
This is a postprint version of the following published document:

González Vasco, M. I., Pérez del Pozo, A. L., &
Suárez Corona, A. (2018). Group key exchange
protocols withstanding ephemeral‐key reveals. IET
Information Security, 12(1), 79-86.

DOI: 10.1049/iet-ifs.2017.0131

© 2020 The Institution of Engineering and Technology

https://doi.org/10.1049/iet-ifs.2017.0131

Group key exchange protocols withstanding
ephemeral-key reveals

Marı́a Isabel González Vasco1 and Ángel L. Pérez del Pozo1 and Adriana Suárez Corona2

December 2, 2023

Keywords: Group Key Exchange, Compiler, Ephemeral Keys, Strong Security.

Abstract
When a group key exchange protocol is executed, the session key is typically

extracted from two types of secrets; long-term keys (for authentication) and freshly
generated (often random) values. The leakage of this latter so-called ephemeral
keys has been extensively analyzed in the 2-party case, yet very few works are
concerned with it in the group setting. We provide a generic group key exchange
construction that is strongly secure, meaning that the attacker is allowed to learn
both long-term and ephemeral keys (but not both from the same participant, as this
would trivially disclose the session key). Our design can be seen as a compiler,
in the sense that it builds on a 2-party key exchange protocol which is strongly
secure and transforms it into a strongly secure group key exchange protocol by
adding only one extra round of communication. When applied to an existing 2-
party protocol from Bergsma et al., the result is a 2-round group key exchange
protocol which is strongly secure in the standard model, thus yielding the first
construction with this property.

1 Introduction
Group key establishment (GKE) protocols are a fundamental cryptographic building
block allowing n ≥ 2 participants to agree upon a common secret key. It is usually as-
sumed that these participants hold both long-term secrets, which are typically used for
authentication and ephemeral secrets, which are session-specific randomly generated
values that provide enough entropy for the key to be indistinguishable from random in
some sense.

The way to define and handle key privacy in GKE is highly dependent on the
amount of information the adversary is supposed to obtain from the two types of se-
crets described above. In the literature, leakage of ephemeral secrets is often modeled

*1MACIMTE, Universidad Rey Juan Carlos,
C/Tulipán, s/n, 28933 Móstoles, Spain. 2Research Institute of Applied Sciences in Cybersecurity (RIASC),
Departamento de Matemáticas, Universidad de León,
Campus de Vegazana s/n, 24071 León, Spain. mariaisabel.vasco@urjc.es,
angel.perez@urjc.es, asuac@unileon.es

2

through a RevealState oracle, which when invoked by the adversary outputs either
ephemeral keys as described above or a larger set containing them, typically referred
to as the full state of the attacked user. Unfortunately, as first pointed out by Cremers
in [17], the meaning of full state is scarcely defined within the security model and of-
ten the output of the corresponding oracle calls is only made explicit when proving
particular protocols secure. Generally speaking, ephemeral key leakage refers to the
exposure of user-generated fresh randomness, while full state compromise involves in
addition other values computed/stored by the user —yet never any long-term keys.

Previous work. Strong security for GKE protocols was first considered by Bresson
and Manulis in [9]. As it is also the case with subsequent proposals dealing with this
type of leakage [8, 25, 27], in that paper it is assumed that the adversary can not access
any ephemeral secret of the attacked session.

In order to subsume a wider class of attacks, other works have removed this restric-
tion excluding only reveals of both the ephemeral and long-term secrets of the same
user (as, in this case, the session key would be trivially disclosed). Some examples
of secure proposals along these lines are the NAXOS protocol [36] in the 2-party set-
ting and [37, 21] for the case of 3 users. In the general multi-user group setting Zhao
et al. [44] modified a protocol by Bohli et al. [6] to obtain strong security. This pro-
posal was however found flawed in [15] where an improvement was proposed, which
is proven secure in the random oracle model.

Many of these previous works have in common that the access to the ephemeral
secrets is modeled granting the adversary a RevealState oracle, which, when queried,
outputs the contents of a variable state linked to the execution. As pointed out by
Cremers [17], the security in these models is highly dependent on how the state vari-
able is defined for each concrete protocol. In addition Cremers shows that the NAXOS
protocol, proven secure in the model with a different formalism (namely, defining a so-
called RevealEphemeralKey oracle), is insecure when more powerful state reveals are
allowed. Also in this spirit, in a recent work from PKC2015, Bergsma et al. [5] present
a generic 1-round 2-party key exchange construction in the standard model. The au-
thors also propose a strong security model which builds on previous ones and captures
both perfect forward secrecy and ephemeral secrets leakage. The latter is modeled
by a RevealRand oracle which outputs the local randomness selected by the user in a
protocol execution.
Our contributions. We propose a security model for GKE capturing the leakage of
ephemeral secrets even within the attacked session. To avoid any ambiguity we define,
as it is done in [5] for the 2-party setting, a variable rand that stores, for each instance of
a participant, all the session values that cannot be computed from long-term secret keys
or other values received/computed previously in the session. Typically these values are
chosen uniformly at random from a prescribed set, therefore the name of the variable.
The adversary is given access to an oracle RevealRand which outputs the values stored
in rand when queried. The strength of our security model is comparable to that of [44],
yet in their treatment ephemeral values involved in the authentication procedure are not

3

included in rand as they are in our case.1

In addition, the main contribution of this work is a generic protocol or compiler that,
building on any strongly secure 2-party authenticated key exchange (AKE) protocol,
produces a group AKE which is strongly secure in our model, by adding only one
round of communication.2 We note here that our compiler is not an n−party version of
the 2-party construction from [5], which, while being generic, is not a compiler (i.e.,
does not allow to transform any two party protocol into a strongly secure one).

Further, we highlight that:

• Our construction is the first to expressly take into account the randomness used
for authentication. We do so by expliciting that the nonces involved in any sig-
nature produced are part of the rand variable linked to the signing instance, and
therefore allowing the adversary to obtain these values. This improves previous
works, such as [15, 44] where the random values for the signature are supposed
to be protected or absent (by using a deterministic signature).

• When instantiated with a 1-round 2-party protocol strongly secure in the standard
model, for instance [5], our compiler produces a 2-round GKE which is strongly
secure in the standard model. This scheme is the first construction achieving
such strong security guarantees in only two communication rounds.

• Some compilers have been proposed to build group key establishment schemes
from 2-party protocols ([12, 1, 38]). However, our construction is the first to
consider strong security.

2 Security Model

2.1 Description and strong security
Our security model is a modification of that of Bohli et al [6], which in turn builds
in [4, 3, 34]. Furthermore, we treat ephemeral reveals in a similar way as [44, 15].3

Protocol instances. Users are modeled as probabilistic polynomial time (ppt) Turing
machines. Each user from a set U of possible participants may execute a polynomial
number of protocol instances in parallel. To refer to instance si of a user Ui ∈ U we
use the notation Πsi

i (i, si ∈ N). To each instance we assign seven variables, informally
described next:

• usedsii indicates whether this instance is or has been used for a protocol run;

1Actually, as evidenced in [43], the scheme proposed in [44] cannot be proven secure otherwise. We
remark here however that in [43] no augmented security notion for group key agreement is put forward
along this line. In particular, the scheme of Zhao et al. [44] attacked in this paper is not proven to be secure
if (as suggested by the authors) the underlying signature scheme resists randomness leakage.

