Mining Execution Relations for Crosscutting Concerns

Jens Krinke
FernUniversitit in Hagen, Germany
krinke@acm.org

Abstract

Aspect mining tries to identify crosscutting concerns
in the code of existing systems and thus supports
their adaption to an aspect-oriented design. A
semi-automatic static aspect mining approach is
described, where the program’s control flow graphs are
investigated for recurring execution patterns based on
different constraints, such as the requirement that the
patterns have to exist in different calling contexts. Two
case studies done with the implemented tool show that
many discovered candidates for crosscutting concerns
are instances of delegation and should not be refactored
into aspects. More generally, it is shown that aspect
mining techniques need a way to distinguish between
delegation and superimposed behaviour.

1 Introduction

Software systems often contain tangled and scattered
code. Code is tangled if it implements multiple
concerns (such as core logic, logging, persistence,
security). The notion of scattered code refers to
code that exists several times in a software system
and cannot be encapsulated by separate modules using
traditional module systems. The reason for scattering
and tangling are most often crosscutting concerns
(i.e. concerns that crosscut other concerns) that cannot
be cleanly separated [1]. The presence of scattered
(and tangled) code makes software more difficult to
maintain, understand and extend. Aspect-oriented
programming [2] provides new separation mechanisms
for such crosscutting concerns by introducing aspects

OThis paper is a postprint of a paper submitted to and accepted
for publication in IET Software and is subject to Institution of
Engineering and Technology Copyright. The copy of record is
available at IET Digital Library. IET Software (2008),2(2):65
http://dx.doi.org/10.1049/iet-sen:20070005

that can weave code and declarations to specified points
in the program.

A major problem in re-engineering legacy code based
on aspect-oriented principles is to find and isolate
these crosscutting concerns. This task is also called
aspect mining. Its goal is the detection of crosscutting
concerns either for documentation purposes or to
enable their refactoring into separate aspects, thereby
improving maintainability and extensibility as well as
reducing complexity. Aspect mining can also provide
insights that enables to classify common aspects which
occur in different software systems, such as logging,
timing and communication.

It is still an ongoing discussion what types of
crosscutting concerns should be refactored into aspects
to improve the quality of a system. It is our belief that
only superimposed crosscutting behaviour should be
refactored, that is, behaviour that is not a system’s core
functionality (logging and tracing are the prototypical
examples of superimposed behaviour). Although the
refactoring of other crosscutting concerns is often
possible, it will certainly result in a strong coupling
between the base and the aspect code, destroying
modularity [3] and making the refactored program
worser than the original. However, there is not yet
enough experience with refactoring of traditional into
aspect-oriented programs to judge whether these beliefs
are true. Independent of this, identification of the
crosscutting concerns in a system is still very useful for
the system comprehension.

Several approaches based on program analysis
techniques have been proposed for aspect mining (see
related work in Section 4 for a discussion). A
dynamic program analysis approach [4] that mines
aspects based on program traces has been previously
developed. During program execution, program traces
are generated, which reflect a software system’s
run-time behaviour. These traces are then investigated
for recurring execution patterns. Different constraints

specify when an execution pattern is ‘recurring’, for
example the requirement that the patterns have to
exist in different calling contexts in the program
trace. The dynamic analysis approach monitors actual
(i.e. run-time) program behaviour instead of potential
behaviour, as static program analysis does. Because it is
not always possible to execute the program that should
be analysed, a static analysis variant of the approach [5]
that analyses control flow graphs (CFG) for recurring
execution patterns has been developed.

This work will first show how the execution relations
and their constraints can be generalised to a framework
that is applicable to static and dynamic analyses. Then
it will present a static analysis to compute execution
relations from CFGs, and will present two in-depth
case studies of the identified relations in the drawing
application JHotDraw and the web application Pet
Store. Not surprisingly, the results of the static
and dynamic analysis are different because of various
reasons such as code not executed, late binding or
polymorphism. Because it is well known that the results
of a static analysis will differ from its dynamic variant,
these differences will not be presented here.

The case studies will show that crosscutting concerns
often result from delegation and coding style guides
and should not be refactored into aspects. Therefore
the evaluation of the results of the static aspect mining
approach will specifically try to distinguish crosscutting
concerns that are instances of delegation from those
that can be regarded as superimposed behaviour. By
delegation it is meant that an object relies on another to
fulfil a delegated task. For example, an object using
a list is usually delegating the task to compute the
list’s size to the list instead of counting the elements
of the list (Delegation is used in a very general sense
here and not as a programming language feature or
in the sense of what is often called consultation). In
contrast, superimposed behaviour of an object does
not belong to the core functionality of the object and
there is no other object that directly relies on the
result of the superimposed behaviour. An example of
superimposed behaviour is if the list, after computing
its size, has to notify a logger of the performed
computation. This distinction helps in classifying
whether a detected crosscutting concern can easily be
refactored into aspects by simple refactorings such as
those presented by Binkley et al. [6].

The main goal of the paper is to show that aspect
mining techniques need a way to distinguish between
delegation and superimposed behaviour. It will present

a simple filter based on the observation that there is
a correspondence between delegation, superimposed
behaviour, void and non-void method calls.

The next section contains a description of the static
aspect mining approach based on CFGs. Section 3
contains the case studies with the presentation of the
filter, followed by related work in Section 4. Section 5
discusses the results and concludes.

2 Aspect mining based on

execution relations

The dynamic aspect mining approach previously
developed [4] is based on the analysis of program
traces, which mirror a system’s behaviour in certain
program runs. Within these program traces, recurring
execution patterns which describe certain behavioural
aspects of the software system are identified. It is seen
that recurring execution patterns describe recurring
functionality in the program and thus are potential
crosscutting concerns. To detect these recurring
patterns in the program traces, a classification of
possible pattern forms based on the so-called execution
relations has been introduced. They describe in which
relation two method executions are in the program
trace.

Identifying interesting crosscutting concerns with
the dynamic aspect mining approach was possible.
However, often enough a program that should be
analysed cannot be executed. For such circumstances, a
static analysis that extracts the execution relations from
CFGs has been developed. The execution relations are
a general concept and in the following it is shown how
the execution relations and their constraints are defined
for this static approach.

