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Abstract: Safety critical software requires integrating verification techniques in software development methods. 
Software architectures must guarantee that developed systems will meet safety requirements and safety analyses 
are frequently used in the assessment. Safety engineers and software architects must reach a common 
understanding on an optimal architecture from both perspectives. Currently both groups of engineers apply 
different modelling techniques and languages: safety analysis models and software modelling languages. 
The solutions proposed seek to integrate both domains coupling the languages of each domain. It constitutes 
a sound example of the use of language engineering to improve efficiency in a software-related domain. 
A model-driven development approach and the use of a platform-independent language are used to bridge 
the gap between safety analyses (failure mode effects and criticality analysis and fault tree analysis) and 
software development languages (e.g. unified modelling language). Language abstract syntaxes (metamodels), 
profiles, language mappings (model transformations) and language refinements, support the direct application 
of safety analysis to software architectures for the verification of safety requirements. Model consistency and 
the possibility of automation are found among the benefits. 

1 Introduction 
In model-driven developments (MDD), (MDD is a paradigm 
for development of software applications) models are on the 
critical path of software development. M D D assumes a 
development sequence based on different types of models, 
especially platform-independent and platform-specific 
models. However, safety critical software involves some other 
types of models that support the verification of safety 
requirements. Integrating both modelling approaches reduces 
the number of problems because of inconsistencies and model 
development costs, but this requires adapting traditional 
M D D model paths and some tool integration support. We 
propose solutions to support integration with tool-
independent implementations. 

Not only can architectural models be used for the 
description of development properties, but they can also 
include safety properties that characterise software 
components, requirements and software systems in general. 
Using the architecture model as a common reference in both 

activities improves the consistency of safety analysis and 
software development. In this approach, the software 
development models are the main focus in safety critical 
software analysis, but safety analysis concepts complement 
the architectural modelling languages. Software architectures 
in safety critical systems are designed taking into account 
safety requirements defined in previous phases of the 
software development process, and safety engineers 
must ensure, as much as possible, that architectures 
proposed guarantee safety requirements before starting 
implementation or maintenance. 

In this paper, we propose solutions to incorporate safety 
requirements in software architecture based on safety 
objectives, and for the evaluation of these software 
architectures based on safety analysis methods: fault tree 
analysis (FTA) and failure mode effects and criticality 
analysis (FMECA). The results of these analyses are 
used to detect inconsistencies of software architectures 
and safety requirements, and for the evaluation of 
architectures. 



Fundamental to the model-driven architecture (MDA) 
(MDA integrates the application of several standards for 
the application of an M D D approach, http://www.omg. 
org/mda), unified modelling language (UML) is a general 
modelling language that does not include modelling 
elements for the description of safety concepts in particular. 
Some extensions to U M L are required to integrate safety 
concepts with development architectures. 

The safety concepts used in our work are described in the 
Eurocontrol recommendations . The practical experiences 
that we include in this document are the results of 
M O D E L W A R E project. These results have been 
developed in close collaboration with Thales ATM, experts 
in safety critical systems (air traffic control). The primary 
goals of our research are to integrate safety analysis 
activities and software architecture development, to make 
both activities consistent, and also to provide some metrics 
for the evaluation of safety-aware software architectures. 

The rest of this section completes the introduction 
describing the integration process, giving an illustrative 
example, and presenting the language engineering challenges 
involved in the research. Section 2 clarifies the modelling of 
safety attributes in software architectures and to achieve it 
some safety concepts need to be explained. Section 3 
describes safety analysis languages. Section 4 give certain 
details of the safety modelling framework implemented in our 
research. Section 5 explains how safety analysis models can be 
created from the concepts presented in Section 2. Section 6 
includes an example and some discussions. Section 7 includes 
related work and finally section 8 includes some discussions. 

1.1 Overview of the integration process 
Safety critical software components require complex 
development processes. The goal of performing safety 
analyses along with the definition of the architecture and 
performing early evaluations of the architecture, reflects the 
need of assuring the safety of the system from the 
beginning in order to reduce the development cost of safety 
for critical parts of the system. 

Safety analysis models are used in the verification and 
safety evaluation of safety critical software. The assessment 
must reflect the safety guarantees of the software developed 
and, thus, safety models and development models must be 
consistent and well integrated. Software engineers propose 
initial software architectures that safety engineers annotate 
and improve with safety-specific concepts, such as safety 
requirements and software assurance levels (SWALs). 
Safety analysis models provide initial safety evaluations. 

Safety analysis methods, in general, do not have an 
associated software architecture, and so we need to identify 
a modelling approach for the description of software 
architecture, and define rules for the application of analysis 
methods in these architectures. A general approach is the 

following: (i) In a conceptual model, the main abstractions 
of architectures and the safety concepts that complement 
them are identified, (ii) The representation of these 
architectures in U M L requires the identification of U M L 
modelling elements that support architectural concepts, and 
some U M L extensions to represent specific safety notions, 
(iii) The same concepts must be represented in terms of 
safety analysis models, and we must define some rules for 
the representation of architecture and safety concepts in 
models. Conceptual models represent the intermediate 
internal models to support the mappings from annotated 
architectural models to safety analysis models. 

Annotations have to be made in a formal manner to allow the 
later reuse of data in safety analysis. This requires the definition 
of U M L extensions that support safety modelling concepts. 
Current generation of modelling tools include some facilities 
that support this M D D approach (e.g. interchange file 
formats, application programming interfaces (API) to access 
repositories, and transformation languages). However, the 
interoperability of modelling tools is tool dependent, and 
general standard facilities are not supported yet (e.g. facilities 
for the invocation of general modelling services, such as 
analysis of safety models). 

The automatic generation of safety analyses from the 
architecture models is the key to the process. Without it, 
safety engineers have to redo the safety analyses each time 
they want to assess the safety of the architecture. 

The results of the analysis are incorporated back into the 
architecture as formal annotations. Both software and safety 
engineers can communicate using the same document, the 
architectural models, to propose improvements if the 
architecture does not fit cost and safety requirements. 
The whole process is cyclical and ends when costs and 
safety requirements are fulfilled (Fig. 1). 

1.2 Illustrative example 
Fig. 2 depicts some of the visual diagrams and tables found 
during the process. The left of the figure represents a 
common structural diagram in a software modelling 
language. The safety goal represents a probabilistic 
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Figure 1 Integration of development architectures and 
safety analysis 
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Figure 2 Illustrative example 

objective concerning safety. If the failure of a component is 
easy to occur, the safety goal will not be able to be met. 
Safety analyses are used to determine how the process 
development for each part of the system should be 
completed. If the failure of a function impacts critical safety 
goals, a more disciplined process for this function is needed 
to limit the likelihood of development faults. Another 
alternative is the use of mitigation solutions. They are 
included in the system and reflected in the safety analyses 
and, thus, the conclusions will differ. 

Reliability and fault analysis methods are basic tools for the 
evaluation of alternative architectures and for the quantitative 
evaluation of safety assurance levels of components. There are 
several methods for the safety evaluation of systems 
FTA (FTA is a systematic way of prospectively examining a 
design for possible ways in which failure can occur. The 
analysis considers the possible direct proximate causes that 
could lead to the event and seeks their origins) and 
F M E C A (FMECA is an analysis language to identify 
potential design weaknesses in hardware, software and 
systems in general) are two examples of well known safety 
analysis methods with tool support F M E C A is a bottom-
up approach to analyse component reliability. It allows us to 
determine which components might need special attention 
and any measures necessary during design and 
implementation. For each component, the effects are 
identified and analysed in order to evaluate the severity of 
their consequences. FTA can be used for qualitative and 
quantitative analysis. It is useful for the qualitative 
identification of design weaknesses and for the quantitative 
measurement of the probability of hazard occurrences. We use 
F M E C A and FTA for the safety evaluation of architectural 
models. They are well established and they are supported by 
several tool vendors. 