2A preliminary version of this generic protocol can be found in the short abstract [24], where no security
proof is provided and mutual authentication is not considered.

3Interpreting their RevealEphemeralSecret oracle as equivalent to our RevealRand, which is not the
only possible interpretation.

4

• statesii keeps the internal state of the Turing machine that executes the protocol;

• randsii keeps the session-specific atomic secret values —typically values gener-
ated uniformly at random— which will be referred to as ephemeral keys. More
precisely, these are any values that cannot be computed from long-term secret
keys or other values received/computed previously in the session;

• termsi
i shows if the execution has terminated;

• sidsii denotes a session identifier;

• pidsii stores the set of identities of those users that Πsi
i aims at establishing a key

with —including Ui himself;

• accsii indicates if the user accepted the session key;

• sksii stores the session key once it is accepted by Πsi
i .

Communication network. Arbitrary point-to-point connections among the users are
assumed to be available. The network is non-private, however, and fully asynchronous.
More specifically, it is controlled by the adversary, who may delay, insert and delete
messages at will.

Adversarial capabilities. We restrict to ppt adversaries. The capabilities of an adver-
saryA are made explicit through a number of oracles allowingA to communicate with
protocol instances run by the users:

• Send(Ui, si,M) This sends messageM to the instance Πsi
i and returns the reply

generated by this instance. If A queries this oracle with an unused instance
Πsi
i and M ⊆ U , a set of identities of principals, the usedsii -flag is set, pidsii

initialized with pidsii := {Ui} ∪M , and the initial protocol message of Πsi
i is

returned.

• Execute({Πsu1
u1 , . . . ,Π

suµ
uµ }) This executes a complete protocol run among the

specified unused instances of the respective users. The adversary obtains a tran-
script of all messages sent over the network. A query to the Execute oracle is
supposed to reflect a passive eavesdropping.

• Reveal(Ui, si) Yields the session key sksii along with the session identifier sidsii .

• Test(Ui, si) Provided that the session key is defined (i. e. accsii = true and
sksii 6=⊥) and instance Πsi

i is fresh (we define freshness later on), A can execute
this oracle query at any time when being activated. Then, the session key sksii
is returned if b = 0 and a uniformly chosen random session key is returned if
b = 1, where b is a hidden bit chosen at random prior to the first call. Namely,
an arbitrary number of Test queries is allowed for the adversary A, but once the
Test oracle returned a value for an instance Πsi

i , it will return the same value for
all instances partnered (see the definition of partnering below) with Πsi

i .4

4This is the so-called Real or Random model, which can be proven equivalent to the usual model allowing
for only one Test query with a loss of a factor m in the reduction, m being the number of involved protocol
instances. See, for instance [1, 2].

5

• RevealRand(Ui, si) This oracle returns the value stored in randsii .

• Corrupt(Ui) This oracle returns the long term key hold by Ui.

Remark 2.1 Following [26], we say that the instance Πsi
i is uncorrupted if A has not

made a call RevealRand(Ui, si) previously (this notion is relevant when introducing
so-called mutual authentication, see bellow). On the other hand, we say user Ui is
honest or uncorrupted if A has not made a call Corrupt(Ui) previously. Note that
despite user Ui being corrupted, it can well be the case that an instance Πsi

i remains
uncorrupted.

We aim at two basic goals for our protocol: correctness and strong security. A
protocol is correct if all users involved in an execution in the presence of a passive
adversary compute the same session key. Our notion of strong security ensures key
privacy in the presence of an active adversary which is given access to all the oracles
we have described. Before formally defining correctness and strong security, we intro-
duce partnering and freshness, to express which instances are associated in a common
protocol session and limit when the adversary is allowed to call the Test oracle.

Partnering. We refer to instances Πsi
i , Π

sj
j as being partnered if

sidsii = sid
sj
j , pid

si
i = pid

sj
j and accsii = acc

sj
j = true.

Freshness. A Test-query should only be allowed to those instances holding a key that
is not for trivial reasons known to the adversary. To this aim, an instance Πsi

i is called
fresh if

• accsii = true;

• A never called Reveal(Uj , sj) with Πsi
i and Π

sj
j being partnered;

• if Πsi
i and Π

sj
j are partnered and A called Corrupt(Uj), then any message sent

to Πsi
i on behalf of Π

sj
j must indeed come from Π

sj
j intended to Πsi

i ;

• A never called both Corrupt(Uj) and RevealRand(Uj , sj) with Πsi
i and Π

sj
j

being partnered.

Remark 2.2 Note that each user is, in particular, partnered with itself in our defi-
nition. Therefore, if an instance Πsi

i is fresh, then Reveal(Ui, si) cannot have been
queried, neither both Corrupt(Ui) and RevealRand(Ui, si).

Definition 2.3 (Correctness) We call a group key establishment protocol P correct, if
in the presence of a passive adversary A—i. e., A must not use the Send oracle— the
following holds: for all i, j with sidsii = sid

sj
j , pidsii = pid

sj
j and accsii = acc

sj
j = true,

we have
sksii = sk

sj
j 6= null.

6

Definition 2.4 (Strong security) Let A be an adversary making at most qs and qe
queries to the Send and Execute oracles respectively. Let k ∈ N be the security pa-
rameter and denote by SuccA(k, qs, qe) the probability that A queries Test only on
fresh instances and guesses correctly the bit b used by the Test oracle in a moment
when all these instances are still fresh.

We say a group key establishment protocol is (qs, qe)-strongly secure if the ad-
vantage AdvA−SGAKE(k, qs, qe) of any ppt adversary A in attacking the protocol is
bounded by another function AdvSGAKE(k, qs, qe) which is negligible in k, where the
aforementioned advantage is defined as

AdvA−SGAKE(k, qs, qe) := ‖2 · SuccA(k, qs, qe)− 1.‖

Note that our definition provides a strong notion of key privacy, including perfect
forward secrecy [28, 19] and resistance to key compromise impersonation (KCI) attacks
against key privacy [26]:

Perfect forward secrecy. An adversary getting the long-term key of a user should
not gain any information on the session keys previously established by that user. Our
definition captures perfect forward secrecy, since an adversary A is allowed to obtain
the long-term keys of all users without violating freshness, provided he does not send
any “relevant” messages after having received these long-term keys.

Key compromise impersonation resilience (against key privacy). An adversary is
said to impersonate a user B to another user A if B is honest and the protocol in-
stance at A accepts the session with B as one of his session peers, but there is no such
partnered instance at B. An adversary A is considered successful in mounting a key
compromise impersonation (KCI) attack knowing a user A’s long-term private key if
he manages to impersonate an honest party B to A. As pointed out in [26], when the
goal of the adversary is to break the confidentiality of the session key, it only makes
sense to consider an outsider adversary (see also [26] for precise definitions of outsider
and insider adversaries). Our security definition takes this kind of attacks into account,
since if Πsi

i is the Test session thenUi may be corrupted (although the adversary cannot
be active with respect to a partner Π

sj
j of Πsi

i without violating freshness).