A CFG is a directed attributed graph G =
(N, E,n°,n®) with node set N and edge set £. The
program’s statements are represented by nodes n € N
and the control flow between statements is represented
by control flow edges (n,m) € E, written as n — m.
E contains control flow edge n — m, iff the statement
represented by node m may be executed immediately
after the statement represented by n, that is, no other
statement is executed in between. Two special nodes
n® € N and n® € N are distinguished: the START node
n® and the EXIT node n®, which represent beginning
and end of the program. Node n® does not have
predecessors and node n® does not have successors.

Each procedure or method p € P of a program is
represented with its own CFG G, = (N, Ej, ny, n5),
where Vp,q : p # ¢ = N,NN, =0ANE,NE, = Q) and
N* =, Np, E* = U, E}, represent the set of nodes
and edges for the complete program that is represented
by the graph G* = (N*, E*). Note that a unique EXIT
node is assumed, which is a join in the presence of
multiple return statements (i.e. a return statement
is a jump to the EXIT node). In languages such as
Java, there may be additional multiple exits because
of exception handling. Currently, the approach ignores
such exits, and execution relations are only identified in
the parts of the source code that lead to a normal exit.

Usually, the procedures’ or methods’ graphs are
connected with edges that represent procedure or
method calls, however, it is assumed that the called
method is available as an attribute of the calling node
and therefore such edges are not needed for this paper,
and that the graphs are not connected. In the following,
only the term ‘method’ is used to denote methods or
procedures.

2.1 Classification of execution relations

The CFGs are focused on method calls (and executions)
because imperative or object-oriented systems are to
be analysed where logically related functionality is
encapsulated in methods.

Crosscutting concerns are reflected by the two
different execution relations that can be found in CFGs.
A method can be executed either after the preceding
method execution is terminated or inside of another
method’s execution. These two cases are distinguished
and it is said that there are outside- and inside-execution
relations in CFGs. It is thus defined formally:
v with w,v € P, is called an
outside-before-execution relation if there is a path
N, —* N, in G* where n, is a call of u, n, is a
call of v and there is no other call on the path. This
is read as ‘u is executed before v’. ST (G) is the set
of all outside-before-execution relations in a call graph
G. This relation can also be reversed, that is v < w is
an outside-after-execution relation if u — v € S7(G).
The relation u < v can be read as ‘v is executed after
u’. The set of all outside-after-execution relations in a
graph G is then denoted with S~ (G). fig. 1 shows a
small fragment that will be used as an example. The
following outside-execution relations can be identified:
a—bb—aa—cb+—aa~—bandc + a.

v €t v with w,v € P is called an

u AN

Figure 1: Example to illustrate execution relations

inside-first-execution relation if there is a path n,, —*
n, in G, such that n, = nj is the START node, n,,
is a call of u and there is no other call on the path.
The relation © €1 v can be read as ‘u is executed
first in v’. u €, v is called an inside-last-execution
relation if there is a path n, —* n, in G, such that
n, = n, is the EXIT node, n,, is a call of v and there
is no other call on the path. The relation v €, v can
be read as ‘u is executed last in v’. S€7(G) is the
set of all inside-first-execution relations in a CFG G,
S€L(G) is the set of all inside-last-execution relations.
In the following, G is dropped when it is clear from
the context. In fig. 1, the following inside-execution
relations can be identified: a €1 m1, a €+ m2, a €+
m3,a€; ml,a€; m2andc €, m3.

There is one special case that has to be represented
explicitly. Whenever there is a path n; —* ng that
does not contain any call, the following two relations
are explicitly generated: e € pand € €, p. These two
relations capture the possibility that no call to a method
occurs during the execution of method p. Moreover,
any inside-first- or inside-last-execution relation also
generates similar constraints on the outside execution
relations. An inside-first-execution relation u €+ v
generates € — wu as there is no other call before u
is called and an inside-last-execution relation u € v
generates € < u because there is no other call after u
is called. These generated relations are called epsilon
relations. In fig. 1, the following epsilon relations can

Notation Relation’s name Read as... Example
U ETV inside-first u is executed firstinv a €1 m3
uUELV inside-last u is executed last in v c €, m3
U — v outside-before u is executed beforev a — ¢
U — v outside-after u is executed afterinv ¢ < a

Table 1: Summary of the four classes of execution relations

be identified: ¢ — a, € «— a,and € — c.

The above defined execution relations are
summarised in Table 1 together with an example
from fig. 1. They are similar to the execution relations
defined for the dynamic aspect mining approach and
most of the following constraints can now be used in
both approaches.

2.2 Execution relation constraints

Recurring execution relations can be seen as indicators
of more general execution patterns. To decide
under which circumstances certain execution relations
are recurring patterns and thus potential crosscutting
concerns in a system, constraints have to be defined.
The constraints will also implicitly formalise what
crosscutting means.

Formally, an execution relation s = uowv € S°,
o € {—,~—,e1,6.}, is called uniform if Vw o v €
S° ¢ u = w with u,v,w € P U {e} holds, that
is it exists in always the same composition. Ue is
the set of execution relations s € S° which satisfy
this requirement. This constraint is easy to explain.
Consider an outside-before-execution relation u — v.
This is defined as recurring pattern if every execution of
v is preceded by an execution of u. The argumentation
for outside-after-execution relations is analogous. The
uniformity constraint also applies to inside-execution
relations. An inside-execution relation © €1 v (or
u €, wv) can only be a recurring pattern if v never
executes another method than u as first (or last) method
inside its body. In fig. 1, only the following relations are
uniform: a — b,a — c,a +~— b,a €1 ml, a €7 m2,
actTmd,a€e; ml,ac, m2,c €, m3,ande ~— c. In
contrast, the relations ¢ «— a and b +— a are not uniform
for example.

It is worth noting that uniformity is easier to achieve
for the inside-execution relations because only the
method’s structure influences the uniformity of the
method’s inside-execution relations. These relations

cannot be uniform only if the method starts or ends with
a branch with different method calls. For that reason, all
inside-execution relations in fig. 1 are uniform.

