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Abstract: Industrial baking of sponge cakes requires various quality indicators to be measured during production such as 
moisture content and sponge hardness. Existing techniques for measuring these properties require randomly selected 
sponges to be removed from the production line before samples are manually cut out of each sponge in a destructive way 
for testing. These samples are subsequently processed manually using dedicated analysers to measure moisture and texture 
properties in a lengthy process, which can take a skilled operator around 20 minutes to complete per sponge. In this paper, 
we present a new, single sensor hyperspectral imaging approach, which has the potential to measure both sponge moisture 
content and hardness simultaneously. In the last decade, hyperspectral imaging systems have reduced in cost and size and, 
as a result, they are becoming widely used in a number of industries and research areas. Recently, there has been an increased 
use of this technology in the food industry and in food science applications and research. The application of this technology 
in the cake production environment, empowered by sophisticated signal and image processing techniques and prediction 
algorithms as presented in this paper has the potential to provide on-line, real-time, stand-off cake quality monitoring. 
 

1. Introduction 

Food production is constantly confronted with 

increasingly rigorous requirements on the product quality, 

ingredients, and shelf lifetime. In this age of mass food 

production, which is facilitated by a network of retailers 

enabling global distribution, product shelf life has become 

one of the critical quality factors that manufacturers must 

maximise and accurately predict to position them strongly in 

a highly competitive market. Various metrics are used to 

assess and track the quality of baked goods during production, 

but these are often based on various statistical sampling 

schedules and the measurement procedures themselves are 

often time-consuming, expensive, and destructive. The 

proposal of an on-line, stand-off test, monitoring 100% of 

produced goods is a solution that has the potential to solve 

many quality control issues.  

Hyperspectral Imaging (HSI) is a spectroscopic 

imaging technique which allows spatial and spectral images 

of a scene to be acquired. Unlike conventional cameras which 

sample red, green and blue regions of the spectrum, 

hyperspectral imaging systems capture hundreds or 

thousands of images, each at a different wavelength of the 

electromagnetic spectrum. Historically, due to the cost of HSI 

systems, most applications were in remote sensing [1] and 

wide area surveillance [2]. In recent years, the reduction in 

cost and size of HSI systems has made them increasingly 

more accessible for everyday applications in industry and 

research; furthermore, HSI is one of a number of modern 

technologies that has found application in on-line product 

monitoring. The inherent spectral data acquired by these 

systems, combined with appropriate chemometric analysis 

can provide a powerful tool for quality control. On-line 

applications of HSI range from the mining industry [3]–[5], 

through to the textile, pharmaceuticals [6]–[10], and many 

other key industry sectors. The application of HSI also has 

enormous potential in the food industry [3], [11]–[14]; here, 

the most common on-line applications of HSI are for the 

inspection and segregation of agricultural crops and produce 

[13], [15], [16]. A number of additional cases of HSI 

inspection of food production processes – including the 

inspection of baked products – have also been presented in 

the literature [17]–[21]. 