2.2 Further security properties
In addition to key privacy, several other security requirements such as unknown key-
share resilience, key confirmation, explicit key authentication and mutual authentica-
tion are desirable for a group key exchange protocol. All of them are covered by the
notion of MA-security [10], which was enhanced in [26] to deal with outsider and in-
sider KCI attacks. Here we adopt the stronger one, MA-security with insider KCIR
(key compromise impersonation resilience), yet slightly modifying the definition given
in [26] as we consider RevealRand instead of RevealState queries.

Definition 2.5 (MA-security with insider KCIR) Consider an adversary A against
the MA-security of a correct GKE protocol, namely, A is allowed to query Send,
Execute, RevealRand, Reveal and Corrupt oracles. Then A is said to violate the MA
property if at some point, there exists an uncorrupted instance Πsi

i (although Ui may

7

be corrupted) that has accepted with sksii and another party Uj ∈ pidsii that is uncor-
rupted at the time Πsi

i accepts such that

• there is no instance Π
sj
j with (pid

sj
j , sid

sj
j) = (pidsii , sid

si
i), or

• there is an instance with (pid
sj
j , sid

sj
j) = (pidsii , sid

si
i) that has accepted with

sk
sj
j 6= sksii .

Let us denote by Succma
A (k) the success probability of any ppt adversary A violat-

ing the MA property. Then, we say a group key establishment provides MA-security in
the presence of insiders if Succma

A (k) is negligible in the security parameter k.

3 Proposal of a secure protocol

3.1 Signatures withstanding randomness reveals
Our proposal of a secure protocol will make use of a signature scheme for authentica-
tion. As our security model allows the adversary to access the random coins involved
in a protocol execution by means of the oracle RevealRand, we assume that this oracle
also outputs the randomness used for signing (if any). Note that this issue was men-
tioned in [15] but not considered in the proposed construction, as the authors suggest
using a trusted device to protect this value or a deterministic signature scheme. As
evidenced in [43], the security of this scheme is jeopardized if such precautions are not
taken.

We are thus in need of stronger security guarantees, and therefore introduce a se-
curity notion for signature schemes, which we call existential unforgeability under
adaptive chosen message and randomness reveal attacks (EUF-CMRA), capturing the
property of remaining secure even if the randomness used when signing is leaked.
This notion is identical to unforgeability under adaptive chosen message attacks and
ephemeral secret leakage attacks security defined independently by Tseng et al in [43]5.

Before providing the definition, let us recap some terminology. A public key
signature scheme S is explicited by three algorithms (KeyGen,Sign,Verify), where
KeyGen, on input the security parameter, outputs a pair (vk, sigk), the public ver-
ification key and the secret signing key respectively; Sign outputs a signature σ =
Sign(sigk,m, sigr) where m is the signed message and sigr is a random value cho-
sen from an appropriate set every time Sign is invoked. Further, Verify is the (publicly
available) verification algorithm. Note that we are considering that Sign takes the ran-
dom coins sigr as explicit input: this covers probabilistic and deterministic signature
schemes; for the later we allow sigr to be the empty string.

Now the standard security definition for signature schemes, i.e. existential unforge-
ability under adaptive chosen message attacks (EUF-CMA), is strengthened by giving
the adversary access to a more powerful oracle, that also provides the randomness used
when generating the signature. More formally, the adversaryA will play the following

5At the writing of this paper we were not aware of this work, and have further decided to keep the name
we had initially chosen for this notion.

8

game (EUF-CMRA, from existential unforgeability under adaptive chosen message and
randomness reveal attacks):

1. (vk, sigk) is generated with KeyGen and vk is provided to A;

2. the adversary is given access to a signing oracle Osigk(.) such that, every time
a message mj is queried, a random value sigrj is chosen as specified in the
signing algorithm, a signature σj = Sign(sigk,mj , sigrj) is generated and
(σj , sigrj) = Osigk(mj) is returned to A;

3. after adaptively querying the oracle, A outputs a pair (m,σ).

We say that A wins the EUF-CMRA game if m has not been queried to Osigk(.)
and σ is a valid signature for m. Let AdvA−EUF-CMRA(k, q) denote the probability
that an adversary A, making at most q calls to the signing oracle Osigk(.), wins the
EUF-CMRA game when the security parameter is k.

Definition 3.1 (EUF-CMRA security) The signature scheme S is q-existentially un-
forgeable under adaptive chosen message and randomness reveal attacks (q−EUF-CMRA)
if for every probabilistic polynomial time adversary A making at most q calls to the
signing oracle, the function AdvA−EUF-CMRA(k, q) is bounded by another function AdvEUF-CMRA(k, q)
which is negligible in the security parameter k.

Remark 3.2 This security notion is trivially achieved if S is a EUF-CMA signature
scheme which is either deterministic or such that the randomness is part of the signa-
ture.

As pointed out in [42], in many existing signature schemes, the randomness is
generated in the signing phase and provided to the verifier as part of the signature. For
instance, signature schemes in [7, 13, 14, 16, 20, 23, 29, 30, 31, 39, 41, 45] fulfill this
property and, therefore satisfy our EUF-CMRA security notion.

3.2 Collision resistant pseudorandom function families
In our construction we use a pseudorandom function (PRF) family F = {F`}`∈N,
F` = {Fα}α∈{0,1}` , which has the additional property of being collision resistant (see,
for example, [33]). Next we recall the definition. Consider the game where an element
v` in the domain of all functions in F`, is chosen according to a randomized sampling
algorithm and given to an adversaryA.6 The adversary is also given access to an oracle
F(.)(v`) and is said to win the game if it outputs a pair of indexes α 6= α′ ∈ {0, 1}`
such that Fα(v`) = Fα′(v`), without having queried both indexes to the oracle. We
denote by AdvA-COLL-PRF(`, q) the probability that an adversary A, making at most q
queries to the oracle, wins the game.

6For simplicity, we may assume all functions in F` to have the same domain {0, 1}r` and range
{0, 1}κ` , with r`, κ` polynomial in `.

9

Definition3.3 ThePRFfamilyF={F}∈Nisq-collisionresistantifforeveryprob-
abilisticpolynomialtimeadversaryAmakingatmostqcallstotheevaluationoracle,
thefunctionAdvA-COLL-PRF(,q)isboundedbyanotherfunctionAdvCOLL-PRF(,q)
whichisnegligiblein .

Inadditionandforsubsequentuseinoursecuritystatements,wewilldenoteby
AdvPRF(,q)thefunctionwhichupperboundstheadvantageofanyadversarytrying
todistinguishafunctioninF fromarandomone(makingatmostqqueriestothe
functionoracle). Notethat,duetothePRFpropertyofthefamilyF,AdvPRF(,q)is
negligibleinthesecurityparameter .

