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Abstract: This article describes an improved method for Poisson image denoising that is based on a state-of-the-art Poisson
denoising approach known as Non-Local Principal Component Analysis (NLPCA). The new method is referred to as PieceWise
Principal Component Analysis (PWPCA). In PWPCA, the given image is first split into pieces, then NLPCA is run on each image
piece, and finally, the entire image is reconstituted by a weighted combination of the NLPCA-processed image pieces. Using
standard test images with Poisson noise, we show that PWPCA restores images more effectively than state-of-the-art Poisson
denoising approaches. In addition, and to the best of our knowledge, we show a first application of such approaches to single-
particle X-ray free-electron laser (XFEL) data. We show that the resolution of 3D reconstruction from XFEL diffraction images is
improved when the data are preprocessed with PWPCA. XFELs are currently under rapid development to allow high-resolution
biomolecular structure determination at near-physiological conditions. Data analysis methods developments follow these techno-
logical advances and are expected to have high impact in structural biology and drug design. This article contributes to these
developments. As little experimental single-particle XFEL data is available still, the XFEL experiments shown here were performed
with simulated data.

1 Introduction

Poisson noise (also called photon noise or shot noise [1]) is due to
a discrete ("quantized") nature of the signal measured by a detector.
For instance, light can be considered as a discrete flow of individual
"packets" (photons) that arrive to the detector randomly and indepen-
dently from each other. As a result, photon counting obeys a classical
Poisson statistics, and the number of photons y measured by a given
detector element over a time interval t is described by the following
probability distribution:

P(y|f) = (f)y

y!
e−f , (1)

where f is the expected number of photons in time interval t. This is
the standard Poisson distribution with rate f .

For large numbers, the Poisson distribution approaches a normal
distribution, meaning that shot noise is practically indistinguishable
from a true Gaussian noise, except in the case of very few elementary
events (photons, electrons, etc.) that are individually observed. Since
the standard deviation of the shot noise is equal to the square root of
the expected number of incident photons f , the signal-to-noise ratio
(SNR) is given by:

SNR =
f√
f

=
√

f. (2)

This equation indicates that the SNR is large when f is large.
However, in many applications (e.g., night vision, medical imag-
ing, weather forecasting, astronomy, and spectral imaging), very few
photons are collected by the detector, due to various constraints
(weak light source, short exposure time, phototoxicity). This is
referred to as photon-limited imaging. Thus, the limited number
of available photons limits the SNR, due to the signal-dependent
Poisson statistics.

An approach to improve the SNR is to first reduce the dependence
of the noise on the signal by an image transformation (e.g., Variable-
Stabilizing Transformation (VST), multiscale Variable-Stabilizing
Transformation (MVST), conditional variance stabilization (CVS),
or Fisz transform [2–19]) and, then, to use methods that assume
signal-independent noise [20–23]. Other approaches to the SNR
improvement have also been proposed, such as maximum likeli-
hood estimation [24–32],Plug-and-Play scheme [33], Deep convolu-
tional denoising [34] Kullback-Leibler divergence [35–37], optimal
weights filtering [38] based on Non-Local Means approach [20], or
Non-Local Principal Component Analysis (NLPCA) [39].

NLPCA combines Principal Component Analysis (PCA) and
sparse Poisson intensity estimation methods in a nonlocal estima-
tion framework and takes into account the heteroscedastic nature
of observations. It clusters (K-Means clustering) a set of patches
extracted from the entire image into 14 groups, each group contain-
ing similar patches. Then, it separates noise and signal in each group
by reducing the dimension of the data in the group using PCA. More
precisely, most of the low-frequency information will be contained
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in the first few principal components and the other principal compo-
nents, corresponding to the high-frequency information, will not be
taken into account in the signal reconstruction. Therefore, NLPCA
has lower efficiency with images rich in details [39].

Theoretical analyses and simulation results of Jin et al. [40, 41]
suggest that larger sizes of the window from which the patches are
extracted do not necessarily produce better denoising results. More
precisely, there is an optimal value of the window size for the best
denoising results [40, 41]. The probability of similarity of patches is
higher and the similarity estimation is more accurate for the patches
extracted from the same area than for the patches extracted from dif-
ferent areas of the same image. Building on the results of that work
[40, 41], we here propose a denoising method that is based on com-
bining the NLPCA results obtained on different areas of the same
image. The method first splits the given image into large pieces.
Then, the pieces are individually denoised using NLPCA. Finally,
the denoised pieces are combined into a full-size image. The infor-
mation dimension (complexity) in a piece (local area) of the image is
much lower than the complexity of information in the entire image.
Therefore, it is easier to separate noise from signal in the local areas
than in the entire image.