The e-relations are now dropped and a further
analysis constraint is defined. An execution relation
s=wuov e U°withU° =U°\{uov|u=eVv=c}
is called crosscutting if 38’ = uow € U°® : w # v
with u, v, w € P holds, that is, it occurs in more than a
single calling context in the CFG. For inside-execution
relations u €1 v (or u €, v) the calling context is the
surrounding method execution v. For outside-execution
relations © — v (or u +— v) the calling context is the
method v invoked before (or after) method u. R° is
the set of execution relations s € U®° which satisfy
this requirement. Execution relations s € R° reveal
candidates for crosscutting concerns and aspects as they
represent the crosscutting behaviour of the analysed
software system. In fig. 1, only the following relations
are uniform and crosscutting: a — b,a — ¢, a €1 ml,
a€Erm2,a€ceTmd, a€c) ml,and a €, m2. In contrast,
the relation ¢ €1 m3 is uniform but not crosscutting.

The above definitions are exactly the same as in
the dynamic approach and the technique to extract
the uniform and crosscutting relations (which is not
presented here) has been reused in the static approach
that is presented next.

2.3 Static aspect mining

A tool has been implemented to extract and evaluate
the execution relations from the previous section.
This analysis extracts the execution relations from the
analysed program’s CFGs. In particular, the CFGs are
generated for the program’s methods and the edges are
traversed. The algorithm itself is basically a reaching
definitions data flow analysis, where the definitions are
replaced by the calls occurring at the CFG’s nodes. As
this is well known data flow analysis [7], no details are
given here and only the basic definitions are given in the
following.

Let C C N* be the set of nodes that are calls to
a method and let ¢(n) be the called method of a node
n € C. A method p’s call at a node n (p = ¢(n))
reaches a (not necessarily different) node m, if a path
P = (nq,...,n;) in G exists, such that

. k>1
2.nm=nAng=m
3Vi<i<k:n; ¢C

To obey the epsilon relation, START and EXIT nodes are
assumed to be call nodes with Vp € P : n; € CAng €
C Ne(ny) =eNc(ng) =e

Now RC(n) is defined as the set of reaching calls at
node n. They can be computed via a data flow analysis
framework [8]. From the reaching calls sets the four
execution relations can be generated:

e VneCAmeRC(n):m—=nAn+—m
Any call that reaches another call causes
an outside-before-execution and an
outside-after-execution relation between the
two calls. (The epsilon relations are automatically
generated.)

e VneCAneN,ANec RC(n):n€Tp
If the € call reaches another call, then there
exists a path from the START node to the
call without another call and the corresponding
inside-first-execution relation is generated. (The
epsilon relations are generated if the e call reaches
the EXIT node.)

e Vno € CAmée RC(ny) :meyp
Any call that reaches the EXIT node generates a
corresponding inside-last-execution relation. (The
epsilon relation is generated if the e call reaches
the EXIT node.)

After the execution relations have been extracted,
the constraints are applied and the resulting sets of
candidates are presented to the user. He can then decide
if a candidate is a crosscutting concern and can be
refactored into an aspect. If he decides to refactor a
candidate, he can apply the refactorings defined by,
for example, Binkley et al. [6]. Each one of the four
execution relations’ classes corresponds directly to one
of refactorings extract beginning/end of method and
extract before/after call.

number of candidates
size | €T €1 - =
2 1151 111 85 54
3 56 48 28 16
4 28 12 6 2
5 14 8 7 4
6 9 8 3 3
7 6 5 2 1
8 7 2 1 2
9 3 5 1
10 2 2 1 2
11 3 2
12 3 2
13 3
14 1 1
18 1 1
19 1
20 1 1
22 1
23 1
25 1
32 1
38 1
49 1
S5 1290 206 137 88

Table 2: Number of identified candidates for the four
classes of execution relations

3 Experiences

The presented static mining technique has been
implemented on top of the Soot framework [9], which
is used to compute the analysed program’s CFGs. The
tool traverses these CFGs and extracts the uniform and
crosscutting inside- and outside-execution relations.
As a first case, JHotDraw, version 5.4bl, has been
analysed, which is a well known system and has often
been used in evaluations of aspect mining techniques
[10, 11, 12, 13, 14, 6]. It is a drawing application and
demonstrates good use of design patterns. It contains
about 18.000 lines of source code. Moreover, it has
been extensively analysed by Marin et al. [10] and their
results are used, which are available on the project’s
website!, for comparison. The results will be discussed
in detail and the results of a second test case will be
presented at this section’s end.

"http://swerl.tudelft.nl/amr/

Table 2 shows the results based on the analysis
of 2999 methods that are implemented in the 391
class files found in the distribution. The first column
shows the size of detected crosscutting candidates
measured by the number of crosscut methods (the
number of different methods v for a unique method u
with relation v o v € R°). The following columns
show the number of candidates with that size for the
four relations inside-first, inside-last, outside-before
and outside-after. For example, the last line of Table 2
shows that there is a candidate for a crosscutting
concern that crosscuts 49 methods. Overall, the tool
has identified®

e 290 inside-first candidates from 1090 uniform and
crosscutting relations,

e 206 inside-last candidates from 719 uniform and
crosscutting relations,

e 137 outside-before candidates from 408 uniform
and crosscutting relations and

e 88 outside-after candidates from 335 uniform and
crosscutting relations.

It is interesting that there are many more candidates
for inside-first or inside-last than for outside-before or
outside-after (probably because uniformity is easier to
achieve for inside-execution relations as discussed in
Section 2.2). Furthermore, there are a lot of candidates
with just a small amount of crosscutting, for example,
151 candidates just crosscut two methods as inside-first
relation.

Next some of the identified candidates are discussed
in detail. However, because of the large number of
identified candidates, only the five largest candidates of
each category are presented first. This initial discussion
is used to argue that many of the identified crosscutting
concerns are the result of delegations and should not be
refactored into aspects. Instead, a filter is needed that
removes the delegations from the results. Such a filter
is presented after the first discussion with a detailed
presentation of the filtered results.

3.1 Inside-first relations

The largest candidate consists of 49 uniform and
crosscutting execution relations. The invoked method

’Due to a complete reimplementation with better analysis of
exception handling, the reported numbers differ from previously
published numbers [8].

is ‘...CollectionsFactory.current’. It is obvious that
this is a method to access the current factory object,
needed in many other methods of the system. This is
clearly crosscutting, however, not a refactorable aspect.
This has also been observed by others, for example,
Marin et al. [10] classified this method as a utility
method which is ignored in their fan-in analysis. Marin
et al. defined the set of utility methods by a manual
step that may require some familiarity with the subject
system. Moreover, they have classified all methods
from the Java standard library as utility methods. The
same classification will be used in the following to
characterise the candidates (but will not be used as a

filter).

