this block cannot be directly synthesized on the FPGA and requires

design of a specific arithmetic unit for its implementation.

• The number of clock cycles required for floating point operations is given in Table I.

 9

Latencies and hardware resources presented in this table have been obtained from the

single-precision floating point core designed by Xilinx [21]. Note as the multiplication

requires less cycles and area than the addition due to the internal hardware multipliers

available on Spartan 3.

TABLE I

AREA AND NUMBER OF CYCLES FOR OPERATIONS WITH SINGLE-PRECISION FORMAT ON SPARTAN 3E FPGA

Floating-point operation Cycles
LUTs

(Look-up table)

FFs

(Flip-flops)

Add/Sub 13 580 591

Multiplication 6 185 275

Division 28 234 229

Sqrt (square root) 28 214 206

Fixed to float conversion 6 221 227

Float to fixed conversion 5 251 237

3.3 Hardware-software partitioning based on Microblaze

Tables II and III show the execution times for the microprocessors detailed in section 3.2, for

the enrollment and matching processes, for verification and identification mode, respectively, as

well as the percentage that each function represents of the total execution time of the algorithm.

These results have been obtained using images with 640x480 pixels. Note that these results

depend strongly on the specific architecture of each microprocessor, the presence of a floating

point unit (FPU), the distribution of the executable code between on-chip and external memory

and the functions and parameters used to solve the algorithm. The profiler provides execution

times for each function, but only data obtained with Microblaze are considered for hardware-

software partitioning, since this is the microprocessor actually used to build the embedded

system.

Intel Centrino is by far the fastest microprocessor, executing all the functions in less than 40

ms. The execution time on ARM922T is 3162 ms, which is about 18% slower than Microblaze

working at a clock frequency four times lower. Note as the ARM922T architecture used in this

 10

paper lacks a floating point unit (basically to save on power and area when using ARM in low-

cost applications), unlike more advanced architectures in the same family [18]. This fact has a

significant influence on the execution time of those functions using floating-point operations.

TABLE II

EXECUTION SPEEDS OF VARIOUS FUNCTIONS IN THE IRIS RECOGNITION ALGORITHM RUNNING ON FOUR DIFFERENT

MICROPROCESSORS

Function name

Time / % percentage

Centrino 1.7GHZ

1MB Cache

External 512 MB
DDRAM

ARM922T 32-bit
160MHz

On-chip 40kB
BRAM

External 32MB
SDRAM

Pentium 133MHz

8kB+8kB Cache

External 65 MB

SDRAM

Microblaze 32-bit
40MHz

On-chip 64kB
BRAM

External 2MB
SRAM

Scrub specular reflections 4,5 ms/ 11.4% 85 ms / 2.7% 117 ms / 10.5% 334 ms / 12.9%

Localize iris 14.4 ms / 36.6% 670 ms / 21.2% 447 ms / 40.2% 1157 ms / 44.7%

Localize pupil boundary 6.4 ms / 16.3% 280 ms / 8.8% 198 ms / 17.8% 369 ms / 14.2%

Detect and fit eyelids 1.8 ms/ 4.6% 95 ms / 3.1% 34 ms / 3.1% 113 ms / 4.4%

Fine-tune models of iris
inner & outer boundaries

7.3 ms / 18.6% 1870 ms / 59.1% 210 ms / 18.9% 440 ms / 17.0%

Dimensionless sampling 0.85 ms / 2.2% 10 ms / 0.32% 37 ms / 3.3% 43 ms / 1.6%

Remove eyelashes 0.75 ms / 1.9% 12 ms / 0.38% 23 ms / 2.1% 32 ms / 1.2%

Create IrisCode 3.3 ms / 8.4% 140 ms / 4.4% 46 ms / 4.1% 103 ms / 4.0%

Overall algorithm 39.3 ms / 100% 3162 ms / 100% 1112 ms / 100% 2591 ms / 100%

TABLE III

EXECUTION TIMES OF THE MATCHING ENGINE RUNNING ON FOUR DIFFERENT MICROPROCESSORS FOR VERIFICATION AND

IDENTIFICATION AGAINST A DATABASE OF 512 IRISCODES

Function name
Time

Hw/Sw
Centrino 1.7GHZ ARM922T 160MHZ Pentium 133MHZ Microblaze 40MHz

Verification 60 µs 580 µs 535 µs 1.32 ms Sw

Identification 2.4 ms 68 ms 61 ms 131.7 ms Sw

The ISE design suite 10.1, the Xilinx software used to build the system, allows the integration

of Microblaze 7.10.d configured with an IEEE-754 compatible single-precision floating point

unit. In contrast to previous versions of the same microprocessor, its FPU allows a cast between