Inourdesign,wewilluseafamilyofuniversalhashfunctionsUH={UH}∈N,
suchthat,foragiven ∈ NeveryfunctioninUH mapsbitstringsofafixedsize
tonto{0,1}. ThefamilyUHwillbeusedtoselectanindexwithinacollision-
resistantpseudorandomfunctionfamilyF={F}∈N.Inthesequel,bothparameters

andtareassumedtobesufficientlylargeandpolynomialinthesecurityparameter
k.DuetotheuniversalpropertyofthefamilyUH,theprobabilityofanyfunction
UH∈UH producingthesameoutputwithtwodifferentinputsisatmost1/2t (see,
forinstance,[40]).

3.3 From2-Partytogroupkeepingstrongsecurity

Inthissectionwepresentaone-roundcompiler,whichappliedtoastronglysecure
2-partykeyexchange2-SAKEyieldsastronglysecuregroupkeyexchange,adding
onlyonecommunicationround. Ourconstructiondoesnotinvolveanyidealizedas-
sumption,thusifthe2-SAKEisinthestandardmodel,sowilltheresultingn-party
protocolbe.

OurdesignisdetailedinFigure1,wheretheSetupphasecanberealizedbymeans
ofapublickeyinfrastructure(PKI) —andshouldthusbeassumedtoinvolveatrusted
entity.Atthis,usersaresupposedtobesomewhatorganizedinacycle(alaBurmester-
Desmedt,see[11]);thus,userindexesiaretobetakenmodulon.7

Notethatwefurtherassumethattheremightbeindependentauthenticationkeys
usedforthe2-partyandgroupsetting,namely,thecompilerwillcallfor(freshly
generated)signingkeysforadedicatedsignaturescheme(whichwewilldenoteby
(vki,sigki))whilewealsoexpliciteachusermayhavegeneratedapairoflong-term
keys(2pki,2ski)for2-SAKE.8

BeforemovingontothesecuritystatementsletusspecifyhowtheRevealRand
andCorruptoraclesworkforthecompiledscheme.AqueryCorrupt(Uj)isanswered
withthelong-termsecretkey(2ski,sigki)ofUi.AqueryRevealRand(Ui,si)returns
(−→ri,

←−ri,ri,sigr0i,sigr1i)where−→ri,
←−riaretherandomcoinsusedinthetwoexecu-

tionsofthe2-SAKE,riistherandomnonceusedinRound1ofthecompiler,and
sigrj

i,forj=0,1arethenoncesinvolvedinthetwosignaturesenforcedbythecom-

7Assumingusersarearrangedinthiswaywehave,forinstance,thatwheni= n,Ui+1 willbeU1and
similarlywheni=1,Ui 1willbeUn

8Thisstatementisquitegeneral;notethatthesemightnotevenbesigningkeys(asitwouldhappenif
2-SAKEistheNAXOSscheme).

10

piler. Now it is easy to argue that RevealRand is not useful for the adversary, and thus
the strong security of our scheme follows. Indeed, RevealRand(Ui) returns:

a) the randomness used by Ui in the 2-SAKE protocol, which is of no use for the
adversary due to the strong security of 2-SAKE;

b) the signing nonces sigr0i , sigr
1
i , which will also be useless if the signature scheme

is secure in the sense of EUF-CMRA;

c) the nonce ri, which is anyway public, as it is broadcast in Round 1.

Theorem 3.4 Assuming S is an EUF-CMRA signature scheme, 2-SAKE is strongly
secure, F is a collision-resistant PRF and UH is a universal hash function family, the
protocol from Figure 1 is correct and strongly secure.
More precisely, let k and ` be as in the protocol specification from Figure 1. Then,
for any probabilistic polynomial time adversary A making at most qs calls to the Send
oracle and qe calls to the Execute oracle, AdvA−SGAKE(k, qs, qe) is upper bounded by

(nqe + qs)
2

2`+1
+ n AdvEUF-CMRA(k, 2qe + qs)+

+
1

2t`
(nqe +

qs
2

) + AdvCOLL-PRF(`, 3nqe + qs)+

+2 · Adv2-SAKE(k, qs, nqe) + AdvPRF(`, 3nqe + qs),

where Adv2-SAKE(·, ·, ·) is the advantage in regard to 2-SAKE, specified as in Def-
inition 2.4 and t` is polynomial in k.

PROOF. Checking the correctness of the protocol is straightforward: if all the partic-
ipants follow the protocol description and there is no active adversarial intervention,
then all checks will succeed and every participant will set the same pid and sid, obtain
the same {Kj}nj=1 from the broadcast {Xj}nj=1 and consequently compute the same
session key.

The proof for the strong security is conducted through a sequence of games. Fol-
lowing standard notation, we denote by Adv(A, Gi) the advantage of the adversary
when confronted with Game i. The security parameter is denoted by k. Further, in the
sequel we let qe and qs denote the maximum number of calls made by the adversary to
the Execute and Send oracles (resp.).

Game 0. All the oracles are simulated as in the real protocol; thus, Adv(A, G0) is
exactly AdvA−SGAKE(k, qs, qe) as in the definition of strong security from Section 2.

Game 1. This game is identical to Game 0, except that the execution is aborted
if the event Repeat occurs. This is defined to happen if an uncorrupted participant
chooses in Round 0 a nonce ri that was previously used by an oracle of some principal.

As qe and qs denote the maximum number of calls to the Execute and Send oracles
respectively, the number of nonces generated by honest users during the game is at most
nqe + qs. Therefore the probability of Repeat is upper bounded by the probability of

11

collision when choosing nqe+qs values among 2` possible ones, which is in turn upper
bounded by (nqe + qs)

2/(2 · 2`) (see, for example, appendix A.4 in [32]). As a result,

|Adv(A, G0)− Adv(A, G1)| ≤ P (Repeat) ≤ (nqe + qs)
2

2`+1
.

Game 2. This is identical to Game 1, except that now the execution is aborted
if the adversary succeeds in forging an authenticated message M‖σ for participant
Ui without having queried Corrupt(Ui) and where M was not output by any of Ui’s
instances. Let us call this event Forge.

Indeed, an adversary A that can reach Forge can be used for forging a signature in
a EUF-CMRA game: the given public key is assigned randomly to one of the n users
in the group and all other parties are initialized following the protocol specification;
then all the queries in the strong security game are answered faithfully and whenever
a signature for a message of the selected user is needed, the signing oracle of the
EUF-CMRA game is queried to produce the signature. Note that the number of such
queries is upper bounded by 2qe + qs.
The probability of the adversary choosing the “right” user Ui when assigning the pub-
lic key for the signature equals 1/n, therefore we have AdvEUF-CMRA(k, 2qe + qs) ≥
1
n P (Forge) which yields

|Adv(A, G1)− Adv(A, G2)| ≤ P (Forge)

P (Forge) ≤ n AdvEUF-CMRA(k, 2qe + qs).

Game 3. In this game, we impose that a fresh instance Πti
i does not accept in

Round 1 whenever it receives a message M1
j not generated by the respective instance

Π
tj
j , j 6= i in the same session. At this, we take two instances Π

tα0
α0 , Π

tαr
αr for being

in the same session, if there is a sequence of instances (Π
tαµ
αµ)0≤µ≤r such that for each

µ = 0, . . . , r − 1 the instances Π
tαµ
αµ and Π

tαµ+1
αµ+1 have jointly executed 2-SAKE, hold

two nonces rαµ and rαµ+1
linked to this execution9 and, furthermore, they all hold the

same pid (namely, pidα0
= · · · = pidαr). The adversary A can detect the difference

to Game 2 if A replayed or fabricated a message that should have led to acceptance
in Round 1 in that game. Since all messages broadcasted in Round 1 must contain the
signed nonce ri (as part of the signed sidi) and we excluded already the events Forge
and Repeat, games 2 and 3 are identical for A. As a result

Adv(A, G3) = Adv(A, G2).