The approach that we have developed for Poisson denoising
using the principle of piecewise PCA is referred to as PieceWise
PCA (PWPCA) and it is described in this article. We show that
it provides better results than several state-of-the-art approaches,
including NLPCA. PWPCA was evaluated using standard real-space
test images affected by Poisson noise as well as using single-particle
X-ray diffraction images, such as those that can be collected with an
X-ray free-electron laser (XFEL). XFEL experiments are currently
under rapid development to allow high-resolution determination of
biomolecular structures under near-physiological hydration condi-
tions [42–45]. The diffraction image collected by XFEL is, in a
first approximation, the intensity (the square of the amplitude) of
the 2D Fourier transform of the object’s 2D real-space projection
(or a central slice of the object’s 3D Fourier-transform intensity,
according to the central slice theorem), whereas the phase infor-
mation cannot be collected experimentally. One diffraction image
contains the diffraction data collected from one biomolecular par-
ticle at a random and unknown orientation in 3D space. Therefore,
to compute a 3D reconstruction from the 2D diffraction data col-
lected from many copies of the same particle, their orientations (the
orientation of different particles hit by the XFEL beam) and phases
should be determined computationally. The amplitude volume can
be obtained from the square root of the volume assembled from
the oriented diffraction images. The phase images can be retrieved
from the amplitude images and assembled in 3D at the determined
orientations or the 3D phase volume can be retrieved from the 3D
amplitude volume, and the phase retrieval is usually done with the
standard Fienup method or its variants [43, 46, 47]. The real-space
3D object can then be computed by inverse Fourier transform of
the combined amplitude and phase volumes. Both orientation and
phase determination are difficult tasks because the majority of non-
zero diffraction-image pixels are concentrated in a very small central
region of the diffraction image and the pixel intensities obey Pois-
son statistics. As very few XFEL experimental data sets had been
obtained so far, we have performed experiments using simulated
data, as commonly done when validating new methods for XFEL. To
the best of our knowledge, diffraction data restoration using Poisson
denoising methods has not been previously addressed.

The remaining part of the article is organized as follows. Basic
concepts of NLPCA are provided in Section 2. PWPCA is described
in Section 3. Results obtained with PWPCA using simulated noisy
real-space images and using simulated XFEL data are presented and
discussed in Sections 4 and 5, respectively. Conclusions are provided
in Section 6.

2 Background: Non-Local Principal Component
Analysis

In this section, we briefly remind the NLPCA approach [39] that
we here propose to be used in a piecewise fashion over an image

(Section 3). The set of image pixels is denoted by I = {x =

(x(1), x(2))|x(1), x(2) = 1, 2, · · · ,
√
M}, where both M > 0 and√

M are integers. Let y = {y(x)|x = (x(1), x(2)) ∈ I} be the
observed image obtained by an image acquisition device and each
y(x) is an independent random Poisson variable given by (Eq. 1),
whose mean f(x) > 0 is the underlying intensity value to be esti-
mated. Let Y be the M ×N matrix of all denoising patches of
size

√
N ×

√
N pixels reordered in N -long vectors referred to as

denoising vectors (one patch per image pixel for the image size of√
M ×

√
M pixels). Yi,j is the jth pixel in the ith patch of the noisy

image. Let F be defined similarly to Y for the underlying intensity
f = {f(x)|x = (x(1), x(2)) ∈ I}.

The estimate of F is given by

F̂i,j = exp
(
[U∗V∗]i,j

)
, i = 1, 2, · · · ,M, j = 1, 2, · · · , N, (3)

where
(U∗,V∗) = arg min

(U,V)
L(U,V). (4)

In Eq. 4, the matrices U/U∗ and V/V∗ have dimensions M × l and
l ×N and are referred to as matrix of coefficients and matrix of dic-
tionary components (axes), respectively. L is the loss function that
accounts for the Bregman divergence DΦ to measure the proximity
between two matrices X and Y of size M ×N :

DΦ(X||Y ) = Φ(Y )− Φ(X)− Tr((∇Φ(X))⊤(X − Y )), (5)

where Φ(θ) =< exp(θ)|1n >=
∑n

i=1 e
θi , < a|b > is inner prod-

uct of a and b, θ = (θ1, · · · , θn)⊤, exp is the component-wise
exponential function: exp : θ 7→ (eθ1 , · · · , eθn)⊤, 1n is the vector
(1, · · · , 1)⊤ ∈ Rn and ∇Φ(θ) is the gradient of Φ(θ). Moreover
∇Φ(θ) = exp(θ).

The use of Eq. 5 amounts to searching for U and V that minimize
the following loss function:

L(U,V) =

M∑
i=1

N∑
j=1

exp
(
[UV]i,j

)
− Yi,j [UV]i,j , (6)

the rows of V are dictionary components and l (l ≪ M) is the num-
ber of components. The purpose of the rank l is to regularize the
solution.

More details on the NLPCA algorithm are provided in Appen-
dices A and B, in the context of denoising image pieces (Section
3.2).

Fig. 1: Piecewise image denoising in PWPCA. Image pieces (right)
overlap (left) to eliminate block type of artifacts.
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Fig. 2: Denoising of each image piece in PWPCA.

3 New Approach: Poisson Piecewise Principal
Component Analysis

The PWPCA approach proposed here consists of three steps. The
given image is first divided into a set of overlapping image pieces.
Then, Poisson denoising of each individual piece is performed.
Finally, all denoised pieces are combined, with some weights, into
a full (original size) image. In the remaining part of this section,
we describe in detail each of the three steps. The pseudocode of the
algorithm is provided in Algorithm 1.