 11

float and integer signed type (and vice versa) by means of a single assembler instruction. These

and other floating point operations are frequently used in some functions of the iris algorithm,

which permits Microblaze to compensate for its much lower clock frequency by more efficient

execution of these computations. As we will see later in section 4, to speed-up the execution

time we have designed our own memory controller to access the external SRAM memory. This

memory controller prevent the configuration of Microblaze with cache memory that is only

compatible when using a Multi-Cannel OPB controller specifically designed by Xilinx. On the

other hand, the Pentium clocked at 133 MHz executes the overall algorithm in 1112 ms. Note

that the ratio between the clock frequency of this microprocessor and Microblaze is 3.325, but

the execution is only 2.33 times faster.

Table IV presents the execution time of a potential hardware implementation using our

estimation method and the acceleration ratio between software and dedicated hardware based on

the profiler provided with Microblaze. The accuracy needed in some operations, and primarily

the wide dynamic range of some variables used in some functions shown in Table II, force such

variables to be defined as floats. The hardware design of these functions requires incorporating

a dedicated floating point unit different from the FPU available on the microprocessor. There

are some vendors of IP cores that provide reliable designs of FPUs easily adaptable to particular

custom requirements. This option simplifies the design effort but generally is only valid for a

specific technology related to a FPGA family and manufacturer. Another possibility is to design

our own floating point unit, usually at low-cost but adding a major complexity and offering

poorer performance. An additional factor to be considered is the extra area needed for inclusion

of this core. In the floating point unit presented in Table I, this area basically depends on the

latency associated with the operations and the bit width of the operands, occupying

approximately 840 CLB slices. As the next section will show, this result is similar to the area

needed by the iris and pupil localization coprocessors. Due to these disadvantages, generally the

inclusion of a floating point unit as part of a coprocessor is only justifiable when functions

represent a high percentage of the total execution time and when such a design substantially

 12

improves the acceleration ratio between software and hardware implementations.

The subroutines to remove eyelashes, to detect and fit eyelids, to perform dimensionless

sampling and to create the IrisCode, are executed on the microprocessor. Note that these

functions mainly contain floating point operations, they represent a reduced percentage of the

total execution time (each one less than 5%) and their theoretical acceleration ratio is fairly low

(less than 6 as table IV shows). Conversely, the subroutines to scrub specular reflections and to

localize the iris and pupil boundaries are suitable for hardware implementation. These functions

contribute substantially to the total execution time (together they represent about the 71% of the

total time), they are based on integer arithmetic operations and they have an acceleration ratio

higher than 11 compared with their software execution.

TABLE IV

CRITICAL RESOURCE, ESTIMATION TIME, HARDWARE ACCELERATION AND HW/SW PARTITIONING

Function name
Critical
resource

Operations involved
in the function
(Integer or/and

floating)

Estimated
time

Acceleration
ratio

Hw/Sw

 Scrub specular reflections Mem. Access Int: add,div,mult 18.9 ms 17.7 Hw

Localize iris Mem. Access Int: add,mult 69.5 ms 16.6 Hw

Localize pupil boundary Mem. Access Int: add,div,mult 32.5 ms 11.3 Hw

Detect and fit eyelids Mem. access +
floating point

Int: add,mult

Float:
add,div,mult,sqrt

24.9 ms 4.5 Sw

Fine-tune iris
inner and outer

boundaries (active
contours)