The second largest candidate consists
of 23 relations for the method
‘...DecoratedFigure.getDecoratedFigure’. This is

again an accessor method (that returns a figure) and
can be regarded as a ‘utility’ method. Thus, it shows
crosscutting behaviour, but is not refactorable.

For the third candidate, things are different.
It consists of 22 relations for the method
‘...UndoadableAdapter.undo’ that checks whether
the current object represents an undo-able action (it
just calls the method isUndoable). Most calls of the
method undo have the following form:

public boolean undo () {
if (!super.undo()) {
return false;

This checks if the superclass already states that this
action is not undoable. It is clearly a crosscutting
concern and can be refactored into an aspect. However,
a few undo methods are implemented differently:

public boolean undo () {
if (super.undo ()
&& ...additional checks...) {
...some cleanup code...
return true;

}

return false;

These methods have to be refactored before the
crosscutting concern can be extracted.

This candidate belongs to a well known crosscutting
concern in JHotDraw, the Undo crosscutting concern
which has been refactored by Marin [14]. This

refactoring is complicated and not only related to the
undo method.

The next two candidates consist of 19 and
18 relations for the methods ‘...List.size’ and
‘...List.iterator’, respectively. Both are utility methods
from the Java standard library that return a value which
is used at the call sites, thus, they are classified as
delegations.

3.2 Inside-last relations

The largest candidate consists of 32 uniform and
crosscutting execution relations with the method
‘...FigureEnumeration.hasNextFigure’ that is always
invoked last inside 32 different methods. Again, it
is a utility method that is used to control loops over
enumerations. This is basically the same for the
next candidate, ‘...Iterator.next’ with 25 uniform and
crosscutting execution relations.

The third candidate consists of 20 relations for
the method ‘...List.add’, clearly a utility method.
The fourth candidate is another utility method
“...CollectionsFactory.createList’ which is called last in
12 different methods, most of them are constructors.

All of the above candidates have been classified
as utility methods by Marin et al. The fifth
candidate consists of 12 relations for the method
‘...DrawingView.checkDamage’. This is a concern and
has been classified as consistent behaviour concern by
Marin et al.

3.3 Qutside-before relations

The largest discovered candidate consists of 14 uniform
and crosscutting execution relations for the method
‘...Iteratornext’. A closer look at the 14 invocations
reveals that this crosscutting is more or less incidental.
An operation is performed on a container’s next
element. It has been classified as a utility method by
Marin et al.

The next two largest candidates (consisting of
11 relations) are again more or less incidental

crosscutting concerns related to methods
‘...DrawingView.drawing’ and ‘..List.add’; they
can be regarded as utility methods. The fourth

candidate is ‘...FigureEnumeration.nextFigure’ with
ten relations, also a utility method.

The fifth largest candidate is somewhat interesting.
It consists of nine invocations of different methods
after a call to ‘..AbstractCommand.execute’ (i.e.

it is always called before one of the nine other
methods is invoked). This method is part of two
known concerns in JHotDraw: the Command and
the Contract enforcement concern [10]. Eight of
the invocations are calls to the ‘createUndoActivity’
method of eight different classes. The other is an
invocation of ‘...ZoomDrawingView.zoomView’, which
could be interpreted as an anomaly—maybe this
deviating behaviour is related to a bug in the program.
However, the other eight invocations are of classes
representing operations that change the figure and
zoomView (probably) does not change it, thus this is not
an anomaly.

3.4 Outside-after relations

For outside-after execution relations, four of the
five largest candidates can clearly be classified as
utility methods: °...FigureEnumeration.hasNextFigure’
has 38 uniform and crosscutting execution relations,
‘..Aterator.hasNext’ has 20, ‘...List.add’ has 14, and
‘...StringBuffer.append’ has 10. The only interesting
case is ‘...Graphics.setColor’ with 18 relations. Being
part of the standard Java library, it has been classified
as a utility method by Marin et al. A close look
at the preceding method invocations confirms this
classification. The crosscutting behaviour is just
coincidental.

3.5 A simple filter

It has been seen in the last section that most (17 out of
20) of the examined discovered crosscutting concerns
are not to be refactored, because they are perfectly
valid in their characteristics; most of them are based
on heavy use of delegation to utility methods and
accessors. While delegation can often be regarded as
crosscutting, crosscutting concerns that are more in
the style of superimposition, i.e. that add behaviour
at the place where they are used but without having
a direct dependence with the enclosing code, need to
be identified. A very simple, but very effective, filter
is to use the invoked methods’ signatures. It is based
on the assumption that any method that returns a value
has been delegated a part of the calling method’s task
and the results of the delegated tasks are immediately
needed by the delegation method. This is similar to
Gybels’ and Kellens’ [15, 16] unique methods heuristic.

Only void methods are not directly needed where
they are invoked. Thus, they represent superimposed

behaviour. The object has to perform a task by invoking
the void method, but has no interest in the result itself.
Of course, this is over-simplifying because of reference
parameters. The non-void methods’ return value is
used by the calling method, thus, non-void methods
are usually delegations from the calling method and not
refactorable into aspects. Thus, the filter will remove
calls to non-void methods. Moreover, the refactoring
of calls to non-void methods to advices is complex,
because advices cannot return values.

Sometimes non-void methods are used like void
methods and their return value is ignored. A typical
example is List.add; its return value indicates whether
the addition to the list was successful or not—most
of the times the programmer knows that it will be
successful and ignores the return value. In contrast to
the previous experiment [8], non-void methods that are
used like a void method are included in the analysis.

This simple filter has two advantages over the
utility-method filter used by Marin et al. First, the
set of utility methods has to be defined manually for
each analysed system. Second, the non-void filter is
used during the analysis: nodes that invoke a non-void
method are now considered as nodes that do not invoke
a method. If there is a path from the entry to a
void method invocation, a path from a void method
invocation to the exit, or a path from a void method
invocation to a second void method invocation, the
analysis will generate corresponding relations even if
there are non-void invocations on the path. Note that
this is different than just applying the filter after the
analysis.

The implemented filter extracts only those uniform
and crosscutting execution relations that call a void
method. The results of this filter are shown in Table 3.
The analysis discovers now

e 152 inside-first candidates from 494 uniform and
crosscutting relations,

e 141 inside-last candidates from 452 uniform and
crosscutting relations,

e 23 outside-before candidates from 73 uniform and
crosscutting relations and

e 21 outside-after candidates from 63 uniform and
crosscutting relations.