3.1 Extraction of image pieces

The first step is to split the given image y i.e. its pix-
els I into a set of pieces of size

√
M ′ ×

√
M ′ pixels. The

set of pixels in each image piece yq , q = 1, 2, · · · , Q is
denoted by Bq = {x = (x(1), x(2)) ∈ I|x(1) ∈ [x

(1)
q −m,x

(1)
q +

m], x(2) ∈ [x
(2)
q −m,x

(2)
q +m]}, where m is the number of pix-

els covered by the image piece from its central pixel and xq =

(x
(1)
q , x

(2)
q ) are the coordinates of the central pixel, meaning that√

M ′ = 2×m+ 1. This produces the total number of
√
Q×√

Q pieces, where
√
Q = ⌈(

√
M −

√
M ′)/( 23

√
M ′)⌉ and ⌈t⌉ =

min{n ∈ Z|t ≤ n} is the top integral function whose value is the
smallest integer greater than the independent variable or equal to
it. Let us define T as T =

√
M −

√
M ′. Then, the central pixel of

each piece, xq , is located in the set {(x(1), x(2))|x(1), x(1) ∈ {1 +
m, ⌈T/

√
Q⌉+ 1 +m, ⌈2T/

√
Q⌉+ 1 +m,T + 1 +m}} and the

sets of pixels Bq , q = 1, 2, · · · , Q cover I completely. As shown in
the Fig. 1, the pieces overlap to avoid block type of artifacts and each
pixel is covered at least once but not more than 4 times. Note here
that each piece of the image (Fig. 1) will be further split into smaller
pieces (as it will explained in Section 3.2) and that these sub-pieces
will here be referred to as "denoising patches" (Fig. 2), as was the
case in the original publication ([39]).

3.2 Denoising of each image piece

In this step, Poisson denoising of each image piece yq = {y(x)|x =

(x(1), x(2)) ∈ Bq} is preformed using the NLPCA approach
(Section 2) that was adapted to process pieces of an image.

Let Yq be the M ′ ×N matrix of all (M ′) patches of size√
N ×

√
N pixels extracted from yq (one patch per pixel of yq)

and reordered in N -long vectors (referred to as denoising vectors).

Algorithm 1 Pseudocode of the Poisson Piecewise PCA (PWPCA)
method proposed here

Require: Noisy image y
1: Parameters: Number of pixels in square-size image pieces,

M ′ (piece size:
√
M ′ ×

√
M ′ pixels); length of denoising vec-

tors containing vectorized denoising patches of square size, N
(denoising patch size:

√
N ×

√
N pixels); number of patch

clusters for each image piece, K; number of dictionary com-
ponents, l; maximum number of iterations, Niter; stopping
tolerance, εstop.

Ensure: Estimated image f̂
2: Partitioning: divide image y into square-size pieces yq , q =

1, 2, · · · , Q, each containing M ′ pixels.
3: for each q = 1, 2, · · · , Q do
4: Patchization: create M ′ ×N matrix Yq of all denoising

vectors (one patch per pixel of piece yq).
5: Clustering: create K clusters of patches using K-means

algorithm (see Algorithm 2 in Appendix B). The kth cluster
(represented by a matrix Yk

q ) has Mk
q elements.

6: for each cluster k do
7: Initialize U0

q = randn(Mk
q , l) and V0

q = randn(l, N)
8: while t ≤ Niter and test > εstop do
9: for all i ≤ Mk

q do
10: Update the ith row of U t

q using Eq. 20 (Appendix
A)

11: end for
12: for all j ≤ l do
13: Update the jth column of V t

q using Eq. 21
(Appendix A)

14: end for
15: t:=t+1
16: end while
17: F̂k

q = exp(Ut
qV

t
q)

18: end for
19: Concatenation: fuse the denoising clusters in patches F̂k

q

20: Reprojection: To get the estimate of the qth image piece (f̂q),
average the pixel estimates in overlapping areas

21: end for
22: for each x ∈ I do
23: Calculate f̂(x) using Eq. (10)
24: end for

Let Fq be defined similarly to Yq for the underlying intensity to
be estimated fq = {f(x)|x = (x(1), x(2)) ∈ Bq}. We approximate
each Fq , q = 1, 2, · · · , Q as follows:

Fq ≈ exp
(
[UqVq]i,j

)
i ∈ {1, 2, · · · ,M ′}, j ∈ {1, 2, · · · , N},

(7)
where Uq is the M ′ × l matrix of coefficients, Vq is the l ×N
matrix of dictionary components or axes, and l ≪ M ′.

Given Yq ∈ RM ′×N , with Yq,i,j being the jth pixel in the ith
patch, the underlying intensity Fq is estimated by minimizing the
following loss function:

L(Uq,Vq) =

M ′∑
i=1

N∑
j=1

exp
(
[UqVq]i,j

)
− Yi,j [UqVq]i,j (8)

with respect to the matrices Uq and Vq . The minimization of L is
done using Newton’s method (for more details, see Appendix A).

For each image piece yq , we separate its patches into differ-
ent groups (clusters) according to their similarity and apply matrix
factorization on each cluster, which allows representing the data
within each cluster with a lower dimensional dictionary and results
in more efficient denoising and higher SNR in the denoised image.
The clustering of patches of each image piece is here done using
K-means clustering algorithm (for more details, see Appendix B).
The K-means algorithm is used in the original NLPCA approach
as well, where it serves to cluster patches extracted from the entire
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image [39]. However, denoising results may be poor when clustering
patches of the entire noisy image because noise lowers the clustering
accuracy and large cluster dimensions make the matrix factorization
difficult. As a remedy to this problem, we here propose to perform a
separate patch clustering for each piece extracted from the image.