Integer Mem. Access Int: add,div 35.8 ms 10.2 Hw

Floating
point

Floating point Float: add,div,mult 56.9 ms 1.2 Sw

Dimensionless sampling Mem. access +
floating point

Int: add,mult 7.9 ms 5.4 Sw

Remove eyelashes Mem. access +
floating point

Int: add,mult

Float: add,div,mult

5.4 ms 5.9 Sw

Create IrisCode Mem. access +
floating point

Int: add,mult,div

Float: add,div,mult

28.7 ms 3.6 Sw

The active contours function (fine-tuning of the inner and outer iris boundaries) presents a

significant computational cost when executed on the Microblaze microprocessor. However, its

 13

implementation requires a floating point unit. A deeper analysis shows that this function can be

divided into two different parts. The first one contains only integer operations whereas the

second one mainly uses floating point computations. On the other hand, their execution times as

a percentage of the global function are significantly different (83.5% and 16.5% for the integer

and floating part, respectively). Likewise, the procedure for estimating execution time reveals

important differences in the acceleration ratio, which is about 10.2 times and 1.2 times for the

integer and floating point parts, respectively. Thus, for this function with these particular

features we propose a partitioning into two blocks with a hardware implementation for the

integer part and a software execution for the floating point part. Table IV summarizes the

proposed hardware-software partitioning of the whole IrisCode algorithm (enrollment phase).

The execution time of the search engine (the matching phase) depends on the size of the

database that contains N IrisCodes associated with N different iris images. In a verification

process (N=1), whose aim is to confirm or deny a particular asserted identity, the execution time

for the matcher on the 40 MHz Microblaze is 1.32 ms (genuine user). In an identification

process for recognizing a person by exhaustively searching a list of previously enrolled users,

the execution time on the same device is 131.7 ms for a search database containing 512

IrisCodes. In identification mode (searching the whole database), IrisCode bytes are

undersampled to speed-up the comparisons by pre-qualifying only good candidate matches for

fully detailed comparison. This speed-up is important in large databases because the IrisCode

comparisons must be done in each of many orientations, usually 21 rotations, since the actual

tilt angles of heads and eyes are not known in advance. It is appropriate for the search and

matching function to be executed by software since it is already so efficient, but if databases

grew to the scale of national populations then clearly a dedicated hardware implementation

would be appropriate.

4. HARDWARE DESING

The overall internal structure of the system is depicted in Fig. 6. Microblaze accesses data and

instructions by means of a dedicated bus called LMB (Local Machine Bus), which connects the

 14

microprocessor to an internal dual-port 64Kbyte RAM memory that requires at least two clock

cycles for reads and for data writes. The limited size of on-chip memory forces long arrays and

images to reside in external 2Mbyte SRAM, which is connected through a memory controller to

an OPB bus (On-chip Peripheral Bus). This bus is based on the standard CoreConnect of IBM,

whose speed is limited by off-chip memory access delays or bus arbitration overheads resulting

in five to seven clock cycles per read.

The external SRAM memory is a common resource shared by the microprocessor and the

coprocessors. The system was designed so that the coprocessors have direct access to external

memory, without requiring use of the OPB bus. This design is more efficient, since

coprocessors can read and write faster (2 clock cycles) and thereby avoid delays due to bus

communication overheads. Since we adopted a coarse-grained hardware-software partitioning,

these overheads are mainly due to the communication established between Microblaze and the

four dedicated coprocessors, which can be considered negligible compared to the total execution

time.

Any peripheral connected to the OPB bus has associated a memory space ranging from a base

address, which establishes its lower bound, to a high address upper bound. The system

architecture has been designed in such a way that coprocessors and RAM memory share the

same memory space. This feature requires an arbitration mechanism that allows the

microprocessor to establish a bidirectional communication with SRAM memory and

coprocessors. This mechanism must consider the following scenarios:

• The microprocessor reads or writes to external memory and requires control of the input

lines of the memory controller.

• The microprocessor sends information to coprocessors, such as image pointers or data,

necessary for executing a function implemented in hardware.

• The coprocessor is activated by means of a signal generated by the microprocessor through

the OPB bus.

 15

• An activated coprocessor takes control of the memory controller in order to read or write in

external SRAM memory.

• The coprocessor finishes execution of a function and the microprocessor reads the returned

information through the OPB bus.