In the software domain, modelling and programming languages 
have been continuously used. The term 'safety analysis models' 
was previously used to refer diagrams and tables used by safety 
engineers to assess how safe a system is. We could consider 
each safety analysis method a language (the F T A / F M E C A 
language). Certainly, these languages significantly differ from 
those of the software domain, especially from those found in 
an M D D environment. Safety analysis languages are 
contained in specialised safety tools, being vendor-specific 
languages, or in the specialists' head, frequently as simply 
office tools used to draw analyses. The solutions proposed in 
this paper pursue to integrate both domains constituting a 
sound example of the use of software language engineering to 
improve efficiency in software-related domains. Several 
language-engineering issues were addressed: 

• Safety analysis languages were formalised following the 
M D A principles. Two metamodels for F M E C A and FTA 
were designed and implemented. 

• A safety language was proposed. This language is 
platform-independent, where the platform is the particular 
analysis method used. Such a language does not exist and 
would be very valuable to improve human communication, 
to allow tool interoperability and to boost tool 
development. We acknowledge that the proposed language 
is only a prototype and much effort should be placed to 
achieve these ambitions. 

• Language refinement is used to convert instances from this 
safety language into instances of the safety analysis languages. 
W e used rule-based programming support to implement this 
refinement. 

• Safety analyses are bound to system elements, for example, 
software modelling elements, but current analyses languages 
do not allow reflecting software architecture changes into 
safety analyses. W e proposed the use of extensions to the 
software modelling language as a modelling language for 
safety. Thus, we integrate the languages of both domains 
using the software modelling language as a common 
reference. This approach, along with automation, enables 
the binding between language instance elements. 

• Consistency management between language instances is 
accomplished by using automation. Automation involves 
several issues to be resolved, mainly implementation and 
those humanrelated. 

• A requirement of the work was that several software 
modelling languages could be used. Tool support was created 
to fulfil this requirement allowing other modelling languages 
to be integrated, currently different implementations of UML. 

In the software domain, if a faulty piece is found, it should 
be fixed. 

• To couple the different languages presented in our work, a 
consistent tool chain was implemented. 



2 Modelling safety-aware 
software architectures 
2.1 Safety process and concepts 
Software safety can be thought of as a function that ensures 
safety in early development phases and continues to do so 
throughout the entire software development. Frola and 
Miller introduce the safety-related activities, hazard 
and risk analysis, as part of project management activities 
(Fig. 3). 

Hazard analysis is fundamental in any safety-aware 
software system development and aims to identify hazards. 
A hazard is a state or set of conditions of a system or 
object that, together with other conditions in the 
environment of the system or object, will lead inevitably to 
an accident Hazards are usually classified according to 
severity levels. A severity level identifies the worst possible 
consequences that could result from the hazard. Hazard 
analysis is the central matter in functional hazard 
assessment (FHA) Eurocontrol phase (FHA is a top-
down iterative process, initiated at the beginning of the 
development or modification of an air navigation system 
whose objective is to determine how safe does the system 
need to be), and the risk assessment subprofile of the 
quality of service standard gives support to F H A 
activities. The concept of a safety objective is used to 
define, qualitatively or quantitatively, the maximum 
frequency at which a hazard can be expected to occur. The 
results of the hazard analysis are used to define these 
objectives, which are the main safety input for preliminary 
system safety assessment (PSSA) Eurocontrol phase (PSSA 
is a top-down iterative process, initiated at the beginning of 
the design or modification of an air navigation system 
whose objective is to determine whether the proposed 
architecture is able to achieve a tolerable risk). The work 
that underlies this paper provides solutions to software 
architecture modelling and PSSA. deals in detail with 
the embedding in PSSA of the aspects this paper presents. 
The results of PSSA are a collection of safety requirements 
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Figure 3 General integration of safety analysis and 
software development 

allocated to system elements, among which the safety 
assurance level system elements need to be satisfied. We 
consider system elements to be software components and 
they will have to provide SWALs. 

Architectural components have associated risks that 
are identified in hazard and risk assessment processes. 
These risks are a function of both, the likelihood of the 
hazard that leads to an accident and the consequences of 
the accident. Components can be supported by mitigation 
means to help in satisfying the assurance level. Mitigation 
means are solutions to reduce the likelihood or the severity 
of hazard consequences. Their risk reduction capacity 
depends on their platform-specific implementations and 
we might need a combination of mitigation means to 
achieve the desired reduction. The application of mitigation 
means has some associated costs. For example, to improve 
reliability two mitigations means are commonly 
used: functionality redundancy and fault recovery. 
They have significant cost consequences because of memory 
and CPU resource consumption. Mitigation means 
are reusable software elements and an organisation/project 
can define a catalogue of mitigation means and their 
implementation methods. Combinations of mitigation 
means can also be included in this catalogue. Examples 
introduced in Section 2.4 are part of a model library of 
mitigation means. 

Although software components are typically identified in 
software architectural phases, safety analyses should be 
taken into account to improve architectures. These 
assessments are done based on probabilities of component 
failure occurrences and risk reduction of mitigation means. 
These numbers are estimations that must be monitored and 
confirmed in the implementations. Architectural decisions 
should set up: components used and their arrangement, 
their assurance levels, and the concrete configuration of the 
mitigation means employed. 

2.2 Conceptual model of the safety-
aware architecture language 
Fig. 4 introduces the kernel of a conceptual model, showing 
the main concepts for the description of safety-aware 
software architectures. Based on this conceptual model, we 
have created a metamodel that represents safety concepts of 
component-based safety-aware architectures (SAA). We 
use this metamodel for the internal representation of 
architectures, for evaluation and for transformation 
purposes. The following are the basic elements of this 
conceptual model and metamodel: 

• Safety objective. These represent the safety results of an 
F H A Eurocontrol phase and define the safety requirements 
in the system. Eurocontrol document F H A - Severity 
Classification Schema SAFET1.ST03.1000-MAN-01-01-
03-D has been a fundamental document for the 
characterisation of safety objectives. 
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Figure 4 Conceptual model for the description of safety-aware component-based architectures 

• Safety-aware capability. SafetyAwareCapability represents 
software capabilities that have associated safety objectives. 
The safety-aware capabilities are supported directly and 
indirectly by a set of safety-aware components. 

• Safety-aware component. SafetyAwareComponent represents 
logical and physical components that support Safety 
AwareCapabilities. The SWAL of a software component 
depends on the severity of the safety objectives affecting that 
component. SWAL establishes levels of confidence in the 
software development process, by using a disciplined method 
to limit the likelihood of development errors that could 
impact safety A failure in a component without 
mitigation means and SWAL1 would directly cause a failure 
of system function resulting in a hazard whose end-effect will 
be catastrophic. A failure in a component with a SWAL4 
would have no immediate effect on safety. 

• Mitigation mean definition. Mitigation means are any 
software that allows avoidance, detection, propagation 
control or mitigation of effects of failures in order to meet 
the safety requirements resulting from the safety analysis. A 
mitigation mean definition characterises a software means 
independent of its application. 

• Mitigation mean application. A SafetyAwareComponent 
applies a set of mitigation means to meet safety requirements. 
The combination of a specific set of mitigation means in a 
component produces a specific risk reduction. 

• Scenario. Software architectures can have alternative 
associated solutions that produce different safety results. 
The scenario facilitates the representation of alternative 
solutions in the same model. The safety evaluation of a 
model is based on a specific scenario. 