The denoising of each image piece is vizualized in Fig. 2. Note
here that the reprojection of patches in Fig. 2 means a recon-
stitution of the original, full-size piece of the image from the
denoised patches. During the reprojection, the overlapping pixels are
averaged.

3.3 Full-size image reconstitution

The final entire estimate f̂ is computed by a weighted average of the
piecewise estimates f̂q obtained as explained in Section 3.2. Let pixel
xq from the set Bq be the center pixel of the denoised image piece
f̂q (whose size is

√
M ′ ×

√
M ′ pixels,

√
M ′ = 2×m+ 1). In the

merging procedure, each pixel x ∈ I is first assigned the following
weight [38]:

κq,m (x) =



m∑
s=∥x−xq∥∞

1
m(2s+1)2

if x ̸= xq andx ∈ Bq,

m∑
s=1

1
m(2s+1)2

if x = xq,

0 if x ∈ I \Bq,
(9)

where ∥ • ∥∞ denotes supremum norm. Then, the full-size estimate
f̂ is obtained as follows ([48]):

f̂(x) =

Q∑
q=1

κq,m(x)f̂q(x)

Q∑
q=1

χq,m(x)κq,m(x)

, ∀x ∈ I, (10)

where

χq,m(x) =

{
1, x ∈ Bq,
0, x ∈ I \Bq.

For the purpose of illustration, we here give an example of the
weighting kernel if the entire image is processed as a single piece
(i.e. Q = 1) and the image size is 5× 5 pixels (m = 2). The
weighting kernel in this case (κ1,2) is as follows:
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However, note that the number of image pieces is usually larger than
1 and m is usually much larger than 2 (see Eq 11).

Table 1 PWPCA parameters and their values in the experiments shown in this article

Parameter Meaning Value
M ′ Image piece size See Eq. (11)
N Denoising patch size 400 (=20× 20)
l Number of dictionary 4

components (axes)
K Number of clusters 14
Niter Iteration limit 20
εstop Stoping tolerance 10−1

3.4 Parameters

Parameters of the PWPCA method are listed in Table 1, together
with their values in the experiments shown here (Sections 4 and 5).
The image piece size is defined as follows:

√
M ′ =


257 Peak ≤ 0.3,
161 0.3 < Peak ≤ 0.8,
121 0.8 < Peak ≤ 3,
101 Peak > 3,

(11)

which takes into account the size of the images used in our exper-
iments (256× 256 or 257× 257 pixels). All other parameters are
the same as in [39] (Table 1).

Fig. 3: No-noise images used in this article and synthetic Poisson-
noise images with Peak = 2 ("Spots", "Galaxy", "Cells", "Barbara",
"Peppers", "House", "Camera", "Bridge").
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Table 2 Comparison between PWPCA and NLPCA. ∆PSNR is The difference PSNR value between them. The "Average" means the average of PSNR values for all
images denoised with the same method.

Method Peak Spots Galaxy Cells Barbara Peppers House Camera Bridge Average

NLPCA 0.5 28.02 24.59 22.81 18.50 18.77 20.89 19.36 18.49 21.43

PWPCA 0.5 28.99 24.74 23.08 18.58 18.87 21.04 19.51 18.59 21.68

∆PSNR 0.5 0.97 0.15 0.27 0.08 0.10 0.15 0.15 0.10 0.25

NLPCA 1 30.95 25.37 24.13 19.19 19.64 22.19 20.34 18.98 22.60

PWPCA 1 30.81 25.52 24.57 19.62 19.92 22.78 20.59 19.44 22.90

∆PSNR 1 -0.14 0.15 0.44 0.43 0.28 0.59 0.25 0.46 0.30

NLPCA 2 34.07 25.73 25.57 19.67 20.63 23.51 20.76 19.52 23.68

PWPCA 2 34.82 26.16 25.92 20.63 21.05 24.23 21.47 20.03 24.29

∆PSNR 2 0.75 0.43 0.35 0.96 0.42 0.72 0.71 0.51 0.61

NLPCA 4 35.01 26.75 26.34 20.36 20.97 24.81 21.15 20.25 24.46

PWPCA 4 36.24 27.60 27.01 21.78 22.41 26.21 22.09 20.95 25.54

∆PSNR 4 1.23 0.85 0.67 1.42 1.44 1.40 0.94 0.70 1.08

Table 3 Comparison of PWPCA against several other methods using synthetic Poisson-noise images with different Peak values and the PSNR measure (in decibels).
The best PSNR results are marked in bold. The "Average" means the average of PSNR values for all images denoised with the same method.