Game 4. In this game, we impose that a fresh instance Πti
i does not accept the

session key in Round 1 whenever two instances Π
tj
j and Π

tj+1

j+1 in the same session (as

9Implicitly, the pair of nonces (ri, rj) complete the role of a session identifier for the corresponding
2-SAKE execution.

12

above) which have jointly executed 2-SAKE and hold matching nonces rj and rj+1

linked to this execution hold however non-matching two party keys10. Let us denote
this event by Coll.
Due to the modifications made in Game 3, in a fresh session every message must have
been generated according to the specification of the protocol. Therefore the event Coll
happens only if there are two instances Π

tj
j and Π

tj+1

j+1 such that
−→
K j 6=

←−
K j+1 but

−→ρ j =←−ρ j+1 (as otherwise the involved instances would not accept).
Let UH be the function chosen at the beginning of the protocol and denote by −→α i =

UH(Ui, Ui+1,
−→
K i, pidi) and←−α i = UH(Ui−1, Ui,

←−
K i, pidi). Taking into account how

−→ρ i,←−ρ i,
−→
K i and

←−
K i are defined, it is clear that the event Coll happens only if one of

the two following events happen:

• Coll1, which is the event that during the security game there exist instances Π
tj
j

and Π
tj+1

j+1 such that
−→
K j 6=

←−
K j+1 but −→α j =←−α j+1.

• Coll2, which is the event that during the security game there exists instances Π
tj
j

and Π
tj+1

j+1 such that
−→
K j 6=

←−
K j+1, −→α j 6=←−α j+1 but −→ρ j =←−ρ j+1 .

Because of the universal property of the family UH, the probability of UH producing
the same output with two different inputs is at most 1/2t` .

In addition the number of possible pairs of nonces generated during the security
game is upper bounded by nqe + qs

2 . As a result,

P (Coll1) ≤ 1

2t`
(nqe +

qs
2

).

On the other hand, an adversary A which produces the event Coll2 can be used to
construct an adversary against the collision resistance of the pseudo-random family F .
The reason is that, in case Coll2 happens, then two different indexes−→α j 6=←−α j+1 have
been found such that F−→α j (v) = F←−α j+1

(v). As the function F(.)(v) is invoked at most
3nqe + qs times during the game, it holds that

P (Coll2) ≤ AdvCOLL-PRF(`, 3nqe + qs).

Putting everything together we have

|Adv(A, G3)− Adv(A, G4)|

is bounded by
P (Coll) ≤ P (Coll1) + P (Coll2)

and thus by

10As 2-SAKE is only assumed to have implicit key confirmation, it is not excluded that two users enrolled
in an execution end up with different – thus useless – keys

13

1

2t`
(nqe +

qs
2

) + AdvCOLL-PRF(`, 3nqe + qs).

Game 5. The simulation of the Send and Execute oracles is modified in the following
way. For every i = 1, . . . , n, whenever an instance Πti

i is still considered fresh at the
end of Round 0, and the two party keys

−→
K i and

←−
K i are defined, they are replaced with

random values chosen from the appropriate set. This replacement is done consistently,
in the sense that, if

−→
K i and

←−
K i coincide with

←−
K i+1 and

−→
K i−1 respectively, they are

replaced with matching random values.
In order to bound the distance betweenG3 andG4 we will build, from an adversary

A which is able to distinguish between these two games, another adversary B attacking
the underlying 2-SAKE protocol such that

|Adv(A, G4)− Adv(A, G5)| = 2 · AdvB−2-SAKE(k, qBs , q
B
e),

where AdvB−2-SAKE(k, qBs , q
B
e) denotes the advantage of a probabilistic polynomial

time adversary B attacking 2-SAKE and making at most qBs calls to the Send oracle
and qBe calls to the Execute oracle.

To prove this bound, assume that B, which runs A as an auxiliary algorithm, is
given access to a simulation of 2-SAKE. Further, B executes the key generation al-
gorithm of S for each user Ui, thus retrieving a pair of corresponding signing keys
(vki, sigki).

Now, whenever an instance Πsi
i is used by A as the input of a query, B associates

it with two different independent instances Π2si−1
i and Π2si

i of the same user in the
2-SAKE protocol.

Also a list L, storing the returned random nonces ri, is needed to answer the
queries of A. More precisely, the first time a random nonce ri is required to answer
a RevealRandA, ExecuteA or SendA query involving instance Πs

i , a random value ri
is chosen u.a.r. from the appropriate set and (Ui, s, ri) is stored in L. Whenever this
value is needed again to answer a query, it is extracted from L. Similarly, B maintains a
list for the signing nonces SigL, where he stores appropriately generated randomness
involved in any of the signatures that might be involved in the simulation.

Now let us describe how the answers to the queries of A are constructed:

• Whenever a query CorruptA(Ui) is made, B queries CorruptB(Ui) to retrieve
2ski and provides (2ski, sigki) as answer to A.

• To answer a query RevealRandA(Ui, si), B executes RevealRandB with the two
associated instances Π2si−1

i and Π2si
i , obtaining −→r i and ←−r i. Then chooses ri

u.a.r. from the appropriate set (or extracts it from L if needed) and similarly
generates signing nonces for S, r1i and r2i or retrieves them from the SigL list.

• To answer an ExecuteA query, B queries ExecuteB with the corresponding pairs
of instances to construct a transcript for Round 0. Then makes TestB queries to
obtain the keys

−→
K i and

←−
K i for every user and constructs the rest of the transcript

for Round 1 and 2 as it would be done in a real execution of the protocol, taking
random values from L and SigL as needed.

14

• To answer a SendA query for Round 0, a query SendB is executed by B with the
associated instances and the same responses are returned. If the SendA query is
for Round 1, first B sets the values of

−→
K i and

←−
K i by querying one of the oracles

TestB or RevealB (depending on whether the involved instance is fresh according
to our definition, and thus allows to query TestB, or not). The rest of the answer
is generated as in the description of the ExecuteA answer.

• A RevealA query is answered in a similar way as a SendA or ExecuteA query.

• Finally, to answer allowed TestA queries, a bit b′ ∈ {0, 1} is chosen by B at the
beginning of the simulation. If b′ = 1 a random group key is returned while if
b′ = 0 an actual key, constructed consistently with the rest of the simulation, is
returned.

At some point A will output a bit b′′ as a guess for b′ which will determine the
output b of B for the 2-SAKE challenge. Namely, B outputs b = 0 if and only if
b′ = b′′. Taking into account that the view of A is identical to G4 if the answers of
TestB are real keys and to G5 if the answers of TestB are random ones, and counting
qBs ≤ qs and qBe ≤ nqe, we have that

|Adv(A, G4)− Adv(A, G5)|

is bounded by
2 · Adv2-SAKE(k, qs, nqe).