2.3 Integration of safety concepts in a 
software modelling language: UML 
Based on this conceptual model, we define the abstract syntax 
of a language (metamodel) for the description of SAA. W e 
use a profile for the concrete representation of concepts 
included in SAA, but we do the transformation and 
analysis based on abstract syntax. The profile has been 
designed: (i) to represent, based on U M L modelling 
elements, SAA concepts and (ii) to integrate safety 
concepts with component-based software architectures. 

Fig. 5 is a structural diagram in UML2 that includes the 
implementation of this profile in Objecteering 6 (the 
metamodel of this Objecteering version is an evolution from 
U M L 1.4-UML 2.0). We have implemented this profile in 
Objecteering 5.3 (the metamodel of this version is based on 
U M L 1.4) and U M L 2 Eclipse plugin and rational software 
architect (RSA) (RSA is an IBM tool for software 
development which integrates some basic tools for the 
design of U M L models and development of web services 
and Java software). The differences of these versions are the 
base metaclasses of U M L metamodels, the implementation 
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Figure 5 UML safety architecture profile 

of associations between stereotypes and the use of enumeration 
types and primitive types in the definition of stereotype 
attributes (Objecteering does not allow the use of 
enumerations as a type of stereotype attributes). 

This profile includes stereotypes for the description of 
most of the metaclasses included in SAA. Stereotype 
attributes represent properties included in metaclasses. We 
have defined a mapping from U M L + safety architecture 
profile to SAA, and we can transform the U M L models 
into the equivalent SAA abstract syntax. 

2.4 Modelling examples 
This section includes some simple examples of the 
application of the concepts introduced previously. Safety 
concepts annotate software architectures to improve their 
safety semantics. They include invented safety 
requirements, mitigation means and components similar to 
real elements, but simplified. 

An example of a safety requirement, a result of F H A and 
input for PSSA, could be: 

'The probability of Undetected Corruption Of Secondary 
Surveillance Trajectory Assignment for any aircraft shall be no 

greater than extremely remote after 2 min as long as the 
failure condition leads to undetected corruption trajectory code.' 

This requirement leads to a safety objective that must 
formalise the requirement in terms of some safety objective 
parameters. The safety objectives include several parameters, 
in this case are especially important: (i) the amount of time 
the hazard exists (exposure time) is 2 min, (ii) the number of 
aircraft exposed is only one aircraft, (iii) the rate of 
development of the hazardous condition (e.g. sudden, 
moderate, slow) compared with the average time required for 
recovering from unsafe conditions is fast, (iv) the 
annunciation of the hazard requires an interpretation, because 
we need to recognise the wrong trajectory, and the diagnosis 
of the error can be sometimes incorrect, (v) in some cases, it 
may also be possible to consider the availability of alternative 
procedures, fall-back equipment and the ability to apply 
contingency measures; in this case we have some contingency 
measures to ensure that the second surveillance trajectory can 
be wrong and (vi) the requirement explicitly includes the 
likelihood as extremely remote. 

Fig. 6 shows the way the safety objective can be edited. The 
safety objective is represented as a U M L constraint (annotated 
with SafetyObjective stereotype and the stereotype attributes), 
but, because the safety objectives combine several parameters 
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Figure 6 UML safety objective example 

with specific values, we have developed specific wizards for 
their creation. The wizard updates the stereotype attributes 
and controls their consistency. In this figure, the safety 
objective is attached to a safety capability (represented with a 
U M L use case) that represents the functionality in the 
system for the construction of surveillance trajectories. This 
safety requirement affects this capability and components 
that support this functionality. The model includes U M L 
dependencies (annotated with SafetyDependency stereotype) 
that represent the safety-aware traceability from use cases to 
physical components. 

We are going to introduce the design of a redundant and 
connections checked component. This is a redundant kind 
of component that verifies the consistency of its input and 
output messages at the arrival and output of new messages 
(component interfaces includes interceptors to evaluate it). 
The objective of this component is to support software 
components with high safety assurance levels. It reduces the 
hazard of loss based on redundancy and data-checking 
mitigation means: (i) Loss detectors, to identify the loss of 
the component and the location where it was lost, (ii) 
Replications, which distribute the invocation services 
depending on availability of component replicas, (iii) 

Isolation checks the initialisation of the node and the 
initialisation of any other component in the same node. 

To avoid problems of corruption and functional errors, the 
component uses the following data-checking techniques: (i) 
Syntactic data checks, which ensure the syntactic 
redundancy of data types of messages, (ii) Semantic data 
checks, which ensure the consistency of data based on 
domain specific functionalities, (iii) Input data checks for 
the components that interface with external actors. 

Replications and data checks are examples of mitigation 
means that require an integration process because the data 
checkers can raise exceptions that must be considered in the 
process of message delivery. Software architects would use 
this kind of component for the configuration/ 
characterisation of some safety critical application components. 

Fig. 7 includes the component TrajectoryPrediction that 
supports the capability included in Fig. 6. We apply the 
mitigation means introduced to reduce the probability of error 
and ensure the severity that the safety objective imposes on 
this component (extremely remote). The SWAL of this 
component must ensure this severity, and only the mitigation 
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means applied can reduce this SWAL. These mitigation means 
can be used to reduce the errors and losses in components that 
are affected by safety objectives such as the safety objective 
included in Fig. 6. The mitigation means are U M L classes 
annotated with the MitigationMeansDefinition stereotype 
and its attributes: the level of application of mitigation means 
(component, process, system or hardware), the kind of failure 
control (avoidance, propagation, detection and mitigation) 
that the mitigation means provides and the topics of 
application of mitigation means (architecture, size and timing, 
initialisation and stop, input-output control, data 
management, internal communication, error recovery policy 
and fault tolerance). The combination of a certain set of 
mitigation means provides a specific reduction of risk. 
The MitigationMeansApplied determines this reduction, the 
priority of applicability (the same component can reduce the 
risk with different combinations) and the failure mode of 
application (loss, undetected corruption or error). 

Mitigation mean definitions and applications can be used 
as reusable safety modelling elements: designed as model 
libraries and reused in different projects. 

3 Safety analysis languages 
3.1 FMECA metamodel 
F M E C A (failure modes, effects and criticality analysis) is an 
inductive approach to system design and reliability. 

It identifies each potential failure within a system or 
manufacturing process and uses severity classifications to 
show potential hazards associated with these failures 

W e identify three main elements in F M E C A 
(Figs. 8 -10 include the main diagrams of the F M E C A 
metamodel): 

• FmecaSystem. A F M E C A safety analysis is constructed as 
a hierarchy of blocks. A F M E C A system holds properties 
global to the analysis (such as name and reference 
identifiers of the system, or its life time) and the main 
block of the system. It supports the strategy of having some 
common phrases that could be reused for the description of 
failure modes and effects; this choice would be very useful 
if the metamodel is used to create F M E C A editors. The 
SeverityCategory metaclass allows the characterisation of 
some categories for severities. FmecaSystem includes a 
classification of severity categories to be used for blocks and 
for the system itself. Fig. 8 includes FmecaSystem and its 
associations. 

• Block. A block represents every component that makes up 
the system to be analysed. Blocks are specialised as 
SystemBlock, SubsystemBlock and FunctionBlock. This 
specialisation is done mainly because the same parameters 
in different blocks can have different semantics. That is, a 
failure rate in a block can be an input of the analysis or a 
result; in the conventional bottom-up execution of 
FMECA, failure rates are input in FunctionBlocks whereas 
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results in the SystemBlock. The BlockData metaclass contains 
those attributes whose semantics can change whereas Block 
contains all others. Fig. 9 includes Block and its associations. 