The input lines of the memory controller are managed by a multiplexer that assigns their

control depending on signal select, which is generated by means of a decoder that considers the

OPB bus signals read/write and address. The first four positions in memory are reserved as

registers for exchanging information between microprocessor and coprocessors. As the decoder

truth table of Fig. 7 shows, when the microprocessor writes on SRAM memory

(W/R_OPB and SRAM_select have value 1) the multiplexer directly connects the controller

input lines to the OPB bus. In this working mode, the microprocessor takes control of memory

and is able to transmit information to the coprocessors using the reserved memory positions, or

to write to the rest of memory. Moreover, when the microprocessor reads from memory

(W/R_OPB and SRAM_select take value 0 and 1, respectively) two different situations can

arise. If the microprocessor addresses one of the reserved memory positions (signal

Copro_select equal to 1), the two least significant bits of the address line determine the

coprocessor that must be activated. Once the calculation is finished the result is placed in the

proper reserved memory position and is read and used as a parameter for subsequent stages. In

contrast, if a non-reserved address is selected (signal Copro_select equal to 0), the multiplexer

assigns the input lines of the controller to the microprocessor so that it can read from external

memory.

5. EXPERIMENTAL RESULTS

The coprocessors were defined in the VHDL high-level description language and were

implemented using the EDK (Embedded development kit) software package of Xilinx.

Experimental results were obtained with the AVNET hardware development board that contains

a Xilinx FPGA Spartan 3 XC3S2000, 2MB of SRAM memory and several communication

 16

peripherals [22].

Table V presents the area occupied by each coprocessor and its maximum clock frequency

due to the critical path. These results were obtained using the Leonardo Spectrum synthesis tool,

selecting a Spartan 3 FPGA [23]. Table VI shows the execution times of functions whether

implemented by software or hardware, given a clock frequency of 40MHz. The system needs

522.6 ms to culminate in an IrisCode, which is about 5 times faster than the software-only

solution presented in Table II. Since the clock frequency is 40MHz, the iris code is created in

20.9 Megacycles. As Table II shows, the same processing is done using an Intel Centrino at 1.7

GHz in 66.81 Megacycles, which is about 3.2 times the number of cycles needed by our system.

On the other hand, our implementation is 2.12 faster than the execution of the whole algorithm

on a Pentium 133 MHz, the current microprocessor used by the PIER handheld camera

developed by Securimetrics.

The capture of the iris by most cameras is a process that requires active user cooperation in

order to obtain an good quality image. The average time needed to position an eye in the right

place and distance from the camera is typically about 2 seconds. Consequently, using our

proposed implementation the time needed to create the IrisCode is less than 27% of the total

time for the identification process.

TABLE V

AREA AND MAXIMUM CLOCK SPEED OF EACH COPROCESSOR

Function name Area occupied (CLB slices) Maximum clock speed

Scrub specularities 453 80.7 MHz

Localize iris 797 89.3 MHz

Localize pupil boundary 981 69.7 MHz

Active contours (hardware) 1342 70.9 MHz

Table VI also shows that the acceleration ratios (comparing software and hardware

implementations) are in all cases greater than a factor of 10, which represents an important

improvement and a substantial reduction of the processing time. The function to scrub specular

reflection achieves the greatest ratio (maximum speed-up), almost 17 times faster than its

 17

software execution. The functions iris and pupil location have also a significant acceleration

ratio of 15.5 and 10.9, respectively. Moreover, the function active contours also achieves an

important acceleration. As noted previously, this subroutine uses a mixed hardware-software

solution with part of the function running on the microprocessor and the rest implemented in a

dedicated coprocessor. The software part has an execution time of 72.6 ms, whereas the

coprocessor needs only 36 ms for the operations that were the most computationally expensive

in the hardware-software partitioning analysis.