HSI inspection can be used for segregation of different 

types of products, such as different types of grains, including 

maize, wheat, barley, oat, soybean, and rice seed [16], 

identification of ripeness [14], [22], and detection of flaws – 

such as bruising in fruit [23], [24]. It can also be used for the 

indication of nutritive properties, such as fat and protein 

content [25]–[27]. Another parameter that can be directly 

measured by HSI is moisture content [28]. The level of 

moisture in a product under inspection is an important 

parameter not only for the food industry, but also many others 

such as paper manufacturing or wood drying processes [29]–

[31]. Monitoring of the moisture for food products has been 

reported in [14], [16], [32] and work specifically targeting the 

analysis of baked products has also been presented in [21], 

[33],[34], and [35]. In [34], Whitworth et al. present a number 

of applications of HSI in the analysis of food including 

techniques for the detection of added gluten in wheat and for 

studying fat distribution in French fries. The authors also 

study the evolution of moisture in baguettes when stored at 

different levels of humidity. In fact, in recent years, HSI has 

been used in the baking industry to analyse a number of 

products, including bread, biscuits, cakes, and other goods for 

the purposes of product innovation and reformulation and for 

making healthier alternatives [35]. In [21], the authors use 

spectral imaging to characterise the quality of butter cookies 

based on a so-called browning score. The browning score is 

computed from the spectral images and varies with the oven 

temperature used when baking the cookies and with the bake 

time. The results in [21] are shown to correlate well with 

scores allocated by a tasting panel, who scored the cookies 

based on their quality. 

In this paper we present a novel application of HSI for 

analysing baked products, with a focus on addressing the 
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challenge of simultaneously measuring both the moisture 

content and hardness of baked sponges in a stand-off and 

efficient way. While various authors have presented the use 

of HSI to analyse the properties of baked goods, to the best of 

the authors’ knowledge, a single system capable of 

simultaneously measuring both moisture content and sponge 

hardness has not been presented.  To support and justify the 

use of HSI in this context, we investigate the robustness of 

using reflectance spectra to quantitatively predict cake 

hardness and moisture through comparison with ground-truth 

data. We also explore the impact that the spectral data range 

and spectral resolution has on the prediction model 

performance, since it is possible that a full hyperspectral 

image may not be required for this application. This allows 

us to explore how well a multispectral or even single band 

system could be designed to create a new, fast, effective, and 

affordable moisture and hardness monitor for the baking 

industry and beyond.  

2. Data Acquisition  

Hyperspectral images of a large number of sponges of 

different ages were acquired alongside ground-truth moisture 

and hardness measurements for each sponge, which were 

obtained using traditional destructive techniques. To allow 

efficient data capture, a total of 96 circular sponge cakes – of 

which 48 were composed of white, plain sponge and 48 were 

composed of brown, chocolate sponge – were collected and 

stored immediately after baking over a period of six weeks. 

At the end of the six week period, the age of the collected 

sponges – which each had a diameter of 9” – ranged from a 

few hours to 45 days old; this allowed hyperspectral image, 

moisture, and hardness data for a large age range of sponges 

to be collected in just a few days. 

Prior to imaging, the top of each sponge was removed 

such that the height from the base to the surface of each 

sponge measured exactly 3 cm in height. This was achieved 

using a specially designed fixture to ensure accuracy and 

repeatability between sponges. An image of a sponge already 

prepared for imaging is shown in Figure 1.  Each sponge cake 

was then imaged using the GmbH, Red Eye 1.7 near-infrared 

(NIR) system which acquires HSI data sampled at 256 

discrete wavelengths in the spectral range 900 nm – 1700 nm. 

Of particular note within this range is a strong water (moisture) 

absorption band at approximately 1450 nm [28]. As a passive 

system, the Red Eye 1.7 requires external illumination. To 

ensure a sufficient level of infrared radiation, a set of two 

12 V DC off-the-shelf halogen lamps were used during 

imaging. The halogen lamps, as an incandescent light source, 

provide excellent illumination in the near-IR range, as 

required by this system [36]. All hyperspectral images had 

spatial dimensions of 320-by-400 and a bit-depth of 14 bits 

per pixel. Prior to the imaging of each sponge, a flat tile of 

Spectralon® (a material of high Lambertian reflection over 

its reflective spectral range of 250 nm – 2500 nm [37]) was 

placed at the height of the sponge surface and used to 

calibrate the HSI camera's white levels, and the lens cap was 

applied to calibrate the black levels. 