• FailureMode. Each block has failure modes, modes in 
which the block could fail. These failure modes can be 
primary or derived from a cause-effect relationship if the 
failure occurrence depends on the failure of another block. 
A safety tool allows to mark these cause-effect 
dependencies at the same time as to provide a description 
for the failure mode among other parameters. Primary 
failure modes are represented by the class 
FunctionFailureMode, whereas derived ones are usually 
represented by SubsystemFailureMode. The final goal is to 
trace primary failure modes affecting end-effects, which are 
represented by the class SystemFailureMode. When the 

criticality analysis is performed in FMECA, both blocks 
and failure modes will end up with a criticality value for 
each severity level concerning it. Fig. 10 includes the 
description of FailureMode. 

3.2 FTA metamodel 
FTA [7, 6] is used during safety assessments to represent the 
logical interaction of component failures and other events in a 
system. It provides quantitative (probability theory is used), 
and qualitative (in the way of minimal cut sets that are 
combinations of events leading to a system-level failure 
when happening together) information. FTA's graphical 
representation consists of a tree made up of logical gates, 
such as A N D & OR. Figs. 11 -13 show diagrams that 
include the three main modelling elements of the metamodel: 
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reference to the TopEvent. Fig. 11 includes FtaSystem 
metaclass and its associations. 

• Gate. A gate is a logical function of some inputs. Typical 
logical functions are A N D , O R and VOTE. The output of a 
gate is an event derived from its inputs, represented with 
DerivedEvent. The inputs are Events, either primary events 
(PrimaryEvent) or the output of other gates (DerivedEvent). 
Therefore we use to symbolise a gate by the combination of a 
DerivedEvent and a Gate, holding most of the properties of 
the former (name, identifiers and results) whereas by the 
latter mainly the kind of gate. The metaclass DerivedResult 
holds the data obtained from FTA calculations. The 
most important results will be attached to the TopEvent, but 
the calculations could output data for every DerivedEvent if 
it is considered as a subtree. Other output data are related to 
importance and minimal cut set analyses. Fig. 12 
includes the metaclasses gate and DerivedEvent and their 
relations. 

• FtaSystem. A FTA system is constructed as a set of 
interconnected gates. The metaclass FtaSystem holds all 
the properties global to the system (such as a name and 
reference IDs of the system, and life time). The first thing 
to be done when starting an FTA is to define the hazard to 
be analysed, which is represented with the metaclass 
TopEvent, a specialisation of DerivedEvent. FtaSystem 
references all the events within the system, with a special 

• Event. If DerivedEvents characterise the result of a gate, 
PrimaryEvents are the main events in an FTA. They 
represent a primary failure of a component, an external event 
or any other occurrence that could affect the global safety of 
the system. Primary events have an associated failure model, 
usually modelled with probability parameters. The most 
typical failure model is the RateFailureModel created from a 
constant failure and repair rate. BasicEvent is the metaclass to 
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represent common primary events, such as the use of 
UndevelopedEvent limited to primary event whose main 
properties are not fully described. Fig. 13 includes Event and 
its subclass PrimaryEvent. 

4 Safety modelling framework 
The safety modelling framework (SMF) includes a set of 
tools (metamodels, profiles, model transformations and 
evaluators of metrics) for the analysis and development of 
safety-aware U M L architectures. SMF has been designed 
(Fig. 14) with reference to meta-object facilities (MOF) 
(MOF includes a set of foundation standards, e.g. M O F 
core specification, XMI and JMI, that define a metadata 
management framework; http://www.omg.org/mof) and 
implemented using eclipse modelling framework (EMF) 

E M F is a framework used to define and implement 
structured data models SMF includes a set of metamodels 
and a U M L profile to support modelling languages and 
transformations based on these modelling languages. 

Fig. 15 includes the SMF tool chain and coupling with 
external tools. Current implementation couples SMF with 
three modelling U M L tools (TA: Objecteering 5.3 and 6.0 
and RSA based on UML2 eclipse plugin) and one safety 
and reliability analysis tool (TB: ITEM). This tool chain 
includes four main phases: (i) coupling of SMF and U M L 
modelling tools, (ii) transition from U M L models to SAA, 
(iii) transition from SAA to safety analysis models (FTA 
and FMECA) and (iv) coupling with safety analysis tools. 
In this tool chain there are four modelling languages 
(UML, SAA, FTA and FMECA), and one U M L profile 
(safety profile) adapted to two U M L tools. There are two 
key model transformations: (i) T l : transformation from 
U M L + Profile to SAA and (ii) T2: transformation from 
SAA to FTA and FMECA. 

4.1 SMF interfaces 
SMF interchanges (TA, TB) models with three external tools 
(Objecteering versions 5.3 and 6.0 UML2 Eclipse 
plugin and RSA and I T E M ). SMF reproduces the 
metamodels of these tools inside EMF. Objecteering 5.3 
and 6 use a metamodel-based approach to access to 
Objecteering repositories and models. Objecteering 5.3 
includes a tool specific language (J language) that includes 
primitives to navigate over the metamodel. This tool and 
language do not allow defining new metaclasses. 
Objecteering 5.3 is a U M L 1.4 metamodel (with some 
minimal differences) and Objecteering 6 metamodel is an 
evolution from 1.4 to U M L 2.0 metamodel. W e use three 
different interchange methods: 

1. SMF interchanges metadata with Objecteering 5.3. XMI 
(http://www.omg.org/technology/documents/formal/xmi.htm) 
is an O M G standard for exchanging metadata information 
via XML. It can be used for any metadata whose meta­
model can be expressed in M O F . The most common use 
of XMI is as an interchange format for U M L models, 
although it can also be used for serialisation of models of 
other languages (metamodels). We have rebuilt 
Objecteering 5.3 and 6.0 metamodels in EMF, and E M F 
generators provide the Java API and XMI persistency. W e 
have developed a module in language J in Objecteering 5.3 
for importation/exportation of this type of XMI files. The 
interchange format is XMI files, and SMF and 
Objecteering 5.3 are executed in two independent 
processes. It is TA in Fig. 15 for Objecteering 5.3. 

2. Objecteering 6.0 includes language J and a Java API. We 
use this API to access Objecteering repositories. The 
implementation is written in Java and uses E M F 
metamodel reflection to download Objecteering models in 
E M F repositories. This reflection combines E M F 
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transformations and profiles (Neutral U M L includes 35 
metaclasses, and the merged version of UML2 metamodel 
includes 227 metaclasses). In this approach, transformation 
only includes references to Neutral U M L accessors and 
Neutral U M L handles the specific references to U M L 
accessors. At run-time, a Neutral U M L model references a 
concrete U M L model (Objecteering 5.3, 6.0 or UML2). 
Any model element in Neutral U M L includes a reference 
to a concrete element in the concrete model. 

4.2 Safety modelling language 
repositories 
Safety modelling languages are SAA, F M E C A and FTA. 
For each modelling, language repository facilities were 
created to handle models that use those languages. 

SAA is an abstract modelling language (there is no 
concrete syntax implementation of this language) used to 
describe SAAs based on methods included in Eurocontrol 
guidelines. The SAA metamodel defines a modelling 
language based on the abstractions and conceptual model 
introduced in Section 2.2. W e could create a concrete 
syntax to represent these models, but currently we represent 
these concepts with U M L modelling elements annotated 
with safety extensions. We use SAA models to compute 
metrics and to reduce the complexity of analysis model 
generation. 

reflection facilities (EMF provides dynamically the attributes 
and relations of metaclasses) and Java reflection for the Java 
API. SMF includes E M F notifiers for all Objecteering 6.0 
E M F metaclasses, which automatically updates 
Objecteering repositories whenever any modification is 
detected in E M F repositories. These notifiers are 
implemented based on reflection facilities. It is TA in 
Fig. 15 for Objecteering 6. With UML2.0, we use the 
same approach, reusing UML2 plugin Java libraries. This is 
T A in Fig. 15 for UML2. 