Method Peak Spots Galaxy Cells Barbara Peppers House Camera Bridge Average

PURE-LET 0.5 25.93 24.13 22.19 18.11 18.18 20.11 18.67 18.30 20.70

BM3D 0.5 23.82 24.75 22.66 18.04 18.48 20.36 18.66 18.36 20.64

SPDA 0.5 28.34 25.30 23.48 18.53 18.66 20.59 18.80 18.54 21.53

NLPCA 0.5 28.02 24.59 22.81 18.50 18.77 20.89 19.36 18.49 21.43

PWPCA 0.5 28.99 24.74 23.08 18.58 18.87 21.04 19.51 18.59 21.68

PURE-LET 1 27.34 24.98 23.45 18.87 19.33 21.37 19.83 19.06 21.78

BM3D 1 24.84 25.13 24.36 18.92 20.01 22.34 20.49 19.18 21.91

SPDA 1 31.14 25.62 24.76 19.39 19.99 22.63 20.17 19.21 22.86

NLPCA 1 30.95 25.37 24.13 19.19 19.64 22.19 20.34 18.98 22.60

PWPCA 1 30.81 25.52 24.57 19.62 19.92 22.78 20.59 19.44 22.90

PURE-LET 2 29.59 26.20 24.88 19.71 20.59 22.37 20.86 19.87 23.00

BM3D 2 27.59 26.24 25.68 20.49 22.10 23.95 22.23 20.26 23.56

SPDA 2 32.60 26.47 25.98 19.98 21.23 25.05 21.49 20.14 24.11

NLPCA 2 34.07 25.73 25.57 19.67 20.63 23.51 20.76 19.52 23.68

PWPCA 2 34.82 26.16 25.92 20.63 21.05 24.23 21.47 20.03 24.29

PURE-LET 4 31.60 27.39 26.00 20.46 21.86 23.90 22.12 20.96 24.29

BM3D 4 30.82 27.59 27.06 22.24 24.19 26.13 24.06 21.62 25.46

SPDA 4 34.25 27.22 26.71 20.52 22.09 26.02 21.87 20.55 24.90

NLPCA 4 35.01 26.75 26.34 20.36 20.97 24.81 21.15 20.25 24.46

PWPCA 4 36.24 27.60 27.01 21.78 22.41 26.21 22.09 20.95 25.54
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Fig. 4: Denoising of Camera (Peak=0.5) using different methods,
with the resulting PSNR indicated in decibels.

Fig. 5: Denoising of Barbara (Peak=1) using different methods, with
the resulting PSNR indicated in decibels.

Fig. 6: Structure used to simulate XFEL diffraction data and the
corresponding density map. (a) Atomic-resolution structure of yeast
elongation factor 2 obtained by X-ray crystallography (from Protein
Data Bank; PDB: 1N0U). (b) Density map computed from the struc-
ture shown in (a), used for computing the Fourier shell correlation
curves shown in Fig. 9 and Fig. 12.

3.5 Computation complexity

The complexity of NLPCA is O(MlN
3
2 ) (cf. [32]). As explained

in section 3.1, the method proposed here splits the given image

into pieces so that each pixel is covered not more than 4 times.
Thus, the complexity of the proposed method is not more than
O(4MlN

3
2 ), meaning that the proposed method has the same order

of computational cost as NLPCA.

4 Experiments with standard test images

In this section, we show results of experiments conducted with the
new method (PWPCA) using standard test images with Poisson
noise. Also, we compare the results of PWPCA with those of several
state-of-the-art denoising methods, namely PURE-LET [10], BM3D
[6, 49], NLPCA [39, 50], and SPDA [32, 51].

The noise-free standard test images (image size: 256× 256 pix-
els) were graciously obtained from Salmon et al. [39] and Giryes
and Elad [32]. A noise-free image f with the Peak value Peak was
obtained as follows:

f(x) = Peak × S(x)/max{S(x)|x ∈ I},

where S is a standard test image. The image with Poisson noise (y)
corresponding to image f was generated using MATLAB. The stan-
dard test images with Peak = 2 and Poisson noise are presented
in Fig. 3. When the image intensity is high, the Poisson distribution
approaches a normal distribution. In this section, we show the results
obtained with images of low intensities, characterized by Peak values
of 0.5, 1, 2 and 4.

The denoising results obtained with different methods were eval-
uated using the so-called Peak Signal-to-Noise Ratio (PSNR) [6],
expressed in decibels (dB) as follows:

PSNR = 10 log10
Peak2

MSE
, (12)

MSE =
1

card(I)

∑
x∈I

(f(x)− f̂(x))2, (13)

where card(I) is the number of elements of the set I, f is the noise-
free image and f̂ is the denoised image.

The PWPCA and NLPCA denoising results for images with these
Peak values, in terms of PSNR, and the difference between the
PSNR values obtained with these two methods are shown in Table
2. The PSNR results of all tested methods are listed in Table 3. The
proposed PWPCA method achieves 0.25db− 1.08db improvement
over the NLPCA method, on average, for all four noise levels and the
PSNR difference increases significantly as the Peak value increases
(Table 2). Also, the proposed PWPCA method achieves the highest
average PSNR value in all four noise cases (Table 3). In Fig. 4 and
Fig. 5, we compare the visual quality of images denoised by different
methods. Fig. 4 shows that PWPCA outperforms the other methods
regarding the restoration of image details from the noisy observa-
tion such as in the tripod leg area of ąřCameraąś image, as SPDA
and NLPCA result in oversmoothing and PURE-LET and BM3D
produce more artifacts (the area indicated by arrows in Fig. 4). Fur-
thermore, Fig. 5 shows that PWPCA produces fewer artifacts and
preserves the texture better than other methods (e.g., in the area
indicated by arrows in Fig. 5). In summary, PWPCA has strong
denoising capability and produces better quantitative (PSNR) and
visual results than other tested methods.