Game 6. In this game, for every i = 1, . . . , n, the value ski := FUH(K)(v) is replaced
with a random value chosen from {0, 1}κ` . As by now K := (K1, . . . ,Kn, sidi),
and all the Ki have been chosen u.a.r. in this game, the output of FUH(K) is, due to
the pseudorandomness property of F , distinguishable from a random value only with
negligible probability in ` (which is polynomial in k). More precisely we have,

|Adv(A, G6)− Adv(A, G5)| ≤ AdvPRF(`, 3nqe + qs).

In addition, the advantage of the adversary inG6 equals 0, as the secret keys are chosen
u.a.r. in {0, 1}κ` . This concludes the proof.

2

3.4 MA-security
In this section we show our protocol satisfies MA-security with insider KCIR. For

the shake of simplicity, we have chosen to formulate the security statement only in
terms of the security parameter and not use the number of oracle calls. Further, we
provide only a proof sketch, as a detailed one would repeat many of the arguments
already specified above in the proof of Theorem 3.4.
Theorem 3.5 Assuming S is an EUF-CMRA signature scheme, the protocol from Fig-
ure 1 satisfies MA-security with insider KCIR.

15

PROOF’S SKETCH. This result may be obtained by “game hopping”, letting the ad-
versary Ama interact with a simulator:

Game 0. In this game, the simulator faithfully simulates all protocol participants’
instances for the adversaryAma, i. e., the adversary’s situation is the same as in the real
model:

AdvGame 0
Ama

(k) = AdvAma(k) = Succma
A (k).

Game 1. This game is aborted if the events Forge or Repeat, as described in the
previous proof, occur. Otherwise, the game is identical to Game 0 and the adversary
cannot detect the difference. The distance between the success probabilities of G0 and
G1 is bounded by P (Forge) + P (Repeat), which is negligible in the security param-
eter k.

Let Πsi
i be an uncorrupted instance that has accepted. Notice that once these events

have been eliminated, all the honest parties in pidsii compute the same key:
Let Uj ∈ pidsii a user that is not corrupted at the time Πsi

i accepts. If the events
Forge and Repeat do not occur, since Πsi

i has checked successfully the equality of
the session and partner identifiers, there is an instance Π

sj
j such that (sidsii , pid

si
i) =

(sid
sj
j , pid

sj
j). Therefore, for the adversary to win the MA game, the session keys ac-

cepted should be different. However, if the instance accepted, in particular Uj success-
fully checked the confirmation strings←−ρ j+1 and −→ρ j−1 for his left and right two-party
keys respectively. This meansKj andKj+1 have been computed correctly, except with
negligible probability, since F is chosen from F , a collision-resistant pseudorandom
function family. Then, from the values Xl sent by the other users in pidsii , and the rest
of the confirmation strings, one can be sure, with overwhelming probability, that all Kl

computed by Ui and Uj are equal. Therefore, both users compute the same session key.
Putting the probabilities together we recognize the adversary’s advantage in the real

model as negligible.
2

4 Concrete Implementations
In this section we propose several options to instantiate our compiler. Some possible
choices for the two-party 2-SAKE scheme and the EUF-CMRA signature scheme are
enumerated in Tables 1 and 3. In Table 2 we sketch the main properties of the resulting
complied schemes in terms of round-efficiency and underlying assumptions. Also,
Table 1 provides an idea of the computations preformed by each individual user for
each 2-SAKE option.

It is worth pointing out that every signature scheme in Table 3 is secure in the stan-
dard model. In addition, [7, 13, 20] provide strong EUF-CMA; however this property
is not needed for the security of our proposal, thus [29, 31] are also suitable choices.

16

Table 1: Examples of recent 2-SAKE protocols

Original Scheme Model Assumption Efficiency estimate per user
HMQV [35] ROM GDH + KEA1 2.5 exp.
NAXOS [36] ROM GDH (o PDH) 4 exp.
Cremers-Felz [18] ROM Gap-CDH 3 exp.+1 sign. gen.+1 sign. ver.
Fujioka et al. [22] Std. DBDH, DDH 14 exp.+ 8 pairing ev.
Bergsma et al. [5] ROM Factoring 5 exp+1 sign. gen.+1 sign. ver.
Bergsma et al. [5] Std. Factoring 16 exp+8 pairing ev.+1 sign. gen.+

+1 sign. ver.

Table 2: Resulting compiled protocols

Original Scheme Ref Rounds Model
HMQV [35] 3 ROM
NAXOS [36] 2 ROM
Cremers-Felz [18] 2 ROM
Fujioka et al. [22] 3 Std.
Bergsma et al. [5] 2 ROM
Bergsma et al. [5] 2 Std.

A detailed comparison of the proposed signature schemes appears in [29]. Their RSA-
based proposal is the most efficient one. If signature size is to be minimized, their
proposal using bilinear maps would be the best candidate.

Table 3: Examples of EUF-CMRA signature schemes

Scheme Ref Assumption
Boneh-Boyen [7] Strong DH for bilinear groups
Camenisch-Lysyanskaya [13] Strong RSA
Fischlin [20] Strong RSA
Hofheinz-Kiltz [29] Strong RSA / q-Strong DH for bilinear groups
Hohenberger-Waters [31] RSA

Last, we remark that when a one-round 2-SAKE secure in the standard model, such
as [5], is combined with any signature scheme in Table 3, the result of applying our
compiler is a two-round group key exchange protocol which is strongly secure and MA-
secure in our model. To the best of our knowledge, this is the first two-round group key
establishment protocol with security proofs in a model considering randomness leakage
in the attacked session, which does not make use of random oracles. In addition, if the
choice for the signature scheme is [31], the security of the compiled two-round protocol
depends only on the well-known RSA assumption.

17

Acknowledgments
M.I. González Vasco and Angel L. Pérez del Pozo are partially supported by research
project MTM2013-41426-R, and A. Suárez Corona is supported by MTM2013-45588-
C3-1-P, both funded by the Spanish MINECO.

References
[1] Michel Abdalla, Jens-Matthias Bohli, Maria Isabel Gonzalez Vasco, and Rainer

Steinwandt. (Password) authenticated key establishment: From 2-party to group.
In Salil P. Vadhan, editor, Theory of Cryptography, 4th Theory of Cryptography
Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007,
Proceedings, volume 4392 of Lecture Notes in Computer Science, pages 499–
514. Springer, 2007.

[2] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based
authenticated key exchange in the three-party setting. In Serge Vaudenay, editor,
Public Key Cryptography - PKC 2005, 8th International Workshop on Theory
and Practice in Public Key Cryptography, Les Diablerets, Switzerland, January
23-26, 2005, Proceedings, volume 3386 of Lecture Notes in Computer Science,
pages 65–84. Springer, 2005.

[3] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Ex-
change Secure Against Dictionary Attacks. In Bart Preneel, editor, Advances in
Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science, pages 139–155. Springer, 2000.

[4] Mihir Bellare and Phillip Rogaway. Entitiy Authentication and Key Distribution.
In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO ’93, volume
773 of Lecture Notes in Computer Science, pages 232–249. Springer, 1994.

