Integration of safety analysis in model-driven

software development

M.A. de Miguel J.F. Briones J.P. Silva A. Alonso

Technical University of Madrid, E.T.S.l. Telecomunicacion, Ciudad Universitaria, Madrid 28040, Spain

Abstract: Safety critical software requires integrating verification techniques in software development methods.
Software architectures must guarantee that developed systems will meet safety requirements and safety analyses
are frequently used in the assessment. Safety engineers and software architects must reach a common
understanding on an optimal architecture from both perspectives. Currently both groups of engineers apply
different modelling techniques and languages: safety analysis models and software modelling languages.
The solutions proposed seek to integrate both domains coupling the languages of each domain. It constitutes
a sound example of the use of language engineering to improve efficiency in a software-related domain.
A model-driven development approach and the use of a platform-independent language are used to bridge
the gap between safety analyses (failure mode effects and criticality analysis and fault tree analysis) and
software development languages (e.g. unified modelling language). Language abstract syntaxes (metamodels),
profiles, language mappings (model transformations) and language refinements, support the direct application
of safety analysis to software architectures for the verification of safety requirements. Model consistency and

the possibility of automation are found among the benefits.

1 Introduction

In model-driven developments (MDD), (MDD is a paradigm
for development of software applications) models are on the
critical path of software development. MDD assumes a
development sequence based on different types of models,
especially platform-independent and platform-specific
models. However, safety critical software involves some other
types of models that support the verification of safety
requirements. Integrating both modelling approaches reduces
the number of problems because of inconsistencies and model
development costs, but this requires adapting traditional
MDD model paths and some tool integration support. We
propose solutions to support integration with tool-
independent implementations.

Not only can architectural models be used for the
description of development properties, but they can also
include safety properties that characterise software
components, requirements and software systems in general.
Using the architecture model as a common reference in both

activities improves the consistency of safety analysis and
software development. In this approach, the software
development models are the main focus in safety critical
software analysis, but safety analysis concepts complement
the architectural modelling languages. Software architectures
in safety critical systems are designed taking into account
safety requirements defined in previous phases of the
software development process, and safety engineers
must ensure, as much as possible, that architectures
proposed guarantee safety requirements before starting
implementation or maintenance.

In this paper, we propose solutions to incorporate safety
requirements in software architecture based on safety
objectives, and for the evaluation of these software
architectures based on safety analysis methods: fault tree
analysis (FTA) and failure mode effects and criticality
analysis (FMECA). The results of these analyses are
used to detect inconsistencies of software architectures
and safety requirements, and for the evaluation of
architectures.

Fundamental to the model-driven architecture (MDA)
(MDA integrates the application of several standards for
the application of an MDD approach. http://www.omg.
org/mda), unified modelling language (UML) is a general
modelling language that does not include modelling
elements for the description of safety concepts in particular.
Some extensions to UML are required to integrate safety
concepts with development architectures.

The safety concepts used in our work are described in the
Eurocontrol recommendations . The practical experiences
that we include in this document are the results of
MODELWARE project. These results have been
developed in close collaboration with Thales ATM, experts
in safety critical systems (air traffic control). The primary
goals of our research are to integrate safety analysis
activities and software architecture development, to make
both activities consistent, and also to provide some metrics
for the evaluation of safety-aware software architectures.

The rest of this section completes the introduction
describing the integration process, giving an illustrative
example, and presenting the language engineering challenges
involved in the research. Section 2 clarifies the modelling of
safety attributes in software architectures and to achieve it
some safety concepts need to be explained. Section 3
describes safety analysis languages. Section 4 give certain
details of the safety modelling framework implemented in our
research. Section 5 explains how safety analysis models can be
created from the concepts presented in Section 2. Section 6
includes an example and some discussions. Section 7 includes
related work and finally section 8 includes some discussions.

1.1 Overview of the integration process

Safety critical software components require complex
development processes. The goal of performing safety
analyses along with the definition of the architecture and
performing early evaluations of the architecture, reflects the
need of assuring the safety of the system from the
beginning in order to reduce the development cost of safety
for critical parts of the system.