5 Experiments with simulated XFEL diffraction
data

In this section, we show an application of Poisson denoising methods
in 3D reconstruction of biomolecular structures from single-particle
XFEL diffraction data. As very few single-particle XFEL experi-
mental data were obtained so far, we here used simulated data, which
is common in evaluating new methods for XFEL.
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6 c⃝ The Institution of Engineering and Technology 2015



(i) (j) (k) (l)

(q) (r) (s) (t)

(m) (n) (o) (p)

(u) (v) (w) (x)

(a) (b) (c) (d)

(e) (f ) (g) (h)

Fig. 7: Filtering of diffraction images simulated for the beam intensity of 1014 photons/pulse/µm2 and the influence of filtering of diffraction
images on real-space projection images. (a,e) Two examples of simulated diffraction images corresponding to two different beam orientations
(257× 257 pixels). (b,f) Filtering of images shown in (a,e) using PWPCA, respectively. (c,g) Filtering of images shown in (a,e) using BM3D,
respectively. (d,h) Ground-truth diffraction images related to the simulated diffraction images shown in (a,e), respectively (Fourier intensity
data representing the diffraction data as they would be obtained in ideal conditions that are unachievable in practice). (i-p) Central region
(50× 50 pixels) of the diffraction images shown in (a-h), respectively. (q-x) Real-space images obtained by combining the square root of the
data shown in (a-h) and the ground-truth phases (not shown), respectively.
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Fig. 8: Fourier shell correlation between the density map of the
structure used to simulate XFEL diffraction data (Fig. 7b) and
3D reconstructions from four data sets for the beam intensity of
1014 photons/pulse/µm2 (original, processed by PWPCA, processed
by BM3D, and ground-truth sets, with ground-truth phases and
orientations) (Fig. 10a-d).

Fig. 9: 3D reconstructions in the case of beam intensity of
1014 photons/pulse/µm2. (a-d) 3D reconstructions from the follow-
ing four data sets: the original data set (a), the set processed by
PWPCA (b), the set processed by BM3D (c), and the ground-truth
data set (d) (ground-truth phases and orientations were used in each
set). (e-f) Ground-truth atomic structure (f) and the corresponding
density map (e), which are also shown in Fig. 7b,a, respectively.

XFEL diffraction images were simulated using an atomic-
resolution structure of yeast elongation factor 2 obtained by X-
ray crystallography, which is available in the Protein Data Bank
(PDB entry: 1N0U [52]) (Fig. 6a). The simulation was done
using SPSIM [53], for two different XFEL beam intensities i.e.
1013 photons/pulse/µm2 and 1014 photons/pulse/µm2. We found
that 1013 photons/pulse/µm2 was amongst the lowest beam inten-
sities that could be used with this structure and that the Peak value
of the simulated diffraction images was larger than 3 in both cases of
beam intensity. Though Table 3 was obtained with a different type of
data, it shows that, for Peak > 3, BM3D is the next best perform-
ing method after PWPCA. Thus, the results of processing these data
using PWPCA are here compared with those obtained using BM3D.

The simulated data contain 642 XFEL diffraction images (257×
257 pixels) for each beam intensity, corresponding to 642 different
XFEL beam directions (i.e. to 642 projection directions) uniformly

distributed over a sphere with an angular sampling rate of 8◦.
In addition, we computed the amplitudes and the phases of the
2D Fourier transforms of the object’s 2D projections (or, accord-
ing to the central slice theorem, central slices of the object’s 3D
Fourier transform at the same orientations as those of the simulated
diffraction images). Two examples of diffraction images (corre-
sponding to two different beam orientations) for the beam intensity
of 1014 photons/pulse/µm2 are provided in Fig. 7a,e and the same
two examples for the beam intensity of 1013 photons/pulse/µm2

are provided in Fig. 10a,e. One can notice a concentration of non-
zero pixels in a small central region of the image (50× 50 pixels)
and a smaller number of non-zero pixels in the case of lower beam
intensity (Figs. 7i,m and 10i,m). These diffraction images can be
compared with the Fourier intensity data (Figs. 7d,h and 10d,h),
whose central regions are shown in Figs. 7l,p and 10l,p. The Fourier
intensity data represent expected mean value (the diffraction data as
they would be obtained in ideal conditions that are unachievable in
practice) and will be here referred to as ground-truth diffraction data.
Instead of showing the phase that corresponds to a simulated diffrac-
tion image (here referred to as ground-truth phase), we here show
the corresponding real-space image. The real-space images obtained
by combining the square root of diffraction images and the phase
images for the two example beam orientations and intensities are
shown in Figs. 7q,u and 10q,u while those obtained by combining the
Fourier amplitude and phase images (here referred to as ground-truth
real-space images) are shown in Figs. 7t,x and 10t,x.

The PWPCA data processing was performed using the parame-
ters provided in Table 1 (with