[5] Florian Bergsma, Tibor Jager, and Jörg Schwenk. One-round key exchange with
strong security: An efficient and generic construction in the standard model. In
Jonathan Katz, editor, Public-Key Cryptography - PKC 2015 - 18th IACR Interna-
tional Conference on Practice and Theory in Public-Key Cryptography, Gaithers-
burg, MD, USA, March 30 - April 1, 2015, Proceedings, volume 9020 of Lecture
Notes in Computer Science, pages 477–494. Springer, 2015.

[6] Jens-Matthias Bohli, Maria Isabel Gonzalez Vasco, and Rainer Steinwandt. Se-
cure group key establishment revisited. Int. J. Inf. Sec., 6(4):243–254, 2007.

[7] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. J. Cryptology, 21(2):149–177, 2008.

[8] Timo Brecher, Emmanuel Bresson, and Mark Manulis. Fully robust tree-diffie-
hellman group key exchange. In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka,
editors, Cryptology and Network Security, 8th International Conference, CANS

18

2009, Kanazawa, Japan, December 12-14, 2009. Proceedings, volume 5888 of
Lecture Notes in Computer Science, pages 478–497. Springer, 2009.

[9] Emmanuel Bresson and Mark Manulis. Securing group key exchange against
strong corruptions. In Masayuki Abe and Virgil D. Gligor, editors, Proceedings
of the 2008 ACM Symposium on Information, Computer and Communications Se-
curity, ASIACCS 2008, Tokyo, Japan, March 18-20, 2008, pages 249–260. ACM,
2008.

[10] Emmanuel Bresson, Mark Manulis, and Jörg Schwenk. On security models and
compilers for group key exchange protocols. In Atsuko Miyaji, Hiroaki Kikuchi,
and Kai Rannenberg, editors, Advances in Information and Computer Security,
Second International Workshop on Security, IWSEC 2007, Nara, Japan, October
29-31, 2007, Proceedings, volume 4752 of Lecture Notes in Computer Science,
pages 292–307. Springer, 2007.

[11] Mike Burmester and Yvo Desmedt. A Secure and Efficient Conference Key Dis-
tribution System. In Alfredo De Santis, editor, Advances in Cryptology – EURO-
CRYPT’94, volume 950 of Lecture Notes in Computer Science, pages 275–286.
Springer, 1995.

[12] Mike Burmester and Yvo G. Desmedt. Efficient and secure conference-key dis-
tribution. In Mark Lomas, editor, Security Protocols: International Workshop
Cambridge, United Kingdom, April 10–12, 1996 Proceedings, pages 119–129.
Springer Berlin Heidelberg, 1997.

[13] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient proto-
cols. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, Security
in Communication Networks, Third International Conference, SCN 2002, Amalfi,
Italy, September 11-13, 2002. Revised Papers, volume 2576 of Lecture Notes in
Computer Science, pages 268–289. Springer, 2002.

[14] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Matthew K. Franklin, editor, Advances in Cryp-
tology - CRYPTO 2004, 24th Annual International CryptologyConference, Santa
Barbara, California, USA, August 15-19, 2004, Proceedings, volume 3152 of
Lecture Notes in Computer Science, pages 56–72. Springer, 2004.

[15] Cheng Chen, Yanfei Guo, and Rui Zhang. Group key exchange resilient to leak-
age of ephemeral secret keys with strong contributiveness. In Sabrina De Capitani
di Vimercati and Chris Mitchell, editors, Public Key Infrastructures, Services and
Applications - 9th European Workshop, EuroPKI 2012, Pisa, Italy, September 13-
14, 2012, Revised Selected Papers, volume 7868 of Lecture Notes in Computer
Science, pages 17–36. Springer, 2012.

[16] Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA
assumption. ACM Trans. Inf. Syst. Secur., 3(3):161–185, 2000.

19

[17] Cas J. F. Cremers. Session-state reveal is stronger than ephemeral key reveal:
Attacking the NAXOS authenticated key exchange protocol. In Michel Abdalla,
David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, Applied
Cryptography and Network Security, 7th International Conference, ACNS 2009,
Paris-Rocquencourt, France, June 2-5, 2009. Proceedings, volume 5536 of Lec-
ture Notes in Computer Science, pages 20–33, 2009.

[18] Cas J. F. Cremers and Michele Feltz. One-round strongly secure key exchange
with perfect forward secrecy and deniability. IACR Cryptology ePrint Archive,
2011:300, 2011.

[19] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication
and authenticated key exchanges. Des. Codes Cryptography, 2(2):107–125, 1992.

[20] Marc Fischlin. The cramer-shoup strong-rsa signature scheme revisited. IACR
Cryptology ePrint Archive, 2002:17, 2002.

[21] Atsushi Fujioka, Mark Manulis, Koutarou Suzuki, and Berkant Ustaoglu. Suf-
ficient condition for ephemeral key-leakage resilient tripartite key exchange. In
Willy Susilo, Yi Mu, and Jennifer Seberry, editors, Information Security and Pri-
vacy - 17th Australasian Conference, ACISP 2012, Wollongong, NSW, Australia,
July 9-11, 2012. Proceedings, volume 7372 of Lecture Notes in Computer Sci-
ence, pages 15–28. Springer, 2012.

[22] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama.
Strongly secure authenticated key exchange from factoring, codes, and lattices.
Des. Codes Cryptography, 76(3):469–504, 2015.

[23] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures
without the random oracle. In Jacques Stern, editor, Advances in Cryptology -
EUROCRYPT ’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding,
volume 1592 of Lecture Notes in Computer Science, pages 123–139. Springer,
1999.

[24] Maria Isabel González-Vasco, Ángel L. Pérez del Pozo, and Adriana Suárez-
Corona. Thwarting randomness reveals in group key agreement. In Jesús Vigo-
Aguiar, editor, Proceedings of the 16th International Conference on Computa-
tional and Mathematical Methods in Science and Engineering, CMMSE 2016,
volume 2, pages 606–614, 2016.

[25] M. Choudary Gorantla, Colin Boyd, Juan Manuel González Nieto, and Mark
Manulis. Generic one round group key exchange in the standard model. In
Dong Hoon Lee and Seokhie Hong, editors, Information, Security and Cryptol-
ogy - ICISC 2009, 12th International Conference, Seoul, Korea, December 2-4,
2009, Revised Selected Papers, volume 5984 of Lecture Notes in Computer Sci-
ence, pages 1–15. Springer, 2009.

20

[26] M. Choudary Gorantla, Colin Boyd, Juan Manuel González Nieto, and Mark
Manulis. Modeling key compromise impersonation attacks on group key ex-
change protocols. ACM Trans. Inf. Syst. Secur., 14(4):28, 2011.

[27] M.Choudary Gorantla, Colin Boyd, and JuanManuel González Nieto. Modeling
key compromise impersonation attacks on group key exchange protocols. In Sta-
nisław Jarecki and Gene Tsudik, editors, Public Key Cryptography – PKC 2009,
volume 5443 of Lecture Notes in Computer Science, pages 105–123. Springer
Berlin Heidelberg, 2009.