TABLE VI

EXECUTION TIMES FOR SOFTWARE FUNCTIONS AND HARDWARE COPROCESSORS AND ACCELERATION RATIO WORKING AT A

CLOCK FREQUENCY OF 40MHZ

Function name Hardware/software execution time Acceleration

Scrub specular reflections 19.6 ms (Hw) 17.04

Localize iris 69.8 ms (Hw) 15.57

Localize pupil boundary 33.6 ms (Hw) 10.98

Detect and fit eyelids 113 ms (Sw) --

Active contours to fit iris inner & outer boundaries 36ms (Hw) +72.6 ms (Sw) =108.6 ms 10.20

Dimensionless sampling 43 ms (Hw) --

Remove eyelashes 32 ms (Sw) --

Create IrisCode 103 ms (Sw) --

Overall algorithm 522.6 ms

TABLE VII

ACTUAL AND ESTIMATED HARDWARE EXECUTION TIMES AND PERCENT VARIANCE

Function name Actual execution time Estimated time % Error

Scrub specular reflections 19.6 ms 18.9 ms 3.5%

Localize iris 69.8 ms 69.5 ms 0.4%

Localize pupil boundary 33.6 ms 32.5 ms 3.2%

Active contours to fit iris inner & outer boundaries 36ms 35.8 ms 0.5%

Table VII shows actual execution times of those functions implemented by hardware and also

their execution times as predicted by the estimation procedure presented in section 3. The Table

 18

also shows the percent variance between the speeds in order to document the accuracy of the

estimation method. Note that the maximum value for this error is less than 4%, with the most

accurate estimate erring by only 0.4%.

6. CONCLUSIONS

Low cost and rapid response times are important parameters for practical authentication

systems. Usually developers of biometric algorithms assume that hardware platforms have

enough computational capability to execute the algorithms with acceptable speed, using in most

cases high-performance and high-cost microprocessors. The main purpose of the work described

in this paper was to implement an iris recognition algorithm using a low-cost FPGA. The design

methodology was based on a hardware-software co-design, as a viable alternative to the

traditional approach based only on software.

The system architecture consists of a 32-bit general purpose microprocessor and several

dedicated hardware units. The microprocessor executes in software the less computationally

intensive tasks, whereas the coprocessors speed-up the functions that have higher computational

cost. Design criteria for hardware-software partitioning were based on the profiler, the proposed

method for estimating the hardware execution time, and the need to incorporate specific cores.

The simple method proposed in this paper for estimating the execution time of a function, gives

beforehand a valuable information to decide about the convenience of its implementation in

hardware. Depending on the function implemented, the designed coprocessors speed-up the

processing time in all cases by a factor greater than 10 compared to its software execution. The

profiler was obtained by executing the iris algorithm on four microprocessors, with different

performances and features such as clock frequency, internal and external memory or floating-

point unit availability. Except for the high-performance microprocessor, the execution time was

in all cases above 1100 ms with a maximum operating frequency of 160 MHz.

The proposed hardware-software co-design was implemented on a low-cost Spartan 3 FPGA.

Results show that with a clock frequency of 40MHz the system is able to execute the entire iris

 19

recognition algorithm in 522.6 ms from an image of 640*480 pixels. The best exclusively

software solution implemented on a microprocessor as Pentium 133 MHz gave an execution

time of 1112 ms, which is about 2.12 times slower than our system operating at a clock

frequency 3.3 times lower.

REFERENCES

[1] Fingerprint Verification Competition 2006 (FVC2006). Available: http://bias.csr.unibo.it/fvc

[2] Daugman, J. G.: “Probing the uniqueness and randomness of IrisCodes: Results from 200

billion iris pair comparisons,” Proceedings of the IEEE, vol. 94, no. 11, Nov. 2006, pp 1927-

1935.

[3] Ratha N., Rover D. and Jain A. K.: “An FPGA-Based point pattern matching processor with

application to fingerprint matching,” CAMP ’95, Italy, 1995, pp. 394-401.

[4] Ratha N., Rover D. and Jain A. K.: “Fingerprint Matching on Splash 2,” FPGAs in a

Custom Computing Machine, D. Buell, J. Arnold and W Kleinfolder (eds.) IEEE Computer

Society Press, 1996, pp. 117-140.

[5] Cantó E., Canyellas N., Fons M., Fons F., López M.: “FPGA Implementation of the Ridge

Line Following Fingerprint Algorithm,” Proceedings of the 14th International Conference on

Field-Programmable Logic and Applications (FPL'2004), Springer-Verlag LNCS 3203, pp.