√
M ′ = 101, which corresponds to

Peak > 3 according to Eq. 11) while the BM3D data processing
was preformed using the same parameters as in [6]. The results of
PWPCA for the two example beam orientations and intensities are
shown in Figs. 7b,f and 10b,f (the central regions are shown in Figs.
7j,n and 10j,n) while those of BM3D are shown in Figs. 7c,g and
10c,g (the central regions are shown in Figs. 7k,o and 10k,o). One
can note that both methods enhance the given diffraction patterns and
that PWPCA results in more non-zero pixels recovered than BM3D,
which is particularly visible in the case of lower beam intensity (Fig.
10). The real-space images obtained by combining the results of
PWPCA (or BM3D) and the ground-truth phases are more similar
to the ground-truth real-space images in the case of higher beam
intensity (Figs. 7r,v and 7t,x) than in the case of lower beam inten-
sity (Figs. 10r,v and 10t,x). In both intensity cases, the 3D structure
is globally well recovered, though its resolution is higher in the case
of higher beam intensity (Figs. 8-9) than in the case of lower beam
intensity (Figs. 11-12). Indeed, the Fourier shell correlation (FSC)
between the recovered density map of the ground-truth structure
(Fig. 6b; the density map was obtained using the method introduced
in [54]) and the 3D reconstructions (reconstruction in Fourier space
using Kaiser-Bessel interpolation) from four data sets for each of the
two beam intensities (original, processed by PWPCA, processed by
BM3D, and ground-truth sets, with ground-truth phases and ground-
truth orientations; Figs. 9 and 12) shows that data processing using
any of the two methods (PWPCA or BM3D) improves the resolution
of the 3D reconstruction (the spatial frequencies at which the FSC
falls below 0.5 are higher for the data processed by PWPCA and
BM3D than for the original data) and that this resolution improve-
ment is slightly worse in the case of lower beam intensity (Fig.
11) than in the case of higher beam intensity (Fig. 8). Interestingly
enough, PWPCA performs slightly better than BM3D regarding the
resolution improvement in the case of lower beam intensity (the FSC
falls below 0.5 at a higher spatial frequency when using PWPCA
than when using BM3D; Fig. 11).

The 3D reconstruction step requires that phases and orientations
of all diffraction images are known (determined by some means prior
to 3D reconstruction). As the tasks of orientation determination and
phase retrieval are not trivial and prone to errors, we used the ground-
truth phases and orientations for the 3D reconstructions. Also, we
used the same 3D reconstruction algorithm for all 3D reconstruc-
tions. Thus, differences between 3D reconstructions obtained from
data processed with PWPCA and BM3D can fully be explained by
differences in denoising results of the two methods.
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Fig. 10: Filtering of diffraction images simulated for the beam intensity of 1013 photons/pulse/µm2 and the influence of filtering of diffraction
images on real-space projection images. (a,e) Two examples of simulated diffraction images corresponding to two different beam orientations
(257× 257 pixels). (b,f) Filtering of images shown in (a,e) using PWPCA, respectively. (c,g) Filtering of images shown in (a,e) using BM3D,
respectively. (d,h) Ground-truth diffraction images related to the simulated diffraction images shown in (a,e), respectively (Fourier intensity
data representing the diffraction data as they would be obtained in ideal conditions that are unachievable in practice). (i-p) Central region
(50× 50 pixels) of the diffraction images shown in (a-h), respectively. (q-x) Real-space images obtained by combining the square root of the
data shown in (a-h) and the ground-truth phases (not shown), respectively.
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Fig. 11: Fourier shell correlation between the density map of the
structure used to simulate XFEL diffraction data (Fig. 7b) and
3D reconstructions from four data sets for the beam intensity of
1013 photons/pulse/µm2 (original, processed by PWPCA, processed
by BM3D, and ground-truth sets, with ground-truth phases and
orientations) (Fig. 13a-d).

Fig. 12: 3D reconstructions in the case of beam intensity of
1013 photons/pulse/µm2. (a-d) 3D reconstructions from the follow-
ing four data sets: the original data set (a), the set processed by
PWPCA (b), the set processed by BM3D (c), and the ground-truth
data set (d) (ground-truth phases and orientations were used in each
set). (e-f) Ground-truth atomic structure (f) and the corresponding
density map (e), which are also shown in Fig. 7b,a, respectively.

6 Conclusions

In this article, we presented a new method for reducing Poisson noise
from images and compared it with several state-of-the-art meth-
ods. We showed that the proposed method, referred to as Piecewise
Principal Component Analysis (PWPCA), has the best overall per-
formance with respect to other methods when denoising images with
Peak = 0.5, 1, 2 and 4. The overall performance of a method for a
particular Peak value was evaluated by averaging the Peak Signal-
to-Noise Ratio (PSNR) values that the given method achieved on
different images with the same, given value of Peak. The visual
quality of recovered images was consistent with the obtained PSNR
values.

Additionally, we showed that PWPCA can be used to prepro-
cess single-particle XFEL diffraction data of biological macro-
molecules in order to improve the resolution of 3D reconstruction

of the macromolecular structure from such data. In this context,
PWPCA was compared with BM3D. The two methods provided
similar results in the case of high XFEL beam intensities, such as
1014 photons/pulse/µm2. Furthermore, PWPCA provided slightly
better results than BM3D in the case of low beam intensities, more
difficult to work with, such as 1013 photons/pulse/µm2. These
experiments were performed using simulated data. For our future
work, we plan to extend the method to applications with exper-
imental XFEL data, which should allow gaining new biological
insights.

MATLAB implementation of PWPCA is available from the
authors upon request.
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APPENDIX A. Newton Method for Minimizing L

The estimate of Fq is given by

F̂q = exp
(
U∗

qV
∗
q

)
, (14)

where the elements of the matrix F̂q are exp
(
[U∗

qV
∗
q ]i,j

)
, i =

1, 2, · · · ,M ′, j = 1, 2, · · · , N . The matrices U∗
q ∈ RM ′×l and

V∗
q ∈ Rl×N are found by minimizing, with respect to Uq and Vq ,

the loss function L given by

L(Uq,Vq) =

M ′∑
i=1

N∑
j=1

exp
(
[UqVq]i,j

)
− Yq,i,j [UqVq]i,j .