Safety analysis models are used in the verification and
safety evaluation of safety critical software. The assessment
must reflect the safety guarantees of the software developed
and, thus, safety models and development models must be
consistent and well integrated. Software engineers propose
initial software architectures that safety engineers annotate
and improve with safety-specific concepts, such as safety
requirements and software assurance levels (SWALs).
Safety analysis models provide initial safety evaluations.

Safety analysis methods, in general, do not have an
associated software architecture, and so we need to identify
a modelling approach for the description of software
architecture, and define rules for the application of analysis
methods in these architectures. A general approach is the

following: (i) In a conceptual model, the main abstractions
of architectures and the safety concepts that complement
them are identified. (i) The representation of these
architectures in UML requires the identification of UML
modelling elements that support architectural concepts, and
some UML extensions to represent specific safety notions.
(iii) The same concepts must be represented in terms of
safety analysis models, and we must define some rules for
the representation of architecture and safety concepts in
models. Conceptual models represent the intermediate
internal models to support the mappings from annotated
architectural models to safety analysis models.

Annotations have to be made in a formal manner to allow the
later reuse of data in safety analysis. This requires the definition
of UML extensions that support safety modelling concepts.
Current generation of modelling tools include some facilities
that support this MDD approach (e.g. interchange file
formats, application programming interfaces (API) to access
repositories, and transformation languages). However, the
interoperability of modelling tools is tool dependent, and
general standard facilities are not supported vet (e.g. facilities
for the invocation of general modelling services, such as
analysis of safety models).

The automatic generation of safety analyses from the
architecture models is the key to the process. Without it,
safety engineers have to redo the safety analyses each time
they want to assess the safety of the architecture.

The results of the analysis are incorporated back into the
architecture as formal annotations. Both software and safety
engineers can communicate using the same document, the
architectural models, to propose improvements if the
architecture does not fit cost and safety requirements.
The whole process is cyclical and ends when costs and
safety requirements are fulfilled (Fig. 1).

1.2 lllustrative example

Fig. 2 depicts some of the visual diagrams and tables found
during the process. The left of the figure represents a
common structural diagram in a software modelling
language. The safety goal represents a probabilistic

Safely engineers

System

engineers Architecture

Cost Safety
assurandce

Figure 1 Integration of development architectures and
safety analysis

http://www.omg

Bystam Bails .

Failure in __

%j [In] Failure

FMECA TS)‘stcm System fiks ...
‘—?Suhs)'sh:m Failur¢in B .,
~A SW failure

Failure (TN} ionel
megle wlieel et

Funetion

1Y Fatlure Sastem
failure inB.. fails..

Mitigate

Figure 2 lllustrative example

objective concerning safety. If the failure of a component is
easy to occur, the safety goal will not be able to be met.
Safety analyses are used to determine how the process
development for each part of the system should be
completed. If the failure of a function impacts critical safety
goals, a more disciplined process for this function is needed
to limit the likelihood of development faults. Another
alternative is the use of mitigation solutions. They are
included in the system and reflected in the safety analyses
and, thus, the conclusions will differ.

Reliability and fault analysis methods are basic tools for the
evaluation of alternative architectures and for the quantitative
evaluation of safety assurance levels of components. There are
several methods for the safety evaluation of systems
FTA (FTA is a systematic way of prospectively examining a
design for possible ways in which failure can occur. The
analysis considers the possible direct proximate causes that
could lead to the event and seeks their origins) and
FMECA (FMECA is an analysis language to identify
potential design weaknesses in hardware, software and
systems in general) are two examples of well known safety
analysis methods with tool support ~ FMECA is a bottom-
up approach to analyse component reliability. It allows us to
determine which components might need special attention
and any measures necessary during design and
implementation. For each component, the effects are
identified and analysed in order to evaluate the severity of
their consequences. FTA can be used for qualitative and
quantitative analysis. It is wuseful for the qualitative
identification of design weaknesses and for the quantitative
measurement of the probability of hazard occurrences. We use
FMECA and FTA for the safety evaluation of architectural
models. They are well established and they are supported by
several tool vendors.

In the software domain, if a faulty piece is found, it should
be fixed.