In the following, the extracted crosscutting
inside-first-execution relations are discussed for
candidates with at least eight relations. A closer look

Number of candidates
size | e €, —
2 93 8 14 13
3 26 28 3 5
4 11 4 1
5 5 5 3 2
6 5 8 1
7 4 2
8 3 3
9 4
10
11 1 1
12 1 1
13 1 1
21 1
22 1 1
S| 152 141 23 21

Table 3: Number of candidates when the filter is applied

at these relations reveals that many of them have the
characteristics of crosscutting concerns, especially the
larger ones. Table 4 shows an overview of the results.

3.6 Inside-first relations (with filter)

..List.add This method (now called first in 22
different methods) has been discussed in the previous
section (in the context of inside-last relations) and has
already been classified as a utility method. Note that it
is a non-void method used like a void method.

...Graphics.setColor This method has also been
discussed before, but in an outside-after relation
context. Although it has been classified as a utility
method there, a close look to the 21 invoking method
reveals that it is now part of a consistent behaviour
concern. All invoking methods are drawing methods
(15 even have the name draw) which need to set the
drawing colour first. However, this can be considered
as delegation and is better not refactored, because
setting the drawing colour is part of drawing’s core
functionality. Thus, it is (still) better classified as a
utility method.

...AbstractTool.mouseDown This method is called
first in 13 different instances of the method mouseDown
and has been already identified by Marin et al. as

part of a consistent behaviour concern. All subclasses
of AbstractTool that redefine mouseDown call its
superclass’ version first.

...AbstractCommand.execute This method has
already been discussed in the previous section and has
been classified as part of the command and contract
enforcement concerns. Here, it is identified because 12
subclasses of AbstractCommand redefine execute such
that execute from the superclass is called first.

..Rectangle.add This method is called first in 11
different methods and belongs to the AWT standard
library. It has not been observed by Marin et al. because
it has been classified as a utility method. This method
reveals a consistent behaviour concern. At the identified
call sites a new rectangle is created from two points that
have been provided as arguments to the current method:

public void basicDisplayBox (Point origin,

fDisplayBox = new Rectangle (origin);
fDisplayBox.add (corner) ;
}

It can be seen as a crosscutting concern that could
be refactored. However, there exist nine more
implementations of basicDisplayBox which do not
expose the same behaviour.

...Figure.displaybox This is part of a consistent
behaviour concern. The invocation is part of eight
different methods with the name invokeStep that handle
eight different directions. It has not been reported
by Marin et al., because its fan-in value is below the
required threshold.

..Rectangle.translate This method moves a

rectangle object by a given vector. It is used eight times

in basicMoveBy methods (and there it is most often the

only method called):

protected void basicMoveBy (int x, int
fDisplayBox.translate (x,V);

}

It is clearly a delegation, but can also be seen as
a crosscutting behaviour in the form of a consistent
behaviour concern. However, there are nine other
implementations of the basicMoveBy method. Five
are not using Rectangle.translate at all and four use

it in a different context. Thus, the basicMoveBy
methods have no consistent behaviour in respect to
...Rectangle.translate and this concern is better not
refactored into an aspect. This specific concern for
the movement of figures has also been identified by
Ceccato et al. [11], where it has been discussed if
it is ‘aspectisable’, that is, can be refactored into an
aspect. There, three different teams have applied three
different aspect mining techniques and the teams were
of different opinions.

...ObjectInputStream.defaultReadObject This

method is called within eight other methods, all
specific versions of readObject. 1t is used to deserialise
an object, which is read from an input stream. Thus,
this can be classified as a consistent behaviour concern
and can be refactored into an aspect. Because this
method is part of the standard library, this concern has

not been described by Marin et al.
Point corner) {

3.7 Inside-last relations (with filter)

The largest candidate is the invocation of ‘..List.add’ as
the last method in 22 different methods. It is a utility
method as discussed before.

The second largest candidate is the invocation
of ‘...DrawingView.checkDamage’ at 13 different
methods. This is a concern as discussed above (and
has been classified as consistent behaviour concern by
Marin et al.)

The next candidate ‘...Figure.displayBox’ is invoked
last in nine different methods. This candidate appears
also as a inside-first candidate and has been discussed
in the previous Section.

The next candidate with nine invocations is
‘...Graphics.drawOval’. Tt can be regarded as a utility
method, because it belongs to the standard library. A
closer look at the invocation sites reveals that it belongs
to delegation of drawing operations.

Another candidate with nine invocations is
‘\..StorableOutput.writeStorable’, which is invoked
ast in nine different write methods. This is just a
small subset of all its invocations, and it is classified as
delegation.

There is one more candidate with nine invocations:
‘...Figure.moveBy’ is called last in eight different
moveBy and one basicMoveBy methods. Marin et al.
has classified this as belonging to a decorator concern.
However, similar to the Rectangle.translate discussion

above, it is classified as delegation.

The last three candidates have eight relations:
‘..utiladd’ is always invoked last in eight different
methods. It clearly belongs to the usage of the
command design pattern: a command object and a
menu shortcut are added to eight different menus. It
is clearly a crosscutting command concern, which has
not been observed by Marin et al. (because it has been
classified as a utility method).

The candidate °...Graphics.drawRect’ is similar to
the above discussed ‘...Graphics.drawOval’ and is
classified as delegation to a utility method.

The last candidate is °...StorableOutput.writelnt’,
which is also classified as delegation.

3.8 Outside relations (with filter)

There is only one large candidate left after filtering
for outside-before execution relations: It is the already
discussed candidate °‘...AbstractCommand.execute’.
With filtering it is now discovered two more times: it is
always invoked before 11 different methods.

For outside-after execution relations,
there is also only one large candidate.
‘...Undoable.setAffectedFigures’ is always invoked
after 12 different methods with the name

setUndoActivity. Both methods has been classified
as utility methods by Marin et al., however, this
candidate clearly belongs to the already discussed
Undo crosscutting concern.

Table 4 shows an overview of the results. The
first column shows the 16 methods that are part
of a crosscutting execution relation and have been
discussed above. The second column shows the kind
of crosscutting execution relation in which the method
occurred. The next three columns show if the method
has been classified as a utility method (Util.), as
delegation (Del.), as a crosscutting concern (Con.) and
if this concern has not been observed by Marin et al.
(New). If the method is part of a crosscutting concern,
the concern’s type if given in the last column.