3. We access I T E M repositories in a Jet database via an 
Object/relational mapping framework. This framework 
provides facilities to access I T E M databases, and we reuse 
it as a Java library in SMF. This is TB in Fig. 15 for ITEM. 

The design of model transformations depends on source 
and target modelling languages. We developed the 
transformations using a metamodel facade pattern. The 
transformation includes references to the metamodel 
accessors methods (set and get Java methods), and this 
makes the transformation dependent on the U M L 
metamodel. Currently in SMF, we support three kinds of 
models as input (Objecteering 5.3, Objecteering 6.0 and 
UML2), with important differences. W e have created a 
neutral U M L metamodel, which presents any U M L 
metamodel. This metamodel is based on UML2 but it only 
includes the modelling elements handled in SAA 

F M E C A and FTA are languages to express such safety 
analyses. The languages are well understood, but to our 
knowledge there is no attempt to formalise them in a 
model-driven environment. These languages are currently 
used for implementing transformations, being the target 
and enabling to create safety analyses in a tool-independent 
way, neither did we create an associate concrete syntax. In 
its place, models are exported (TB) to the preferred safety 
tool, which indeed contains a concrete syntax for these 
languages. 

4.3 Model transformations 
Fig. 15 includes the transformation T l . This is a 
transformation from U M L + profile to SAA. The safety 
profile was designed based on the SAA metamodel and the 
conceptual model and, thus, there is a direct 
correspondence between U M L + profile elements and SAA 
modelling elements. This transformation is tedious but 
rather straightforward. 

Transformation T2 represents the generation of safety 
analysis models taking SAA models as input. Although we 
have implemented this transformation in Java, we designed 
it using a set of rules to represent the transformation. Each 
transformation rule is designed with two collaborations: (i) 
query collaboration, which is the query on SAA models for 
the execution of the rule and (ii) construction collaboration, 
which represents the new instances created in FTA and 
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F M E C A models during the rule execution. Further details of 
T2 will be given in the next section. 

5 Safety analysis model 
generation 
In this section, we introduce our general solutions for the 
construction of safety analysis models based on 
development architectures. Our approach identifies safety 
characteristics of the system and associates them with 
system elements that will be used later to generate the 
safety analyses. For this reason, it is essential that all safety 
characteristics and links to be used in the safety analysis are 
identified and formalised. The U M L extensions for safety 
realise this condition for our safety analysis purposes. Safety 
analysts should learn how to include safety parameters into 
the architecture; that is, they should know how to use the 
U M L extensions. In contrast, they do not need to know 
the details of the safety analysis languages. The creation of 
safety analyses models from safety annotations in U M L is a 
transformation where we convert development models into 
safety analysis models. The following subsections will 
describe how this transformation converts U M L entities 
(system elements and safety annotations) into safety analysis 
model entities (FMECA blocks, failure modes and FTA 
events and gates). 

5.1 Safety analysis automation 
As there are numerous safety analysis methods, there are also 
different ways to perform F M E C A or FTA according to 
particular objectives. This variety found in safety analyses 
contrasts with analyses in other fields such as real-time 
systems, where the objective is unambiguous (makes the 
system schedulable) and the application of the analysis is 
implicit in the analysis (no different ways to perform the 

analysis). The aim that is, 
pursued by applying F M E C A and FTA to software 
architectures, is framed in the general process of PSSA of 
Eurocontrol: to evaluate how an architecture can cause 
some hazards to occur, to estimate whether the architecture 
can fulfil the safety objectives of the system, to allocate 
SWALs to software components for making it possible to 
accomplish these objectives and to discern mitigation 
means to prevent hazards from occurring. It is important to 
note that some safety analyses are subject to automation: (i) 
Those that extensively use information stored in a way that 
allows its processing (for those an M D A approach 
facilitates this processing, obviously, by requiring that safety 
characteristics are recorded using a modelling language), (ii) 
Those from which we learn more from the results of the 
analysis (an organised table, a graph or some meaningful 
ciphers) than from the process. 

In an evolutionary process, like the PSSA and Eurocontrol 
approaches, automation is of great importance, with safety 
analyses growing at the same time as software models, 
reflecting the progress of the design. Nevertheless, some 
potential issues may arise as a consequence of the way humans 
interact with automation. For instance, actions must be taken 
so that safety analysts understand what the automation is 
doing and why. The best approach is for them to collaborate 
in the automation process, which also helps to prevent them 
from disliking or not relying on the automation process. 
There is also the danger that analysts will abuse automation 
by losing awareness of the process and becoming less 
conscious of errors. Therefore even though automation may 
avoid tedious analyses, it should be applied with caution. 

Safety engineers create safety analysis models instead of 
safety models not bound to a specific analysis. They do not 
model hazards, failure modes and safety relationships, but 



rather FTA, FMECA, ETA or Markov; thus, their models 
must be reworked to perform any other type of safety 
analysis, however similar. On the other hand, safety models 
could enable to create different safety analyses. The creation 
of safety analysis models from safety annotations in U M L 
is a model transformation in which we convert 
development models into safety analysis models. To 
formalise FTA and F M E C A languages, we designed the 
corresponding metamodels. They intend to be agnostic to 
any specific implementation of these types of analyses in a 
safety tool. 

5.2 FMECA model creation 

F M E C A model generation is derived from the model of 
software components. Each F M E C A component 
corresponds to a software component. The following 
attributes are common to all components: 

• Failure mode. Each component can have an associated set 
of failure modes. 

• Failure rate for each failure mode. This is the failure rate for 
cases where the component does not use any mitigation 
means. 

• Hazards associated for each failure mode. These are the final 
effects on the operational environment. 

• Severity level for each failure mode. This is the worst 
possible consequence that could result from each 
component failure mode. 

Safety-aware capabilities and safety-aware components 
from architecture models shape the structure of an 
F M E C A model by constituting F M E C A blocks. A 
function block can only represent a bottom-level 
safety-aware component (one which does not depend on 
any other). Conversely, a top-level safety-aware capability 
(one with at least one safety objective associated directly) 
is represented by a top-level subsystem block. The only 
way to include a mitigation mean in an F M E C A 
model is in unison with the safety-aware component it 
affects. 

A safety objective is an invariant that the system must fulfil, 
so that when it is not fulfilled we identify a failure mode of 
the system (the system block). Failure modes of safety-
aware components are hard to identify. In a preliminary 
safety assessment, we use common keywords like 
corruption, loss and error; other schemes are valid though. 

In FMECA, the dependency between blocks is like a 
parent-child relationship whereas the dependency between 
failure modes is a cause-effect relationship (limited from a 
child to its parent). In software models, safety-aware 
elements are interrelated by means of safety dependencies 
that we use to create the hierarchy of the analysis model. 

This proposal makes it necessary to replicate F M E C A 
model elements in some cases; for instance, when a 
safety-aware component affects two safety-aware 
capabilities, we create two subsystem blocks for the safety-
aware capability. 

5.2.1 FMECA transformation rules: The following 
rules represent how the F M E C A models are constructed. 

1. The general rules for the generation of F M E C A models 
are: 

2. Only one FmecaSystem is created with its corresponding 
SystemBlock. 

3. SafetyAwareCapability not affecting any other with 
SafetyDependency =>• A SubsystemBlock is created for 
the SafetyAwareCapability whose parent is the 
SystemBlock. A SystemFailureMode in the SystemBlock is 
created for each SafetyObjective that affects the 
S afetyAwareC ap ability. 