1.3 Language engineering challenges

In the software domain, modelling and programming languages
have been continuously used. The term ‘safety analysis models’
was previously used to refer diagrams and tables used by safety
engineers to assess how safe a system is. We could consider
each safety analysis method a language (the FTA/FMECA
language). Certainly, these languages significantly differ from
those of the software domain, especially from those found in
an MDD environment. Safety analysis languages are
contained in specialised safety tools, being vendor-specific
languages, or in the specialists’ head, frequently as simply
office tools used to draw analyses. The solutions proposed in
this paper pursue to integrate both domains constituting a
sound example of the use of software language engineering to
improve efficiency in software-related domains. Several
language-engineering issues were addressed:

e Safety analysis languages were formalised following the
MDA principles. Two metamodels for FMECA and FTA

were designed and implemented.

e A safety language was proposed. This language is
platform-independent, where the platform is the particular
analysis method used. Such a language does not exist and
would be very valuable to improve human communication,
to allow tool interoperability and to boost tool
development. We acknowledge that the proposed language
is only a prototype and much effort should be placed to
achieve these ambitions.

¢ Language refinement is used to convert instances from this
safety language into instances of the safety analysis languages.
We used rule-based programming support to implement this
refinement.

¢ Safety analyses are bound to system elements, for example,
software modelling elements, but current analyses languages
do not allow reflecting software architecture changes into
safety analyses. We proposed the use of extensions to the
software modelling language as a modelling language for
safety. Thus, we integrate the languages of both domains
using the software modelling language as a common
reference. This approach, along with automation, enables
the binding between language instance elements.

¢ Consistency management between language instances is
accomplished by using automation. Automation involves
several issues to be resolved, mainly implementation and
those humanrelated.

e A requirement of the work was that several software
modelling languages could be used. Tool support was created
to fulfil this requirement allowing other modelling languages
to be integrated, currently different implementations of UML.

¢ To couple the different languages presented in our work, a
consistent tool chain was implemented.

2 Modelling safety-aware
software architectures

2.1 Safety process and concepts

Software safety can be thought of as a function that ensures
safety in early development phases and continues to do so
throughout the entire software development. Frola and
Miller introduce the safety-related activities, hazard
and risk analysis, as part of project management activities

(Fig. 3).

Hazard analysis is fundamental in any safety-aware
software system development and aims to identify hazards.
A hazard is a state or set of conditions of a system or
object that, together with other conditions in the
environment of the system or object, will lead inevitably to
an accident Hazards are usually classified according to
severity levels. A severity level identifies the worst possible
consequences that could result from the hazard. Hazard
analysis is the central matter in functional hazard
assessment (FHA) Eurocontrol phase (FHA is a top-
down iterative process, initiated at the beginning of the
development or modification of an air navigation system
whose objective is to determine how safe does the system
need to be), and the risk assessment subprofile of the
quality of service standard gives support to FHA
activities. The concept of a safety objective is used to
define, qualitatively or quantitatively, the maximum
frequency at which a hazard can be expected to occur. The
results of the hazard analysis are used to define these
objectives, which are the main safety input for preliminary
system safety assessment (PSSA) Eurocontrol phase (PSSA
is a top-down iterative process, initiated at the beginning of
the design or modification of an air navigation system
whose objective is to determine whether the proposed
architecture is able to achieve a tolerable risk). The work
that underlies this paper provides solutions to software
architecture modelling and PSSA. deals in detail with
the embedding in PSSA of the aspects this paper presents.
The results of PSSA are a collection of safety requirements

Software
Development

Hazard
Analysis

Risk Analysis

Analysis of Hazards
Hazard Severity
Safety Objectives

Specifications
Safety Tradkafis
Safely Roquintiments

Component Risks
Compane. Fault Tree
Compo. Falure Rabes

H

Software Archites.
Lompanent Severity
Compo, Safety Type

Compo. Evaluation
Rusk Assessment
Fault Analysis

Monltor Processes
H® Faiture Rates Evalua.
System maintenare

Implementatdon
Safequands support
MM implementation

Figure 3 General integration of safety analysis and
software development

allocated to system elements, among which the safety
assurance level system elements need to be satisfied. We
consider system elements to be software components and
they will have to provide SWALs.