Following acquisition of the HSI data for a sponge, a 

circular stencil with a diameter of 3 cm was used to cut a 

sample from the centre of the sponge for hardness and 

moisture analysis. To measure hardness, each sample was 

analysed using a Brookfield CT3 Texture Analyser. This 

process irreversibly changed the texture parameters of the 

sponge, but did not affect the moisture, therefore the same 

sample could be used for moisture analysis. For this, 4 g of 

cake crumbs were placed in a Mettler Toledo HB43-S 

Halogen Moisture Analyser and the moisture content of the 

sponge was recorded. After data acquisition, each sample was 

disposed of and the testing equipment was cleaned to remove 

any residual sponge material and the procedure was repeated 

until all the collected cakes had been processed. 

The sponge moisture metric was equal to the 

percentage of the 4 g sponge sample mass loss upon drying 

under a halogen lamp. The sponge texture metrics, as 

provided by the texture analyser, were Hardness 1, Hardness 

2, Cohesiveness, Springiness, and Adhesiveness. While 

measurements were made for all of the texture metrics, only 

measurements of Hardness 1 and Hardness 2 were used in the 

development of the prediction model since these were the 

only ones shown to correlate well with moisture as will be 

explained in Section 3. Hardness 1 and Hardness 2 are equal 

to the peak loads, measured in grams, of the first and second 

cake sample compression cycle, respectively [38]. 

After measuring all 96 sponges using the methods 

described above, the resulting data set collected for each cake 

contained a calibrated set of predictors (the calibrated 

reflectance data from the Red Eye 1.7 NIR HSI system) and 

responses (the physical properties of interest – moisture and 

texture) which could be used to build an appropriate 

prediction model to allow moisture and hardness to be 

predicted directly from hyperspectral images of baked sponge.  

It is worth noting that there are water absorption lines 

in the Vis-NIR range (400 nm – 1000 nm), where 

significantly less costly silicon based systems could be used, 

and there are successful examples of this in the literature [39]. 

However, these lines are much weaker; even the strongest at 

approximately 970 nm falls at the sensitivity edge of these 

detectors, where signal-to-noise ratio is relatively low. While 

initial results using a Vis-NIR system, targeting the water line 

at 970 nm were promising [11], during our experiments, we 

found the 1450 nm band most useful for this application.  

 
Fig. 1.  Use of sponge cutting fixture and 3 cm circular 

stencil to prepare a chocolate sponge. 
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3. Development of the Prediction Model 

Before building a prediction model, the Pearson 

Correlation Coefficient (a measure of the linear correlation 

between two variables) [40], [41] was used to provide an 

indication of the relationship between the data sets. This 

established the range of sponge parameters that could be 

predicted using the reflectance measurements, and confirmed 

our understanding of the relationship between reflectance and 

moisture as well as hardness measurements. Once this 

relationship was understood, a suitable model based on 

Partial Least Squares Regression (PLS-R) was designed. 

 

3.1. Correlation Tests 
 

It is well documented that water (moisture) has 

distinct absorption features in the near infrared (NIR) spectral 

range [28]; however, no direct links between reflectance and 

tactile properties are known to the authors. That said, 

correlation between sponge moisture and hardness does exist; 

as a sponge loses moisture, it becomes more firm. The 

Pearson Correlation Coefficient was used to check the 

strength of the relationship between the moisture level and 

the spectral data (from one chosen wavelength at 1450 nm) 

for both tested cake types. It was also used to establish 

whether or not there existed any relationship between the 

moisture and any of the other properties measured. 

Figure 2 demonstrates the result of the aforementioned 

correlation test. The correlation was deemed to be: strong if 

the Pearson Correlation Coefficient (PCC) > 0.9 (marked 

with a green box); average if 0.9 < PCC < 0.6 (marked with 

the yellow box); and weak if PCC < 0.6 (marked by the red 

box). The p-Value – noted underneath each PCC in Figure 2 

– indicates the significance of the relationship computed. If 

the value is small (typically less than 0.05), there is strong 

statistical evidence against the null hypothesis.  In the case of 

regression analysis, this hypothesis implies that there is no 

relationship between independent variable 𝑿 and dependent 

variable 𝒀. Thus, if the p-Value is low it means that the null 

hypothesis is rejected, which in turn implies that there is 

indeed a relationship between the dependent and independent 

variables. In our analysis, all the characteristics with a high 

PCC average have a p-Value equal to zero, indicating a 

significant relationship for each. The correlation between 

reflectance, moisture, and all other texture properties 

measured can also be illustrated graphically, as shown in 

Figure 3. Here, the data is shown in a series of scatter plots 

with computed lines of best fit overlaid. 