Half of the methods are refactorable crosscutting
concerns where four have been previously discarded as
utility methods. From the other half, six are classified
as utility methods (and thus are implicitly delegations),
and two are delegations to methods that are not utility
methods. It can be seen that the filter has increased
the precision with a small loss of recall, because the
undo method is no longer identified. It can also be seen
that the classification of utility methods has a strong

10

influence on the precision and recall. On the one hand
Marin et al.’s classification is too strong, because half of
the methods identified as belonging to a concern have
been classified as utility method. On the other hand,
two of the discussed methods are delegations, but not
utility methods.

3.9 Generalisation of discovered patterns

Crosscutting concerns often use method invocations
that are similar according to their type or name. For
example, Marin et al. [10] not only use the invoked
method’s static type, but use the set of sub- and
superclasses; Tourwe and Mens [17] group by similar
identifiers. The approach uses a similar technique to
generalise the discovered patterns: The called method
¢(n) at anode n is identified by its signature either with
or without the class it is defined in. For example, two
calls x.add() and y.add(), where x and y have different
static types, are either considered two different methods
or the same method. This section will discuss the results
of the mining if the method’s defining class is ignored.

The results of this filter (ignoring the defining class)
are shown in Table 5. It is interesting to note that the
number of candidates for outside execution relations
decrease, whereas the numbers increase for inside
execution relations. This is expected and can be
considered a feature of the approach. For the outside
execution relations, both elements of the relation are
affected by the filter, which disturbs uniformity. For
the inside execution relations, the filter affects only the
left element of the relation, which increases uniformity
and crosscutting. Therefore only results for the inside
relations are presented next.

The two largest candidates from the inside-first
relations are now for the methods ‘read’ and ‘write’
which are called first inside 26 different methods.
These two methods are responsible to read figures from
an input stream and write them to an output stream,
respectively. Because figures can be composed, the
composite figures delegate reading and writing to the
embedded figures—it is an instance of the composite
design pattern. It is more or less another instance of
the consistent behaviour concern, however, not to be
regarded as an aspect to be refactored.

The third candidate (22 relations for the method
‘add’) and the fourth candidate (21 invocations of
‘setColor’) have been discussed above.

Things change for the fifth candidate consisting of
20 candidates for method ‘willChange’. That method

Method Relation Util. Del. Con. New Type

List.add €T X X

Graphics.setColor ET X X

AbstractTool.mouseDown ET X consistent behaviour
AbstractCommand.execute €ET,— X command, contract enforcement
Rectangle.add €T X X X consistent behaviour
Figure.displaybox €T.€1 X X consistent behaviour
Rectangle.translate ET X

ObjectInputStream.defaultReadObject € X X X consistent behaviour
DrawingView.checkDamage €1 X consistent behaviour
Graphics.drawOval €1 X X

StorableOutput.writeStorable €1 X X

Figure.moveBy €1 X

util.add € X X X command
Graphics.drawRect €1 X X

StorableOutput.writeInt €L X X

Undoable.setAffectedFigures — X X X undo

Table 4: Overview of the results

Number of candidates
size | €T e, -
2| 75 76 11 10
3 23 30 3 1
4 9 15 1 4
5 9 7 1
6 12 11 1
7 8 5
8 5 3
9 2 3
10 1 4
11 1
12 1
14 1
15 1 2
16 1
19 1
20 1
21 1
22 1 2
24 1
26 2
S| 154 160 17 14

Table 5: Number of candidates with generalisation filter
applied

11

informs a figure that an operation will change the
displayed content. This is a crosscutting concern which
could be refactored into an aspect. This is a well known
crosscutting observer concern in JHotDraw.

The sixth candidate for ‘execute’ with 19 invocations
has been discussed above. The sixth candidate,
‘setUndoable’ is invoked first in 16 methods. This
is another method that belongs to the known Undo
concern. However, as this is a setter method that just
sets a field of the UndoableAdapter class, it is ignored
in Marin et al.’s fan-in approach [10].

The rest of the inside-first candidates have all been
discussed above and the inside-last candidates will be
discussed next.

The largest inside-last candidate is a new candidate:
the method ‘changed’ is invoked last in 24 different
methods. This method is a notifier within the know
observer concern in JHotDraw.

The second largest candidate is also not discussed
above: ‘setRedoable’ is invoked last in 22 methods. It
is very similar to the already discussed ‘setUndoable’
and belongs to the Undo concern.

The next three candidates have been discussed above:
‘read’ (15 invocations), ‘checkDamage’ (15) and ‘add’
(14).

The next four candidates are all invoked last in ten
different methods; ‘toolDone’ belongs to a consistent
behaviour concern [10], ‘repaint’ is used to redraw the

current view and classified as delegation, ‘moveBy’ and
‘displayBox’ have been discussed above.

3.10 Experiences for the pet store system

As a second test case, Pet Store (version 1.3.2), a
sample application for the demonstration of the J2EE
platform, has been analysed. The following results are
based on an analysis of 1712 methods, 81 methods
could not be analysed because Soot was not able to
build CFGs for them?.

Similar to Marin et al. [10], Pet Store has fewer
candidates. Overall, the tool has identified (with filter,
distinguishing defining classes for invoked methods):

e 04 inside-first candidates from 201 uniform and
crosscutting relations,

e 46 inside-last candidates from 161 uniform and
crosscutting relations,

e 9 outside-before candidates from 21 uniform and
crosscutting relations and

e 12 outside-after candidates from 28 uniform and
crosscutting relations.

With filtering and ignoring the defining class:

e 71 inside-first candidates from 266 uniform and
crosscutting relations,

e 54 inside-last candidates from 216 uniform and
crosscutting relations,

e 7 outside-before candidates from 15 uniform and
crosscutting relations and

e 7 outside-after candidates from 17 uniform and
crosscutting relations.

An inspection of the identified candidates revealed
no refactorable crosscutting concerns. All of the
larger candidates are either related to utility methods
or are clearly delegations. However, Marin et al. [10]
reported four concerns. Three of them are related
to exception handling and because exception handling
disturbs the linear control flow which is required to
mine for recurring execution patters, the approach
proposed is not able to discover such concerns. The
fourth concern Marin et al. reported is the invocation

3A planned analysis of the Tomcat system had to be abandoned
because we were not able to apply Soot to such a large system.