4. SafetyAwareCapability affecting another SafetyAware 
Capability with a SafetyDependency =>• A Subsystem 
Block is created for the former, the latter being the parent. 

5. SafetyAwareComponent affecting a SafetyAwareCapability 
with a SafetyDependency =>• A SubsystemBlock is created for 
the former, the latter being the parent. 

6. SafetyAwareComponent affecting another SafetyAware 
Component with a SafetyDependency and affected by 
others =>• A SubsystemBlock is created for the former, the 
latter being the parent. 

7. SafetyAwareComponent affecting another SafetyAware 
Component with a SafetyDependency and not affected by 
any other =>• A FunctionBlock is created for the former, 
the latter being the parent. A FunctionFailureMode is 
created for each foreseen failure mode (3 in the current 
scheme: Error, Loss and Corruption). 

8. In the tree FmecaSystem, all the FailureModes of a child 
affect the FailureModes of the parent. If the parent has no 
FailureMode, one is created for it. 

9. SWAL of the SafetyAwareComponent in combination 
with the RiskReduction of the MitigationMeanApplication 
=>• They are equally apportioned among failure modes. 

10. Criticality of the SafetyObjective =>• It is assigned as the 
severity of the SystemFailureMode that represents the 
SafetyObjective. 

Fig. 16 depicts an example including rules 3 and 7. 



5.3 FTA model creation 
FTA models should start by defining a hazard. As mentioned 
for FMECA, the non-fulfilment of a safety objective 
constitutes a hazard. Consequently, it seems reasonable that a 
different FTA model has to be created for each safety 
objective in the system and, thus, we will end up with several 
FTA models for only one system. In FTA, it can be 
reasonable to create an FTA model from a lower-level hazard 
although this is not supported by our FTA model generation. 

Primary events will represent the failure of a bottom-level 
safety-aware component. The other important element in 
FTA, gates, will represent the failure of a higher-level 
safety-aware component or capability. Because of the lack 
of information about safety dependencies, we must suppose 
the worst case and use the O R gate; a gate will produce 
true data if one of the components supporting it fails. 

Mitigation means impede failure propagation in a degree 
according to risk reduction, so that they are represented as 
A N D gates. Only some failure modes of the component will 
be mitigated, those declared in the mitigation mean definition. 

5.3.1 FTA transformation rules: The following rules 
represent how the FTA models are constructed. 

1. SafetyObjective =>• An FtaSystem is created for each 
SafetyObjective. The TopEvent of the system is also 
created, holding an OrGate. 

2. SafetyAwareCapability attached to a SafetyObjective =>• 
For the former, a DerivedEvent holding an OrGate is 
created. The output of this DerivedEvent is connected to 
the TopEvent. 

3. SafetyAwareCapability affecting another SafetyAware 
Capability with a SafetyDependency =>• For the former, a 
DerivedEvent holding an OrGate is created. The output of 
the created DerivedEvent is connected as a source of the 
DerivedEvent of the latter. 

4. SafetyAwareCapability affecting other SafetyAware 
Capability with a SafetyDependency =>• For the former, a 
DerivedEvent holding an OrGate is created. The output of 
the created DerivedEvent is connected as a source of the 
DerivedEvent of the latter. 

5. SafetyAwareComponent affecting another SafetyAware 
Component with a SafetyDependency =>• For the former, 
a DerivedEvent holding an OrGate is created. The output 
of the created DerivedEvent is connected as a source of the 
DerivedEvent of the latter. 

6. SafetyAwareComponent with no MitigationMean 
Applications =>• A PrimaryEvent is created for each 
foreseen failure mode (3 in the current scheme: Error, Loss 

and Corruption). The Primary Events are connected as a 
source of the DerivedEvent representing the component. 

7. SafetyAwareComponent with a MitigationMean 
Application but at least one of the MitigationMeanDefinitions 
of the MitigationMeanApplications is not implemented by the 
SafetyAwareComponent =^ as 6. 

8. SafetyAwareComponent with MitigationMeanApplication 
and all the MitigationMeanDefinition's are implemented by 
the SafetyAwareComponent =>• 
a. For each foreseen failure mode not mitigated, a PrimaryEvent 
is created and connected to the DerivedEvent representing the 
component. 
b. For each mitigated failure mode, a DerivedEvent holding an 
AndGate is created, the output of which is connected to the 
DerivedEvent representing the Component. Two 
PrimaryEvents are created and connected to it: one for the 
mitigated FailureMode and one representing the effects of the 
MitigationMeanApplication. 

9. SWAL of the SafetyAwareComponent => The SWAL, 
previously converted to likelihood, is equally apportioned 
among the failure modes. 

10. RiskReduction of the MitigationMeanApplication 
=>• It is equally apportioned among the mitigated failure 
modes. 

Fig. 17 depicts an example including the rule 8 (also 9 
and 10). 
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Figure 17 FTA: query collaboration on the top and 
construction collaboration at the bottom 

5.4 Inputs and results 
The automation of analysis model construction takes as input 
U M L development architectures annotated with safety 
extensions and provides tables (FMECA), trees (FMECA, 
FTA) and diagrams (FTA) depicting the models. Safety 
analysts can now inspect them to see how the safety-critical 
elements of the architecture work together. F M E C A 



Use case diagram: safe-aware capability and safety objective 
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Figure 18 UML models annotated with the safety profile and SAA model backing them 

a Use case diagram: safe-aware capability and safety objective 
b Static diagram: safe-aware component, mitigation mean definition and mitigation mean applied 
c SAA model 

can indicate the severity of function failure modes by 
only setting the severity of system failure modes (this 
setting is already implemented in the automatic 
transformation). FTA can provide us the list of minimal 
cut sets, that is, the combinations of bottom-level 
failures leading to a hazard when happening together; 
we should pay attention to combinations with only one 
element. 

One of our final aspirations with the safety analyses is to 
allocate SWAL to safety-aware components. Allocating a 
SWAL to a component does not imply calculating a failure 
rate for software, and hence SWALs cannot be used in the 
safety assessment process as can hardware failure rates. In the 
case of model-driven engineering with hardware, we could 
map component hardware assurance level to failure rates in 

safety analysis models, and the safety tool could provide 
quantity results. 

The methodology provided by Eurocontrol 
strictly forbids allocating a failure rate to the 

software and we have to assume that the software fails. 
Allocation of SWALs is accomplished by looking at the 
overall system design in its operational environment. 
Therefore it is essential to keep the link between the safety-
aware component to the end-effect and its maximum 
tolerable frequency of occurrence. Our work provides the link 
between a safety-aware component and the hazard but not to 
the end-effect, although it can be easily obtained from other 
documents. We have worked on safety analysis creation to 
provide quantity results by automating some hand-made 
processes ; these values can be used to derive SWALs. 



6 Example and validation 
6.1 Example 
This section provides a comprehensive example including the 
whole process proposed in the paper. The process is rather 
complicated and the best way to become familiar with it is 
by means of a simple but comprehensive example model. 
The model does not contain a complex component-based 
architecture but a single software component. Another 
software component is included into the model to represent 
the mitigation mean application. This insertion would 
improve the safety of the system by reducing the occurrence 
probability of a component failure. In this example we have 
a capability, 'consult system flight plan (SFPL)', by which 
an air traffic controller (ATC) requests information about a 
flight plan. This capability needs to fulfil a safety objective, 
'SO_l: The probability of detected and undetected 
corruption for greater than 5 min shall be no greater than 
1 0 - 5 per hour'. The capability is hypothetically supported 
by a single component, 'flight data management (FDM)'. 
To achieve the safety goal, safety engineers have allocated a 
mitigation mean to this component 'MM_1: Processing 
servers are replicated on different nodes'. 