For chocolate sponges, there is, on average, a negative 

correlation between the reflectance data and moisture. The 

same is true for the relationship between moisture and 

Hardness 1 and Hardness 2. There is also a trend between 

cohesiveness and moisture (which is positive on average) and 

all of these relationships are statistically significant. For white 

sponges, there is strong negative correlation between the 

reflectance data and moisture, and between moisture and 

Hardness 1 and Hardness 2. While all these relationships are 

statistically significant, the correlation between moisture and 

cohesiveness is not as strong as for the chocolate sponges. 

The springiness and adhesiveness properties have weak 

correlation with moisture and were omitted in further analysis. 

Cohesiveness was also omitted from further analysis since 

correlation only exists for chocolate sponges. Overall, the 

strong correlation between the reflectance data and the 

moisture measurements provides confidence that moisture 

can be reliably predicted using the HSI data. Furthermore, our 

experiments indicate that Hardness 1 and Hardness 2 can be 

predicted from moisture, therefore it should be possible to use 

the HSI system’s moisture predictions to estimate Hardness 1 

 
Fig. 2.  Results of the correlation test for chocolate and white sponge cakes separately. 
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and Hardness 2 for both white and chocolate sponge cakes in 

a fast, repeatable, and stand-off way.  

 

3.2. Partial Least Squares Regression for 
moisture and hardness prediction using HSI 
 

PLS-R is a statistical method for finding a relationship 

between a set of predictors and responses [42], [43]. It may 

be used to predict a value of interest based on another 

correlated parameter. PLS-R exists in various 

implementations, but the two-block predictive version is the 

most popular form in science and technology [44]. This 

models the relationship between two data matrices, 𝑿 and 𝒀, 

and can analyse strongly correlated and noisy data within 

matrix 𝑿 in order to model a number of response variables in 

matrix 𝒀 . The mathematical method at the core of this 

modelling iteratively estimates each model parameter at the 

slope of a simple bivariate regression between the data of the 

𝑦 and 𝑥 variables [42], [43]. Similar to simple regression, the 

two data blocks 𝑿 and 𝒀 are respectively called predictors or 

independent variables (although, as mentioned above, often 

this data tends to be highly correlated and therefore the name 

independent is not always adequate), and responses or 

dependent variables, meaning the variables whose variation 

we wish to explain or predict. The method minimises error 

scores across all individuals to enhance the prediction. The 

test uses the principle of least squares, which selects, among 

many possible lines, the one that best fits the data (and 

minimises the sum of squared vertical distances from the 

observed data points to the line). With this in mind, typically 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3.  Scatterplots with regression for analysed data relationships between (a) reflectance and moisture, (b) Hardness 1 

and moisture, (c) Hardness 2 and moisture, (d) cohesiveness and moisture, (e) springiness and moisture, and (f) 

adhesiveness and moisture. 
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a more descriptive expansion of the acronym PLS is 

Projection to Latent Structures [45]. As PLS-R is explicitly 

able to explain the variability in the responses, we have 

selected this method to construct prediction models to predict 

the characteristics of the baked sponges we have imaged. For 

our application, we wish to use PLS-R to predict sponge 

moisture content and hardness based on our acquired HSI 

reflectance spectra.  