Architectural components have associated risks that
are identified in hazard and risk assessment processes.
These risks are a function of both, the likelihood of the
hazard that leads to an accident and the consequences of
the accident. Components can be supported by mitigation
means to help in satisfying the assurance level. Mitigation
means are solutions to reduce the likelihood or the severity
of hazard consequences. Their risk reduction capacity
depends on their platform-specific implementations and
we might need a combination of mitigation means to
achieve the desired reduction. The application of mitigation
means has some associated costs. For example, to improve
reliability two mitigations means are commonly
used: functionality redundancy and fault recovery.
They have significant cost consequences because of memory
and CPU resource consumption. Mitigation means
are reusable software elements and an organisation/project
can define a catalogue of mitigation means and their
implementation methods. Combinations of mitigation
means can also be included in this catalogue. Examples
introduced in Section 2.4 are part of a model library of
mitigation means.

Although software components are typically identified in
software architectural phases, safety analyses should be
taken into account to improve architectures. These
assessments are done based on probabilities of component
failure occurrences and risk reduction of mitigation means.
These numbers are estimations that must be monitored and
confirmed in the implementations. Architectural decisions
should set up: components used and their arrangement,
their assurance levels, and the concrete configuration of the
mitigation means employed.

2.2 Conceptual model of the safety-
aware architecture language

Fig. 4 introduces the kernel of a conceptual model, showing
the main concepts for the description of safety-aware
software architectures. Based on this conceptual model, we
have created a metamodel that represents safety concepts of
component-based safety-aware architectures (SAA). We
use this metamodel for the internal representation of
architectures, for evaluation and for transformation
purposes. The following are the basic elements of this
conceptual model and metamodel:

o Safety objective. These represent the safety results of an
FHA Eurocontrol phase and define the safety requirements
in the system. Eurocontrol document FIIA - Severity
Classification Schema SAF.ET1.5T03.1000-MAN-01-01-
03-D has been a fundamental document for the
characterisation of safety objectives.

+ dependantCapabililias

(3 SafeAwareCapahility + aflecledCapabilities

4 affectedCapabilities

efficiency ()

M 1.7

+ reduction Qi spabilities
+ dependentCapgbililiss

+ dependentComponents

& SafeAwareComponent

+ dependentComponents

swal Integed
+ afiectedObjsctives n_urnbeiQﬂ_nslgnces . Integer T
sizeWarniation : Integer
' physical . Boalaan affecied Companents
efficiency ()
ratsDmInpmentHazardouanndhion : RateDevalopmentH... " compmerln
exposureTime . Double
numdircraftExposed | Integer
annuciation : AnnuntiationValue
detsction : DelactionVsive
diagnosis | Diagnosisvalue
contingencyMeans : Contingency¥alue
faifurgModes . FailurelodeValue
severity : LikelihoodValue
+ implement z:dtditigationMeans +mitigationheansApplications

{2 MitigationMeanDefiuition

m) MitigationMeanApplied

1opics : TopicValue
failureControls : FallureControlvalue

definitinng applizdinF silureblode : FailureModeValue

applicationLevels ApplicationLevelValue |-

priority OfApplication : Integer
niskReduction Double

b~ *

Figure 4 Conceptual model for the description of safety-aware

o Safety-aware capability. SafetyAwareCapability represents
software capabilities that have associated safety objectives.
The safety-aware capabilities are supported directly and
indirectly by a set of safety-aware components.

o Safety-aware component. SafetyAwareComponent represents
logical and physical components that support Safety
AwareCapabilities. The SWAL of a software component
depends on the severity of the safety objectives affecting that
component. SWAL establishes levels of confidence in the
software development process, by using a disciplined method
to limit the likelihood of development errors that could
impact safety A failure in a component without
mitigation means and SWAL1 would directly cause a failure
of system function resulting in a hazard whose end-effect will
be catastrophic. A failure in a component with a SWAL4
would have no immediate effect on safety.

o Mitigation mean definition. Mitigation means are any
software that allows avoidance, detection, propagation
control or mitigation of effects of failures in order to meet
the safety requirements resulting from the safety analysis. A
mitigation mean definition characterises a software means
independent of its application.

o Mitigation mean application. A SafetyAwareComponent
applies a set of mitigation means to meet safety requirements.
The combination of a specific set of mitigation means in a
component produces a specific risk reduction.

component-based architectures

o Scenario. Software architectures can have alternative
associated solutions that produce different safety results.
The scenario facilitates the representation of alternative
solutions in the same model. The safety evaluation of a
model is based on a specific scenario.