Fig. 18a illustrates how, with the help of the safety profile, 
the constraint SO_l is linked to the capability consult SFPL 
expressed as a use case. This relation is articulated within a 
use case diagram, and using the stereotypes SafetyObjective 
and SafetyAwareCapability. An ad-hoc editor enables us to 
make the component F D M dependent on the capability. 
Fig. \%b shows the safety-aware component, which has 
applied a mitigation mean. Within a static diagram we 

represent the component as a package annotated with a 
stereotype SafetyAwareComponent. A constraint with 
stereotype MMApplied indicates the application of M M _ 1 , 
which the component properly implements (as shown in 
the ad-hoc editor on the left). Another editor (on the right) 
enables the definition of the mitigation mean. Finally 18c 
shows the safety-aware model that backs the previous 
models and editors' data. 

So far, safety engineers need to collect information from 
several documents, meetings and know-how to build the 
analyses. SAA models collect the information likely to be 
used during the analyses construction, so that safety staff 
could build the analyses based on it. SAA models 
constitute the input of the transformation T2. 
Transformation T2 currently automates our proposal for 
the construction of F M E C A and FTA. It basically consists 
in arranging the data included in SAA models to bring up 
safety analyses. The transformation creates in essence a 
graph of nodes from another one. The last step of the 
process would be the assessment of the analyses by safety 
staff, as soon as they import the analyses in their preferred 
safety (and graphical) tool. 

Fig. 19a shows the output of the transformation for a FTA 
(note that not all model elements are included for simplicity, 
e.g. FtaSystem). This analysis will assess the safety objective 
SO_l , which is transformed into a TopEvent. 'Consult 
SFPL' and 'FDM' are mapped into DerivedEvent resulted 
from O R gates, whereas 'Error' and 'Loss' failure modes of 
F D M into BasicEvents. Since the failure mode 
'Corruption' has been mitigated, an A N D gate is used to 
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Figure 19 Fault tree model and representation within item toolkit 



create a reduction of the failure mode's probability. This 
means that the corruption of F D M will only show up at 
the system level when both the failure mode occurs and the 
mitigation mean does not impede its propagation. When 
the output model is imported in the safety tool with the 
provided support, safety engineers can assess the FTA 
within the tool (Fig. 19P)). 

Fig. 20 is the equivalent of Fig. 19 for FMECA. Side 
Fig. 20a shows the output of the transformation for a failure 
mode, effect and criticality analysis (as with FTA, note that 
not all model elements are included, e.g. FmecaSystem). 
This analysis assesses the system as a whole, as one can 
realise when the SystemBlock is 'atm'. 'Consult SFPL' is a 
SubsystemBlock and 'FDM' is translated into a 
FunctionBlock. The not-fulfilment of the only safety 
objective, 'SO_l ' , constitutes the only SystemFailureMode. 
Three FunctionFailureModes can be found: 'Loss', 
'Corruption' and 'Error'. The failure mode at system-level is 
also called 'end-effect', and learning what are the failure 
modes at a low level which can cause its occurrence is one 
the main purposes of FMECA. This is shown in the table of 
Fig. 20$, which can be obtained with the safety tool (ITEM). 

6.2 Validation and discussion 
That was a simple example with a few elements and, thus, 
one could easily create manually the FTA within the safety 
tool. We applied SMF to the evaluation of a subsytem in a 
real project: EUROCAT. This is a flight plan management 
system that improves current implementations of flight plan 
systems. Thales-ATM is currently developing the system. 

Figure 20 FMECA model and result table in item toolkit 

The system baseline has more than three million lines of 
code and we cooperated on the early safety evaluations of 
one subsystem. This subsystem is modelled in Objecteering 
5.3 and the size of the XMI model is 13 M B (the size of 
the UML2 merged metamodel is 1.3 MB, so the size of 
this subsystem model is around ten times the size of the 
UML2 metamodel). EUROCAT project represents a good 
scalability study for SMF. The performance bottle neck is 
in the generation and load of XMI files. Section 4.1 
includes alternative solutions for Objecteering 6 that we 
have evaluated with this model, and the performance 
problems are solved using Java API. Thales-ATM uses 
version 5.3 because most tools, generators and other 
modules are not yet available in version 6. 

The size of the E U R O C A T subsystem allowed us to 
validate our proposal focusing on the analysis generation 
scalability. For this subsystem, we updated the architecture 
model with safety annotations based on F H A results of this 
project. According to these results we created safety 
objectives and we defined some mitigation means. The 
safety annotations were done with the U M L profile and 
some graphical user interface wizards that made the 
application of U M L extensions more user-friendly and 
secure. Profile and SAA metamodel provided good support 
for the integration of safety annotations in the architecture. 
In the end, we end up with a model with 21 safety-aware 
capabilities, 19 safety-aware components, five mitigation 
mean definitions and nine mitigation mean applications. 

The model contained enough elements to validate the 
generation of safety analysis and those analyses fit the needs 
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they were designed for. The creation of the analyses without 
automation support would have required hard work. The 
stage of development implied changes in the architecture 
that had to be tracked by safety engineers and incorporated 
into safety analyses. What is more, the inherent evolutionary 
property of PSSA, to reach the combination of mitigation 
means that make it possible to meet safety requirements, 
added new changes to be tracked. In our approach, change 
is welcomed because reworking the analyses tracking 
changes is done automatically. Our approach scaled with the 
bottleneck previously mentioned. Generating the analyses 
took about 2 h caused by exporting the models using the 
Objecteering 5.3 programming support. Removing this 
step, the generation took less than 5 min. 

Safety engineers could evaluate the generated analyses. 
However, we acknowledge that it is critical that analysis 
model generation needs to be adapted to safety engineers' 
particularities. They need to perform analyses to assess the 
architectures following a particular assessment methodology 
but also following their viewpoints (Section 5.1 coped with 
this concern). Work is needed in the SAA language to 
accept safety properties from different methodologies and 
analysis methods. A particular configuration in the analysis 
model generation may not fit the needs of every project and 
safety analysts. Safety engineers need to see the real benefits 
of the automated generation to cooperate in the election of 
the configuration. In the validation project, the easiness to 
create the analyses facilitated comparing alternative software 
architectures in search of optimality: safety feasibility, 
software requirement fulfilment, cost reduction and 
parameters. 

Our work implied clear advantages: (i) engage safety 
engineers in the architecture design from the beginning 
benefiting the safety quality and cost of the project, (ii) 
safety information was stored in a way that can be 
processed not only for safety analysis generation, (iii) data 
consistency management where changes in the architecture 
design are translated into safety analyses, and safety 
properties are only annotated in architecture designs and 
(iv) analysis automation. The potential for the automatic 
generation of safety analyses becomes apparent when the 
system model grows or/and when there is a real benefit to 
maintain consistency between system models and safety 
analyses. 

7 Related work 
We will now introduce some related work about the support 
of safety in M D D . Some related work focuses on the 
automatic generation of code for safety critical systems like 

which use M D A for developing the software for the 
F-16 modular mission computer application software. In 
this experiment, they focused mainly on the automatic 
generation of software and on system portability across 
platforms. This reference is neither meant to represent 
safety concepts, nor possible safety assurance levels. 