 

3.3. Information Extraction from HSI Data 
 

The spectral response of each sponge was computed 

as the median value of all valid spectra in the central part of 

the cake. A full analysis of all pixels covering the sponge 

surface could introduce unnecessary errors, as sponge cakes 

can contain air bubbles and other structural defects. During 

imaging, structural imperfections can act as cavities that 

significantly affect the amount of reflected light. To avoid this 

potential source of error in our model, data from the surface 

of cavities was excluded from the analysis. Figure 4 

illustrates the general steps of an automated image processing 

algorithm, which has been designed to detect cavities and 

subsequently ignore them in the analysis. The algorithm first 

applies thresholding to identify bright regions of the image 

likely to correspond to the sponge. Then, the perimeter of the 

sponge is detected using the Hough Transform [46] for circle 

detection, and a circle of radius 𝑟 in the centre of the detected 

sponge is identified and extracted for further analysis. 

Circular structural defects are detected using morphological 

techniques and removed from the analysis.  

 

3.4. Spectral Data Selection 
 

During data acquisition, reflectance data was captured 

in the form of hyperspectral images containing 256 spectral 

bands over 800 nm ranging from 900 nm to 1700 nm. 

However, due to decreases in SNR at the edges of the camera 

detector, only 225 bands were selected, leaving data from a 

range of wavelengths between 967 nm and 1676 nm to be 

used for further analysis. While hyperspectral data sets are 

very rich in information, they require sophisticated and 

relatively expensive equipment to capture the data. As a result 

of this, we also assess the feasibility of using a multispectral 

camera (which utilises only a subset of spectral bands) or a 

single band camera in place of a full HSI system. We do this 

by constructing three prediction models for each sponge type 

(white and chocolate), each with a different number of 

spectral bands contributing to the model predictors. In other 

words, we construct separate models to predict moisture from:  

1) a raw, information rich hyperspectral data cube;  

2) a simulated multispectral image obtained by 

subsampling the hyperspectral data cube;   

3) a simulated single band dataset obtained by 

selecting one image from the hyperspectral data 

cube which is known to correspond to water 

absorption.  

Figure 5 illustrates a typical reflectance spectra 

captured using the HSI camera (blue line), the selection of 

four bands simulating the multispectral dataset (red circles), 

and the single wavelength selected from the moisture 

absorption band (green circle). The simulated multispectral 

dataset was constructed from four discrete wavelengths, 

which were selected based on the fact that they represented 

four distinct stationary points in the spectrum. For the single 

image experiment, the image corresponding to 1450 nm was 

selected as this wavelength is at the centre of a strong 

moisture absorption band [28].  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.  Processing of spatial image, extracted from HSI data cube, to exclude the air bubbles from further analysis: (a) 

single band (1450 nm) of hyperspectral data with indication of the centre area, (b) binary image obtained by thresholding 

indicating location of the cavities (in black), (c) binary mask selecting the centre of the cake (white), excluding air bubbles 

(black), (d) selection of the cake ready for spectral data extraction. 

 

 

 
Fig. 5.  Illustration of the spectral data selection. Blue 

curve - hyperspectral data; red points - multispectral 

data; green circle - single band data. 

Wavelength [nm] 
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3.5. Fitting the Model 
 

A PLS-R model can be designed to establish the 

relationship between two sets of data – predictors and 

responses. For our application, the reflectance data (from 

three different datasets: hyperspectral, simulated 

multispectral and single band) were used as the predictors and 

the moisture, Hardness 1, and Hardness 2 data were used as 

the responses of the three models in Sec. 3.4. Each model 

must be trained to learn how to establish all the relationships 

between predictors and responses. As such, the majority 

(81.25%) of the acquired data was used as a training set to 

build each of the models. This training set contained spectral 

information from 39 cakes of each sponge type; these cakes 

were of various ages, but none of those selected were baked 

on the same day that hyperspectral data was captured. The 

  
            (a)                        (b) (c) 

Fig. 6.  Graphs illustrating (a) percent of variance explained for predictors and (b) responses, and (c) estimated Mean 

Square Prediction Error when varying number of PLS-R components for white cakes prediction model with HSI data as 

predictors. 