(15)
We use Newton method [55, 56] to minimize L. As L is not con-

vex jointly in Uq and Vq , the minimization is done by solving two
separate partial optimization problems (the problem is convex for
one variable fixed and the other one varying).

The gradient of L(Uq,Vq) with respect to the matrix Uq is given
by

∇Uq
L (Uq,Vq) = (exp (UqVq)−Yq)V

⊤
q (16)

and the gradient of L(Uq,Vq) with respect to the matrix Vq is
given by

∇Vq
L (Uq,Vq) = U⊤

q (exp (UqVq)−Yq) . (17)

Using element-wise representation, this is equivalent to

∂L (Uq,Vq)

∂Uq,a,b
=

N∑
j=1

(
exp

(
[UqVq]a,j

)
− Yq,a,j

)
Vq,b,j (18)

and

∂L (Uq,Vq)

∂Vq,a,b
=

M ′∑
i=1

Uq,i,a

(
exp

(
[UqVq]q,i,b

)
− Yq,i,b

)
. (19)

In element-wise form, the Hessian matrices HUq
= ∇2

Uq
L(Uq,Vq)

(M ′l ×M ′l diagonal matrix) and HVq
= ∇2

Vq
L(Uq,Vq) (lN ×
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lN diagonal matrix) are respectively written as follows:

∂2L(Uq,Vq)

∂Uq,a,b∂Uq,c,d

=

{ ∑N
j=1 exp

(
[UqVq]a,j

)
V 2
q,b,j , if (a, b) = (c, d),

0, if (a, b) ̸= (c, d);

and

∂2L(Uq,Vq)

∂Vq,a,b∂Vq,c,d

=

{ ∑M ′

i=1 U
2
q,i,a exp

(
[UqVq]i,b

)
, if (a, b) = (c, d),

0, if (a, b) ̸= (c, d).

To facilitate the calculation, let us introduce the function

VectC :

Rl×N 7→ RlN×1

Vq =
(
Vq,1,:, · · · ,Vq,N,:

)
7→

(
V⊤

q,1,:, · · · ,V⊤
q,N,:

)⊤

that transforms a matrix into a single column (concatenates the
columns) and the function VectR

VectR :

RM ′×l 7→ RM ′l×1

Uq =
(
U⊤

q,:,1, · · · ,U⊤
q,:,M ′

)
7→

(
Uq,:,1, · · · ,Uq,:,M ′

)
that transforms a matrix into a single row (concatenates the rows).
The Newton updating steps for Uq and Vq can then be written as
follows:

VectR

(
U

(t+1)
q

)
= VectR(U

(t)
q )−VestR(∇Uq

L(U
(t)
q ,V

(t)
q ))H−1

U
(t)
q

,

and

VectC(V
(t+1)
q )

= VectC(V
(t)
q )−H−1

V
(t)
q

VestC(∇Vq
L(U

(t)
q ,V

(t)
q )).

Considering (18), the ith row of U
(t+1)
q , denoted by U

(t+1)
q,i,: , is

updated as follows:

U
(t+1)
q,i,: =

U
(t)
q,i,: − (exp([Ut

qV
(t)
q ]i,:)− Yq,i,:)V

(t)⊤
q (V

(t)
q DiV

(t)⊤
q )−1,

(20)

where Di is a diagonal matrix of size N ×N i.e.

Di = diag(exp([U
(t)
q V

(t)
q ]i,1), · · · , exp([U

(t)
q V

(t)
q ]i,N )).

The term V
(t+1)
q,:,j , the jth column of V(t+1)

q , is updated in the same
way as follows:

V
(t+1)
q,:,j =

V
(t)
q,:,j − (U

(t+1)⊤
q EjU

(t+1)
q )−1U

(t+1)⊤
q ([exp(U

(t+1)
q V

(t)
q )]:,j − Y:,j),

(21)

where Ej is a diagonal matrix of size M ′ ×M ′ i.e.

Ej = diag(exp([U
(t+1)
q V

(t)
q ]1,j), · · · , exp([U

(t+1)
q V

(t)
q ]M ′,j)).

APPENDIX B. Patch clustering algorithm

The K-means clustering algorithm can be generalized using Breg-
man divergences (Eq. 5), which was introduced in [57] and refereed
to as Bregman clustering. We have adapted this algorithm to our
piecewise processing approach as shown in Algorithm 2.

Algorithm 2 Bregman clustering

Require: Data points: {Yi,:}M
′

i=1 ∈ RN , number of clusters: K,
Bregman divergence: DΦ given by (5)

Ensure: Clusters centers: {µk}Kk=1 , partition associated:
{Ck}Kk=1

1: Initialize {µk}Kk=1 by randomly selecting K elements among
{Yi,:}M

′

i=1
2: repeat
3: (The Assignment step: Cluster updates)
4: Set Ck := ∅, 1 ≤ k ≤ K
5: for each i = 1, 2, · · · ,M ′ do
6: Ck∗ := Ck∗ ∪ {Yi,:}
7: k∗ = argmink′=1,··· ,K DΦ(Yi,:||µ′

k)
8: end for
9: (The Estimation step: Center updates)

10: for each k = 1, 2, · · · ,K do
11: µk := 1

♯Ck

∑
Yi,:∈Ck

Yi,:
12: end for
13: until convergence
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