12

of the constructor for the ServiceLocator class. The
approach filters constructor invocations as non-void
method invocations, thus this concern has not been
discovered. If constructor invocations are included in
the analysis, this concern will be discovered, as the
constructor invocation for ServiceLocator is reported as
being invoked first in 17 different methods and invoked
before 5 different methods. Then it is the second
largest candidate—the largest is the constructor call for
StringBuffer, which is clearly just a utility invocation.

4 Related work

Aspect mining has been identified as useful
technique to understand crosscutting behaviour in
non-aspect-oriented programs and as an aid to help
in refactoring non-aspect-oriented to aspect-oriented
programs. Most of the early approaches were not even
semi-automatic because one has to specify a pattern
that can be searched for in the source code [18, 19].
Like our approach, more recent approaches (discussed
in the following) do not need user specified patterns and
identify crosscutting behaviour based on the programs’
structure.

The approach most similar to the one proposed is
the approach of Marin et al. [10], who use fan-in
analysis to identify crosscutting concerns. Fan-in
analysis basically counts for each method the number
of call sites in the source code that calls the method.
This approach is very similar to the inside-first- and
inside-last-execution relations; however, the approach
proposed is more specific as it only identifies candidates
that are easily refactorable by advice.

Gybels and Kellens [15, 16] use heuristics to mine for
crosscutting concerns. The ‘unique methods’ heuristic
is defined as ‘A unique method is a method without a
return value which implements a message implemented
by no other method’ and can be compared with the
non-void methods filter. Gybels and Kellens also search
for (unique) methods that are called from many places.

Tourwe and Mens [17] use concept analysis to
identify aspectual views in programs. The extraction
of elements and attributes from the names of classes,
methods and variables, formal concept analysis is used
to group those elements into concepts that can be seen
as aspect candidates. Tonella and Ceccato [20] also use
concept analysis for aspect mining, but they apply it on
traces generated by dynamic analysis.

Some other approaches rely on clone detection

techniques to detect scattered code in the form of
crosscutting concerns: Bruntink [21, 22, 23] evaluated
the use of those clone detection techniques to identify
crosscutting concerns. Their evaluation has shown
that some of the typical aspects are discovered very
well, whereas some are not. Ophir by Shepherd et
al. [12] uses a program dependence graph based clone
detection technique for aspect mining. After an initial
phase that detects clones, a second step filters the
candidates and a third phase coalesces the remaining
candidates. Candidates identified by the technique or
by fan-in analysis often consist of very few code lines;
such candidates cannot be identified by clone detection
techniques.

Breu and Zimmerman [24] analyse version archives
for crosscutting concerns. They consider methods
to be part of a crosscutting concern when they
are changed together in the same transaction and
additionally the changes are the same, that is a call
to the same method is inserted. That approach scales
to industrial-sized projects discovers cross-cutting
concerns across platform-specific code, but needs a
version archive of sufficient size and cannot be applied
to single-version systems.

Remaining approaches wuse natural language
processing to analyse the identifiers used in source
code [25] and clustering of related methods [26].

Ceccato et al. [11] have done a comparison of
three aspect mining approaches: fan-in [10], identifier
[17] and dynamic analyses [20]. The differences in
the approaches and their results are presented and
examined. Some of their results have been discussed
above.

Timna by Shepherd et al. [13] is a framework for
the combination of aspect mining techniques with the
goal to increase precision and recall in comparison
with approaches that use a single technique. Another
framework has been presented by Marin et al. [27],
in which they have implemented and combined three
aspect mining techniques, one of them is the fan-in
analysis mentioned above. The framework identifies
a set of requirements to ensure homogeneity in
formulating the mining search goals, presenting the
results and assessing their quality.

Tonella and Ceccato [28] consider the usage of
interfaces as indicators for crosscutting concerns.
Implementations of interfaces that belong to one of
four criteria are then refactored to an aspect-oriented
solution by moving the implementation to an aspect.
This approach has been validated by an empirical

13

assessment [29].

Binkley et al. [6] present a semi-automated
approach to refactor identified crosscutting concerns
in object-oriented programs into aspects. Their
refactorings can be used to refactor the identified
crosscutting concerns into aspects. Marin [14] has
described how the Undo concern in JHotDraw has been
refactored into an aspect manually.

Engler et al. [30] use statistical analysis to infer
consistent and deviant behaviour based on paired
calls that follow one another. The paired calls are
very similar to the outside-before and -after execution
relations and statistical analysis could be used to
find more crosscutting anomalies as presented in the
Section 3.3.

5 Discussion, conclusions and

future work

This evaluation of the static aspect mining tool has
shown that most of the unfiltered identified crosscutting
candidates are not concerns refactorable into aspects.
This is not much different from results in the previous
dynamic aspect mining approach [4]. However, both
approaches give interesting insights into some of
the crosscutting behaviour of the analysed program.
Moreover, the use of a filter that ignores non-void
method calls improves the precision of the presented
approach.

It is interesting to see a large difference in the
reported candidates for two applications that are of
similar size (has also been reported by Marin et
al. [10]). This suggests that the amount of crosscutting
concerns of a certain type is not only dependent
on the application’s type, but also dependent on
the programming style. JHotDraw was developed
as a demonstration for good use of design patterns
and design patterns are known to have crosscutting
concerns.

Based on the previous results from the dynamic
approach and the comparison to other mining
approaches for the analysed programs, the hypothesis
is that aspect mining based on execution relations
will have a hard time to identify candidates that are
really refactorable into aspects. This hypothesis is
in line with other results from similar studies, for
example, Marin et al. [10] used a large set of utility
methods that are filtered out for JHotDraw. Moreover,

the ongoing refactoring of JHotDraw into a system
that makes good use of aspect-oriented programing
shows that a refactoring is usually a complex task
[14]. In contrast to other authors, it is believed that
many detected crosscutting concern in many aspect
mining approaches will reveal delegations that should
not be refactored into aspects. Delegation can be
regarded as a simple form of crosscutting; however,
only superimposed tasks that are loosely coupled to the
surrounding code can be refactored into aspects.

Therefore future work will continue to develop a
filter, which extracts the refactorable candidates from
the discovered candidates. The presented simple filter
already generates good results. In the end, it is still to be
discussed when a refactorable aspect should actually be
refactored, similar to the discussion on aspect-oriented
program itself [3].