 

 

 
(a) (b) (c) 

Fig. 7.  Graphs comparing predicted (fitted) and measured (observed) values of (a) moisture, (b) Hardness 1, and (c) 

Hardness 2 for a white cake PLS-R prediction model trained and tested on HSI data. 

 

 

Table 1 Table of observed and predicted values of moisture, Hardness 1, and Hardness 2, and R2 value for each 

prediction, for a white cake PLS-R prediction model trained and tested on HSI data. 

 Moisture Hardness 1 Hardness 2 

Cake No (age) Predicted Observed Predicted Observed Predicted Observed 

1 (5) 25.58 24.79 1080.97 1158.50 942.53 1018.50 

2 (37) 15.37 15.11 3263.29 2757.50 2702.44 2365.00 

2 (12) 22.30 21.65 1267.40 1367.00 1082.45 1161.00 

4 (19) 21.53 21.16 1386.00 1625.50 1178.95 1377.00 

5 (27) 19.40 19.32 1716.64 1941.00 1428.30 1627.00 

6 (28) 19.90 19.96 1674.13 1817.50 1394.44 1519.00 

7 (41) 16.69 16.85 2280.66 2220.00 1861.83 1911.00 

8 (43) 19.24 18.87 2060.46 2074.00 1711.34 1740.50 

9 (0) 26.04 24.99 880.99 942.00 760.44 831.00 

R2 0.9931 0.9804 0.9837 
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remaining data then served as testing data and was used to 

validate the accuracy of the models. This testing set consisted 

of spectral data from 9 cakes of each sponge type. Each cake 

was of distinct age, and one cake of each sponge type was 

baked on the same day that hyperspectral data was captured. 

By including freshly produced cakes in the testing class, we 

aimed to determine if the PLS-R model performs adequately 

for unseen data.  

When applying each model, the aim is to explain the 

variance in the data with 100% accuracy and to make a 

prediction with an error as close as possible to zero. By 

observing the variance in predictors and responses and 

analysing the prediction error, it is possible to assess the 

performance of a model as a function of model complexity. 

While hundreds of wavelength bands were present in the 

hyperspectral data set, using them all to iteratively train the 

PLS-R model – which would result in many PLS-R 

components – can lead to strong overfitting of the model and 

redundant complexity for highly correlated data. In this study, 

an adequate number of PLS-R components was identified via 

10-fold cross validation and observation of the mean squared 

prediction error of the trained models. Figure 6 shows the 
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Fig. 8.  Prediction models' performance overview. 

Hyperspectral 
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Single band

R2 = 0.9449                      R2 = 0.8229                      R2 = 0.7956

R2 = 0.9436                      R2 = 0.9664                      R2 = 0.9594

R2 = 0.9714                      R2 = 0.9456                     R2 = 0.9501
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percentage of the variance described for the HSI data 

predictors and white cake moisture responses and the model 

prediction error when using an increasing number of PLS-R 

components. For the HSI PLS-R model, the use of 10 

components (out of a maximum of 225) was deemed adequate; 

for the multispectral PLS-R model, 4 components (out of a 

maximum of 4) were used; and for the single band PLS-R 

model, the single component available was used.  

Another way of assessing the prediction performance 

is by plotting the predicted values and comparing them with 

the ground-truth moisture and hardness measurements. An 

ideal model would have all the points lying on the diagonal 

of such a graph; this would mean that all predicted values are 

identical to those that have been observed. Figure 7 shows a 

comparison of the observed ground-truth measurements with 

predicted values for a PLS-R model trained and tested on HSI 

data. 

A third method for assessing a PLS-R model's 

performance is to analyse its R-squared (R2) value. This is a 

statistical measure which assesses how closely the data points 

are to the fitted regression line. A value of R2 = 1 indicates a 

perfect fit, where the predicted values exactly match the 

observed measurements. Therefore, when training a PLS-R 

model, the aim is to get the R2 values as close as possible to 1. 