1087-1089, Antwerp, Belgium, August/September 2004.

[6] Fons M., Fons F., Cantó E., López M.: “Hardware-Software Co-design of a Fingerprint

Matcher on Card,” Proceedings of the 2006 IEEE International Conference on Electro

Information Technology (EIT'2006), Michigan, USA, May 2006

[7] Lopez M., Cantó E. and Fons M.: “Hardware-software co-design of a fingerprint image

enhancement algorithm,” 32nd Annual Conference of the IEEE Industrial Electronics, Paris,

France, Nov. 2006.

 20

[8] Yang S., Sakiyama K. and Verbauwhebe I.: “A Compact and Efficient Fingerprint

Verification System for Secure Embedded Devices,” IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP 2005), March 2005, pp. 609-612.

[9] Yang S., Sakiyama K. and Verbauwhebe I.: “Efficient and Secure Fingerprint Verification

for Embedded Devices,” EURASIP Journal on Applied Signal Processing, vol.2006, no.3, pp.

1-11, 2006

[10] Schaumont P., D. Hwang D., Verbauwhede I.: “Platform-based design for an embedded

fingerprint authentication device,” IEEE Transactions on Computer Aided Design of Integrated

Circuits and Systems, Vol. 24, no. 12, pg. 1929-1936, Dec 2005.

[11] Hung-Chih Lai, Savvides M., Tsuhan Chen, “Proposed FPGA Hardware Architecture for

High Frame Rate (≫100 fps) Face Detection Using Feature Cascade Classifiers,”;

Biometrics: Theory, Applications, and Systems, 2007. BTAS 2007. First IEEE International

Conference on, pp. 1-6, Washington, EE.UU, Sept. 2007

[12] Ramos R., López M., Cantó E., Rodriguez L.: “SVM Speaker Verification System based

on low-cost FPGA”, Proceedings of the 19th International Conference on Field-Programmable

Logic and Applications (FPL'2009), pp. 582-586, Prague, Czech Republic, August/September

2009.

[13] Daugman, J. G.: “How iris recognition works,” IEEE Trans. Circuits Syst. Video

Technology, vol. 14, no. 1, pp. 21-30, Jan. 2004.

[14] _____, “New Methods in Iris Recognition”, IEEE Trans. Systems, Man, and Cybernetics –

Part B: Cybernetics, vol. 37, no. 5, Oct. 2007, pp. 1167-1175.

[15] _____, “The importance of being random: Statistical principles of iris recognition,” Pattern

Recognition, vol. 36, 2003, pp. 279-291.

[16] Gupta R. K. and De Michelli G.: “Hardware-Software co-synthesis for Digital Systems,”

IEEE Design and Test of Computers, Sep. 1993, pp. 29-41.

 21

 [17] Henkel J. and Ernst R.: “An Approach to Automated Hardware/Software Partitioning

using a Flexible Granularity that is Driven by High-Level Estimation Techniques,” IEEE

Transactions on Very Large Scale of Integration Systems, Vol. 9, No. 2, April 2001, pp. 273-

289.

[18] Furber Steve: “ARM system-on-chip architecture”, Second edition, Addison Wesley, 2000

[19] PIERTM 2.4 Specifications, http://www.l1id.com/pages/148-specifications

[20] MicroBlaze Processor Reference Guide. Available: http://www.xilinx.com/support/

[21] Floating Point Operator v3.0, Xilinx LogicCore. Available:

http://www.xilinx.com/products/ipcenter/floating_pt.htm

[22] Xilinx® Spartan™-3 Development Kit User Guide. Available: https://www.em.avnet.com

[23] Mohamed Aslam Ali: “Leonardo Spectrum Getting Started Features Document,”

Available: http://www.mentor.com/products/fpga_pld/synthesis/leonardo_spectrum/index.cfm

 22

List of figure captions:

Fig. 1. Example of iris image, with graphics indicating results of localization of the

inner and outer boundaries and eyelids. The bit stream in the top left results from

demodulation by 2D Gabor wavelets to encode the iris pattern as a phase sequence.

Fig. 2. Illustration of non-circular boundaries for iris and pupil.