Software fault-tree analysis (SFTA) is an example of the 
adaptation of FTA to software systems. Most SFTA research 
efforts have been directed towards requirements or code. 
Components and software architectures require different 
levels of abstraction. Towhidnejad et propose some 
ideas for the application of FTA in software design. In this 
approach, FTA is part of the analysis of software designs. 

Pai and Dugan propose some U M L extension for the 
description of hardware and software redundancy, reliability 
dependencies and reconfigurations as well as, the 
transformation of U M L models into FTA models. These 
notations are useful for the analysis of systems that mitigate 
risk with redundancy methods. However, they do not 
consider other methods such as checklists. The extensions 
are used to annotate deployment modelling elements, but 
they do not annotate architectural modelling elements such 
as interfaces or component behaviour description. 

Other alternative analysis methods include the evaluation 
of contracts between components. The assembly and 
coupling of components developed by third parties create 
risks because of the incompatibility of the security and 
reliability characteristics of components. Some experimental 
methods are used for the specification of security attributes 
and for the evaluation of contracts 

Avionics architecture description language (AADL [20]) 
is a good example of a modelling language that integrates 
reliability and safety analysis methods. The components can 
be equipped with reliability models, which are Markov 
chains that relate fault events and error states. The system 
description must describe how errors propagate among 
components. A reliability analysis tool combines the 
reliability models of individual components into a global 
Markov chain, and uses a separate tool (in this case the 
SURE/PAVE/PAWS tool from NASA Langley) or the 
Markov chain analysis. In safety analysis, each process has 
its own address space in an implementation. Safety levels 
and memory allocation properties can be declared for 
components. The MetaH tool partitioning analyser can 
partially verify that no error in a component with a lower 
safety level can propagate to a process with a higher safety 
level. Currently some efforts have been initiated to integrate 
A A D L in modelling standards (UML 2.0 profile). 

includes some U M L extensions for the description of 
hazards and their relation to risks. The risk assessment 
subprofile of standard uses the new extensions and 
U M L modelling elements in the description of models of 
hazards and risks. In this paper, we propose a solution that 
is, integrated with U M L modelling elements, but we assume 
component-based software architectures, PSSA methods and 
FTA and F M E C A analysis methods. The concepts 
described in this paper are specific to safety critical systems, 
and specially integrated with development architectures. 
They can be supported by quality of service (QoS) profile 



or could be adapted as an improvement to a risk 
assessment subprofile. 

They take the same choice of developing 
a U M L profile, in this case for developing safety-critical 
systems compliant with RTCA DO-178B. This is indeed 
an extensive effort to create a profile, which could be used to 
automatically generate information that could even be 
submitted to certification authorities, for example, 
contributions to failure conditions and software requirement 
traceability. They use rules to extract this information from 
models. They do not seem to use the profile to generate 
analysis models, but certainly it could replace ours in our 
approach within an RTCA DO-178B environment. 

We came across a recent research work on determining 
critical components and connectors using risk factors 
(considering complexity and severity levels) These risk 
factors are used to determine fault proneness among 
components, and hence they pay more attention to the 
components while coding and testing them. 

An example of a problem identified by the Eurocontrol 
method is the execution of PSSA, and when the architecture 
is not completely defined it can lead to several problems; for 
instance, the architecture can be over-engineered to deal 
with uncertainty in the design [24]. The process we propose 
to perform PSSA can be considered as a lightweight PSSA 
as well. Nevertheless, our approach is based on the 
annotation of software architectures specified in U M L and 
on the automatic generation of safety analyses, whereas their 
work focuses only on safety issues. Some other work in 
York enumerates several issues that arise when 
conducting PSSA, some of which we want to highlight as 
we think our proposal can contribute to this discussion. The 
first issue is to track changes in the design updating the 
assessment. This is how PSSA can motivate design decisions 
but tracking every change can cause the project to overrun 
budgets. A lightweight method of doing PSSA that 
becomes more rigorous as the design matures would be the 
best option, and an automatic lightweight method, as we 
propose, would be much better. The second issue deals with 
who owns the design and leads the design specification. 
Working on the same models must help safety and software 
engineers can cooperate as their communication is based on 
common foundations; when software engineers change the 
architecture, safety engineers can evaluate it immediately, 
and when safety engineers discover a way to create a safer 
version of the architecture, they can pass on the changes to 
software engineers. Our vision facilitates the creation of 
integrated project teams even though some difficulties 
involving cultural change might still need to be resolved. 
The third issue is to identify the failure modes of incomplete 
designs that have not yet been implemented. We are 
evaluating how to add support for the failure mode 
description in order to incorporate failure modes in 

architecture models, when identified; the automatic process 
would use these descriptions, adding them to the analysis 
results. The fourth issue concerns how to cope with the 
modification and evolution of the system, for which our 
approach offers some guidance. 

8 Conclusions 
M D D solutions provide support to improve the integration of 
software development and safety analysis. M D D 
infrastructures (e.g. meta object facilities and U M L 
extensions) provide facilities to hold this integration. 
However, some improvements are needed; these 
improvements include the invocation of services in other tools 
and solutions to interchange modelling tool components that 
adapt model-driven facilities to domains and technologies. 
Safety analysis tools do not provide APIs for evaluating safety 
models from other modelling tools; modelling tools should 
provide API for the invocation of services from other tools, 
and the exportation of these modelling tool services should be 
defined with standard methods, currently not available. 
Current generation of U M L modelling tools (e.g. RSA and 
Objecteering 6) need improvements to integrate basic M D D 
tools, such as metamodels, profiles, transformations, well-
formedness rules, and JMI-based (Java Metadata Interface, 
based on MOF, defines a dynamic, platform-neutral 
infrastructure that enables the creation, storage, access, 
discovery, and exchange of metadata; http://jcp.org/ 
aboutjava/communityprocess/final/jsr040/index.html) code 
with a common asset. In SMF we have done important 
efforts to integrate these different types of tools. 

Compared with hardware, software safety issues have 
received limited attention, since it is a fact that software has 
caused few safety problems. However, as software is 
increasingly becoming part of system functioning, gaining 
assurance for software is very important. The earlier this 
assurance is gained, the greater benefits we will be able to 
obtain. In this paper, we have presented a framework for 
conducting a preliminary assessment of the safety of a 
software system. Safety and software engineers can work 
together to arrive at a complete definition of software 
architecture with the tool support outlined in this paper. 
Part of this support is simply a specific implementation 
with room for different adaptations. For instance, safety 
engineers and certification authorities require their own 
type of analysis, by this we mean not only whether it is 
F M E C A or FTA, but also how the analyses are 
implemented. Companies usually have a favoured safety 
tool to which our implementation could be tailored. 
Although the process we propose is largely tailored to 
Eurocontrol PSSA, we believe it can be applied fairly 
generally to the task of evaluating high-level models. 
Finally, work is also necessary because there is no common 
understanding of how to deal with software safety. After 
integrating our approach in a real development of air 
navigation systems, we corroborate some of the added 
value. The main benefits to safety and software engineers 

http://jcp.org/


working on the same models include the immediate 
availability of traceability between safety concepts and 
software elements, consistency in software architecture and 
safety information throughout process. Another 
achievement of our work is to automate the generation of 
safety analyses, which has already been discussed. In 
evolutionary processes like PSSA, this is a bonus in that it 
helps avoid the need to perform the analyses manually 
again and again. W e consider that the separation of safety 
and safety analysis modelling is a must. Certain safety 
analyses can be considered as different arrangements of 
elements from a well known safety vocabulary such as 
hazard, fault, failure and failure propagation. Modelling 
and characterising safety vocabulary enable the derivation of 
a safety analysis from safety models. The U M L profile 
proposed here could be extended in this way. 
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