Acknowledgments

The author would like to thank the anonymous
reviewers for their feedback on earlier versions of this

paper.

References

[1] Tarr, P, Ossher, H., Harrison, W., and
Sutton, Jr., SM.: ‘N Degrees of Separation:
Multi-Dimensional Separation of Concerns’. 21st
Intl. Conf. on Software Engineering (ICSE). 1999,
pp- 107-119

[2] Kiczales, G., Lamping, J., Mendhekar, A,

Maeda, C., Lopes, C., Loingtier, J.M., and

Irwin, J. ‘Aspect-Oriented Programming’.

European Conf. on Object-Oriented Programming

(ECOOQP). 1997

[3] Steimann, F.: ‘The paradoxical success of

aspect-oriented programming’. Proceedings of

the 21st annual ACM SIGPLAN conference
on Object-oriented programming systems,

languages, and applications. 2006, pp. 481-497

[4] Breu, S. and Krinke, J.: ‘Aspect mining using

event traces’. Proc. International Conference

on Automated Software Engineering. 2004, pp.

310-315

14

(5]

(6]

(7]

(8]

(9]

Krinke, J. and Breu, S.:
‘Control-flow-graph-based aspect mining’.
Workshop on Aspect Reverse Engineering. 2004

Binkley, D., Ceccato, M., Harman, M., Ricca, F,
and Tonella, P.: ‘Tool-supported refactoring of
existing object-oriented code into aspects’. IEEE
Trans. Software Eng., 32 (9), 2006, pp. 698717

Aho, A.V.,, Sethi, R., and Ullman, J.D.:
Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1985

Krinke, J.: ‘Mining control flow graphs for
crosscutting concerns’. 13th Working Conference
on Reverse Engineering: IEEE International
Astrenet Aspect Analysis (AAA) Workshop.
2006, pp. 334-342

Vallee-Rai, R., Co, P, Gagnon, E., Hendren,
L., Lam, P, and Sundaresan, V.. ‘Soot — a
java bytecode optimization framework’. Proc.
CASCON. 1999

Marin, M., van Deursen, A., and Moonen,
L.: ‘Identifying crosscutting concerns using
fan-in analysis’. ACM Transactions on Software
Engineering and Methodology, 17 (1), 2007

Ceccato, M., Marin, M., Mens, K., Moonen,
L., Tonella, P., and Tourwe, T.. ‘Applying
and combining three different aspect mining
techniques’. Software Quality Journal, 14 (3),
2006

Shepherd, D., Gibson, E., and Pollock, L.
‘Design and evaluation of an automated aspect
mining tool’. International Conference on
Software Engineering and Practice. 2004

Shepherd, D., Palm, J., Pollock, L., and
Chu-Carroll, M.: ‘Timna: A framework for
combining aspect mining analyses’. International
Conference on Automated Software Engineering.
2005

Marin, M.: ‘Refactoring jhotdraw’s undo concern
to aspectj’. Workshop on Aspect Reverse
Engineering (WARE). 2004

Gybels, K. and Kellens, A.: ‘An experiment in
using inductive logic programming to uncover
pointcuts’. First European Interactive Workshop
on Aspects in Software. 2004

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Gybels, K. and Kellens, A.: ‘Experiences with
identifying aspects in smalltalk using ’unique
methods”. Workshop on Linking Aspect
Technology and Evolution (LATE). 2005

Tourwe, T. and Mens, K.: ‘Mining aspectual
views using formal concept analysis’. Proc. IEEE
International Workshop on Source Code Analysis
and Manipulation. 2004

Griswold, W.G., Kato, Y., and Yuan, J.J.
‘Aspect Browser: Tool Support for Managing
Dispersed Aspects’. Technical Report

CS99-0640, Department of Computer Science
and Engineering, UC, San Diego, 1999

Zhang, C. and Jacobsen, H.A.: ‘Quantifying
Aspects in Middleware Platforms’. 2nd
Intl. Conf. on Aspect-Oriented Software
Development (AOSD). 2003, pp. 130-139

Tonella, P. and Ceccato, M.: ‘Aspect mining
through the formal concept analysis of execution
traces’. 11th IEEE Working Conference on
Reverse Engineering (WCRE 2004). 2004

Bruntink, M., van Deursen, A., van Engelen,
R., and Tourwe, T.: ‘An evaluation of clone
detection techniques for identifying cross-cutting
concerns’. Proc. International Conference on
Software Maintenance. 2004

Bruntink, M.: ‘Aspect mining using clone
class metrics’. Workshop on Aspect Reverse
Engineering. 2004

Bruntink, M., van Deursen, A., van Engelen, R.,
and Tourwe, T.: ‘On the use of clone detection
for identifying crosscutting concern code’. [EEE
Trans. Software Eng., 31 (10), 2005, pp. 804-818

Breu, S. and Zimmermann, T.: ‘Mining
aspects from version history’. 21st IEEE/ACM
International Conference on Automated Software
Engineering (ASE 2006). 2006, pp. 221-230

Shepherd, D., Tourwe, T., and Pollock, L.: ‘Using
language clues to discover crosscutting concerns’.
First International Workshop on the Modeling and
Analysis of Concerns in Software (MACS). 2005

Shepherd, D. and Pollock, L.: ‘Interfaces, aspects,
and views’. Workshop on Linking Aspect
Technology and Evolution (LATE). 2005

15

[27]

Marin, M., Moonen, L., and van Deursen, A.:
‘A common framework for aspect mining based
on crosscutting concern sorts’. Proceedings of
the 13th IEEE Working Conference on Reverse
Engineering (WCRE). 2006, pp. 29-38

Tonella, P. and Ceccato, M.: ‘Migrating
interface implementation to aspects’. 20th
IEEE International Conference on Software
Maintenance (ICSM’04). 2004, pp. 220-229

Tonella, P. and Ceccato, M.: ‘Refactoring the
aspectizable interfaces: An empirical assessment’.
IEEE Trans. Software Eng., 31 (10), 2005, pp.
819-832

Engler, D., Chen, D.Y., Hallem, S., Chou, A., and
Chelf, B.: ‘Bugs as deviant behavior: a general
approach to inferring errors in systems code’.
SIGOPS Oper. Syst. Rev., 35 (5), 2001, pp. 57-72