Fig 3.- General structure of a system based on hardware-software co-design.

Fig 4.- a) Algorithm for calculating the variance of an image of size NxM pixels, b)

Unrolled version for hardware scheduling.

Fig 5.- Pipelined hardware scheduling

Fig 6.- Internal hardware structure of the system.

Fig 7.- Generation of signal select for multiplex management

 23

Fig. 1. Example of iris image, with graphics indicating results of localization of the inner and outer

boundaries and eyelids. The bit stream in the top left results from demodulation by 2D Gabor wavelets to

encode the iris pattern as a phase sequence.

Fig. 2. Illustration of non-circular boundaries for iris and pupil.

 24

General
purpose

processor

Memory I/O
device

Coprocessor
1

Coprocessor
N

bus

Fig 3.- General structure of a system based on hardware-software co-design.

// mean represents the average image intensity
// im is the image pointer

int variance (unsigned char* im, unsigned char mean) {
int i,j,irow,sum;

sum=0;
irow=0;

for (i=0; i<N; i++){
for (j=0; j<M; j++) {

sum+=((im [irow+j]-mean) * (im [irow+j]-mean));
}

irow+=M;
}

return(sum/(N*M));
}

// mean represents the average image intensity
// im is the image pointer

int variance (unsigned char* im, unsigned char mean) {
int i,j,irow,sum,pixel,image,dif,pow;

sum=0; irow=0;
for (i=0; i<N; i++){

for (j=0; j<M; j++) { // (operation 1, group 1)
pixel=irow+j; // (operation 2, group 2)
image=im [pixel]; // (operation 3, group 1 & group 2)
dif=image-mean; // (operation 4, group 1)
pow=dif * dif; // (operation 5, group 2)
sum+=pow; // (operation 6, group1)

}
irow+=M;
}
return(sum/(N*M));
}

Fig 4.- a) Algorithm for calculating the variance of an image of size NxM pixels, b) Unrolled version for

hardware scheduling.

 25

j=j+1
Calculation

(irow+j)0

im0=read pixel 0
(cycle 1)

j=j+1

dif0= im0- mean pow0= dif0* dif 0 dif1= im1- mean

j=j+1

pow1= dif1* dif 1

sum=
sum+ pow0

sum= 0

dif2= im2- mean

j=j+1

sum=
sum+ pow1

CLK

Cycle

Initial latency of 5 cycles

Calculation
(irow+j)1

Calculation
(irow+j)2

Calculation
(irow+j)3

Operations
of group 1

Operations
of group 2

j=0 im0=read pixel 0
(cycle 2)

im1=read pixel 1
(cycle 1)

im1=read pixel 1
(cycle 2)

im2=read pixel 2
(cycle 1)

im2=read pixel 2
(cycle 2)

im3=read pixel 3
(cycle 1)

Fig 5.- Pipelined hardware scheduling.

Coprocessor
1

Processor
µBlaze

BRAM
Memory

LMB
Bus

0x00000000

0x0000FFFF

O
P

B
 B

us

SRAM
Controller

SRAM
Memory

M
U

X

0

4

OPB bus

Coprocessor
2

Coprocessor
4

1
2

0x00000000

0x001FFFFF

addrr

data

control

data_out

3

3

32

21

select

32

0x00000001

0x0000FFFE

0x00000003

0x001FFFFE
0x001FFFFD

Reserved for
coprocessors

Fig 6.- Internal hardware structure of the system.

 26

x<=y

x

y

x<=y

x

y

OPB_addrr

SRAM_base_address

SRAM_high_address

SRAM_select
Decoder

6x3
3

selectOPB_R/W32

32

32

00xxx xxx (address out of range)
01xxx 000 (microprocessor)
10xxx xxx (not possible)
111xx 000 (microprocessor)
11000 001 (copro. 1)
11001 010 (copro. 2)
11010 011 (copro. 3)
11011 100 (copro. 4)

selectInput

OPB_addrr(1)

OPB_addrr(0) (LSB)
LSB

MSB

x means don’t care

Decoder truth table
x<=y

x

y

SRAM_base_address+3

32

Copro_select (MSB)

Fig 7.- Generation of signal select for multiplex management