4. Results 

Following training of the three models described in 

Sec. 3.4 for both types of sponge, each model was used to 

predict the moisture and hardness of unseen sponges of 

various ages. Table 1 compares the values of observed and 

predicted properties of the sponges – and the corresponding 

R2 values for the prediction of each characteristic – when a 

PLS-R model trained on HSI data was used.  

Employing comparison plots and R2 values, Figure 8 

shows an overview of the performance of all six models built 

from the acquired data. The figure shows the results applying 

three different models built from three different predictors’ 

data sets (hyperspectral, multispectral and single band) for 

white sponges and for chocolate sponges. It can be seen in 

Figure 8 that the prediction of the hardness for chocolate 

cakes with multispectral data has slightly better performance 

than for a full hyperspectral profile (as demonstrated by R2 

value). One explanation for this could be that the prediction 

model for these cakes was overfitted when using HSI data; 

this resulted in noise inadvertently being used to train the 

model. Further fine tuning of the model would be required 

before industrial implementation. Such tuning would 

consider the selection of the optimal spectral bands for each 

inspected cake type. 

Using the multispectral imaging approach or single 

band camera has the potential to simplify the complexity of 

the hardware required to capture the data and reduce the 

associated monetary cost; however, it also introduces 

limitations to the accuracy and robustness of the prediction 

model. With a limited set of predictors, the variance in the 

responses may not be fully explained and, therefore, the 

performance of any resulting prediction model is limited. 

Figure 9 illustrates the variance explained in the predictors 

and responses for a PLS-R prediction model trained on 

multispectral data (simulated by the extraction of 4 bands 

from the HSI data cube); from Figure 9(b), it is clear that only 

around 70% of the variance in the responses can be described 

using the 4 selected bands.  

A reduction in the spectral resolution of the predictors’ 

data set clearly has an impact on PLS-R model performance; 

however, the accuracy of the prediction of moisture is 

significantly less affected by this limitation than the 

prediction of hardness. If a multispectral imaging system is 

preferred, optimisation of the band selection process would 

be necessary to select imaging wavelengths that better 

explain the variations in moisture and hardness.  

5. Conclusions 

Hyperspectral imaging has been shown to be a valid 

method for predicting sponge cakes' moisture content and 

hardness. The application of this technology in the cake 

production environment, empowered by sophisticated image 

processing and prediction algorithms has huge potential. This 

research has established a proof of concept for a new stand-

off cake moisture and hardness monitoring system. Such a 

system would provide the added advantage of being able to 

record every product in a hyperspectral image, which could 

be processed to detect variations in the production process.  

The results of the moisture prediction when using a 

PLS-R model trained and tested on HSI data are very close to 

the observed values of the ground truth, with R2 values very 

close to 1. This proves that the developed technique provides 

a very accurate model for moisture prediction. Additionally, 

our study revealed that there is a degree of correlation 

between hardness and the moisture of the sponges; thus, 

performing hardness prediction based on reflectance data is 

justified and has shown promise. To the authors' knowledge, 

this has not been shown before. 

The developed models appear to perform better for 

measuring moisture in white sponges than in chocolate 

sponges. The latter demonstrate a narrower range of moisture 

change over their lifetime and they exhibit a higher variance 

in overall sponge moisture, which leads to a weaker 

correlation between ground-truth measurements and 

predicted values for this type of sponge. Models based on 

hyperspectral data have the best moisture and hardness 

prediction performance; however, the other options 

(multispectral or single band) are still able to provide 

satisfactory results for sponge moisture.  

 
(a) (b) 

Fig. 9.  Graphs of variance explained in (a) predictors 

and (b) responses for chocolate cake PLS-R prediction 

model trained on multispectral data. 
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