[28] Christoph G. Günther. An identity-based key-exchange protocol. In Jean-Jacques
Quisquater and Joos Vandewalle, editors, Advances in Cryptology - EUROCRYPT
’89, Workshop on the Theory and Application of of Cryptographic Techniques,
Houthalen, Belgium, April 10-13, 1989, Proceedings, volume 434 of Lecture
Notes in Computer Science, pages 29–37. Springer, 1989.

[29] Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their appli-
cations. J. Cryptology, 25(3):484–527, 2012.

[30] Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under
standard assumptions. In Antoine Joux, editor, Advances in Cryptology - EU-
ROCRYPT 2009, 28th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings, volume 5479 of Lecture Notes in Computer Science, pages 333–
350. Springer, 2009.

[31] Susan Hohenberger and Brent Waters. Short and stateless signatures from the
RSA assumption. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Sci-
ence, pages 654–670. Springer, 2009.

[32] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chap-
man & Hall/Crc Cryptography and Network Security Series). Chapman &
Hall/CRC, 2007.

[33] Jonathan Katz and Ji Sun Shin. Modeling insider attacks on group key-exchange
protocols. IACR Cryptology ePrint Archive, 2005:163, 2005.

[34] Jonathan Katz and Moti Yung. Scalable Protocols for Authenticated Group Key
Exchange. In Dan Boneh, editor, Advances in Cryptology — CRYPTO’03, volume
2729 of Lecture Notes in Computer Science, pages 110–125. Springer, 2003.

[35] Hugo Krawczyk. HMQV: A high-performance secure diffie-hellman protocol.
In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science,
pages 546–566. Springer, 2005.

21

[36] Brian A. LaMacchia, Kristin E. Lauter, and Anton Mityagin. Stronger security of
authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors,
Provable Security, First International Conference, ProvSec 2007, Wollongong,
Australia, November 1-2, 2007, Proceedings, volume 4784 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2007.

[37] Mark Manulis, Koutarou Suzuki, and Berkant Ustaoglu. Modeling leakage of
ephemeral secrets in tripartite/group key exchange. IEICE Transactions, 96-
A(1):101–110, 2013.

[38] Alain Mayer and Moti Yung. Secure protocol transformation via
“expansion”: From two-party to groups. In Proceedings of the 6th
ACM Conference on Computer and Communications Security, CCS ’99, pages
83–92, New York, NY, USA, 1999. ACM.

[39] David Naccache, David Pointcheval, and Jacques Stern. Twin signatures: an alter-
native to the hash-and-sign paradigm. In Michael K. Reiter and Pierangela Sama-
rati, editors, CCS 2001, Proceedings of the 8th ACM Conference on Computer
and Communications Security, Philadelphia, Pennsylvania, USA, November 6-8,
2001., pages 20–27. ACM, 2001.

[40] Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In David S. Johnson, editor, Proceedings of the 21st Annual
ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton,
USA, pages 33–43. ACM, 1989.

[41] Sven Schäge. Twin signature schemes, revisited. In Josef Pieprzyk and Fangguo
Zhang, editors, Provable Security, Third International Conference, ProvSec 2009,
Guangzhou, China, November 11-13, 2009. Proceedings, volume 5848 of Lecture
Notes in Computer Science, pages 104–117. Springer, 2009.

[42] Sven Schäge. Strong security from probabilistic signature schemes. In Marc
Fischlin, Johannes A. Buchmann, and Mark Manulis, editors, Public Key Cryp-
tography - PKC 2012 - 15th International Conference on Practice and Theory in
Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings,
volume 7293 of Lecture Notes in Computer Science, pages 84–101. Springer,
2012.

[43] Yuh-Min Tseng, Tung-Tso Tsai, and Sen-Shan Huang. Enhancement on strongly
secure group key agreement. Security and Communication Networks, 8(2):126–
135, 2015. SCN-13-0353.R1.

[44] Jianjie Zhao, Dawu Gu, and M. Choudary Gorantla. Stronger security model of
group key agreement. In Bruce S. N. Cheung, Lucas Chi Kwong Hui, Ravi S.
Sandhu, and Duncan S. Wong, editors, Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2011, Hong
Kong, China, March 22-24, 2011, pages 435–440. ACM, 2011.

[45] Hua-Fei Zhu. New digital signature scheme attaining immunity to adaptive cho-
sen message attack. Chinese Journal of Electronics, 10(4):484–486, 2001.

22

Set up:

Fix ` ∈ N polynomial in the security parameter k. Let UH = {UH`}`∈N
be a family of universal hash functions such that, for a given ` ∈ N every
function in UH` maps bitstrings of a fixed size t` onto {0, 1}`. Let F =
{F`}`∈N be a collision-resistant pseudorandom function family.

A function UH : {0, 1}t` 7→ {0, 1}` from UH` and a description of F`
are made public together with a value v in the domain of all functions from
F`. We assume t` to be sufficiently large, and the input values to UH to
be padded consistently. As a result, for every X ∈ {0, 1}t` , UH(X) makes
explicit a function FUH(X) in F` that can be evaluated in v.

We assume all users to know a priori their partners and have set the variable
pid accordingly.

Furthermore, a pair of keys (vki, sigki) for the signature scheme S is gen-
erated for each Ui, which gets the secret key sigki while vki is publicized.

Round 0:

Usage of 2-SAKE.

• For i = 1, . . . , n, execute 2-SAKE(Ui, Ui+1); after that each user
Ui holds two keys

−→
K i and

←−
K i shared with Ui+1 and Ui−1 respec-

tively.
• Additionally, in the last round of the 2-SAKE, each Ui :

– chooses a random nonce ri ∈R {0, 1}`;
– computes a signature σ0

i of (Ui, ri);

– broadcasts M0
i := (Ui, ri, σ

0
i).

Round 1:

Computation. Each Ui :

• Checks the signatures σ0
j ; if something fails, aborts;

• Sets sidi := pidi|r1| . . . |rn;

• Computes Xi :=
−→
K i ⊕

←−
K i;

• Computes the confirmation strings

←−ρ i = F
UH(Ui−1,Ui,

←−
K i,pidi)

(v) and −→ρ i = F
UH(Ui,Ui+1

−→
K i,pidi)

(v);

• Computes a signature σ1
i of (Ui, sidi, Xi,

←−ρ i,−→ρ i).
Broadcast. Each Ui broadcasts M1

i := (Ui, sidi, Xi,
←−ρ i,−→ρ i, σ1

i).

Key Computation.

Check. EachUi checks all the signatures, equality of pid’s, sid’s, con-
sistency of←−ρ i and −→ρ i; if something fails, aborts.

Computation. Each Ui
• for j = 1, . . . , n, computes

←−
K j and sets Kj :=

←−
K j ;

• sets K := (K1‖ . . . ,Kn‖sidi);
• accepts ski := FUH(K)(v).

Figure 1: A Compiler for achieving group AKE with strong security

23

	Introduction
	Security Model
	Description and strong security
	Further security properties

	Proposal of a secure protocol
	Signatures withstanding randomness reveals
	Collision resistant pseudorandom function families
	From 2-Party to group keeping strong security
	MA-security

	Concrete Implementations