2.3 Integration of safety concepts in a
software modelling language: UML

Based on this conceptual model, we define the abstract syntax
of a language (metamodel) for the description of SAA. We
use a profile for the concrete representation of concepts
included in SAA, but we do the transformation and
analysis based on abstract syntax. The profile has been
designed: (i) to represent, based on UML modelling
elements, SAA concepts and (ii) to integrate safety
concepts with component-based software architectures.

Fig. 5 is a structural diagram in UML2 that includes the
implementation of this profile in Objecteering 6 (the
metamodel of this Objecteering version is an evolution from
UML 1.4-UML 2.0). We have implemented this profile in
Objecteering 5.3 (the metamodel of this version is based on
UML 1.4) and UML 2 Eclipse plugin and rational software
architect (RSA) (RSA is an IBM tool for software
development which integrates some basic tools for the
design of UML models and development of web services
and Java software). The differences of these versions are the
base metaclasses of UML metamodels, the implementation

Safe-surare CupabilityMirsion Safr-xware Capability Capshility

I¥latarmodal L |
e e | [agn e T—
UseCase o}
Sefe-awaraCapaly o
ReductiorOCapabilitiesTe~ * FRepertsnCapibii
f—"" wcertengionn> | cepelaclassae
— P H
1 Interfare .
SafetyObjective
Sale-aware Comparentinterface Seveaty : strng
S— i FeahmeMade (1.%] :strg
__ PR [ExpesureTine - string
E— > Dependency Hum s i ftEspaced : string
SafdetyDependency AmmMn :.strmg
Detertion : shing
1 o Drisgnosis | siving
& o o Contingeneyivleasues ; string
‘ FaleDevnlopment HazardousConditions : stxing]
==
—
[Deperdent Comporens
Safe-awvare Camposite Componeni
- wrretacinsges ‘ = —
Componenit Safe-aware Conporsnt —
- I
el sy - 3 SRt e S
ceatinsione | HunherOfnstances _ sinng Safe-awace ComponentPhysical
Package) 1 |SoeVasiation : string
momponent
FRaductivnOFisk + | Tplerrentedhditgationbdean
Safe-anvare Componentlogical
=]) =
L . MitigationhleansDe Antiion
MitizationMeans Applied wxmelaclass>> 1 ApplesliorLevel (1. *) - Armg
[Prionly OTA ppleation - siring Class Topsic (1.} : strivg
AppliedinFaibureldods [1. %] : string} FaihueConlrol [1.#] : shing

ReductionOfRisk © string

Diefinition 'T"

Figure 5 UML safety architecture profile

of associations between stereotypes and the use of enumeration
types and primitive types in the definition of stereotype
attributes (Objecteering does not allow the use of
enumerations as a type of stereotype attributes).

This profile includes stereotypes for the description of
most of the metaclasses included in SAA. Stereotype
attributes represent properties included in metaclasses. We
have defined a mapping from UML + safety architecture
profile to SAA, and we can transform the UML models
into the equivalent SAA abstract syntax.

2.4 Modelling examples

This section includes some simple examples of the
application of the concepts introduced previously. Safety
concepts annotate software architectures to improve their
safety semantics. They include invented safety
requirements, mitigation means and components similar to
real elements, but simplified.

An example of a safety requirement, a result of FHA and
input for PSSA, could be:

“The probability of Undetected Corruption Of Secondary
Surveillance Trajectory Assignment for any aircraft shall be no

-*

greater than extremely remote after 2 min as long as the
failure condition leads to undetected corruption trajectory code.”

This requirement leads to a safety objective that must
formalise the requirement in terms of some safety objective
parameters. The safety objectives include several parameters,
in this case are especially important: (i) the amount of time
the hazard exists (exposure time) is 2 min, (i) the number of
aircraft exposed is only one aircraft, (iii) the rate of
development of the hazardous condition (e.g. sudden,
moderate, slow) compared with the average time required for
recovering from unsafe conditions is fast, (iv) the
annunciation of the hazard requires an interpretation, because
we need to recognise the wrong trajectory, and the diagnosis
of the error can be sometimes incorrect, (v) in some cases, it
may also be possible to consider the availability of alternative
procedures, fall-back equipment and the ability to apply
contingency measures; in this case we have some contingency
measures to ensure that the second surveillance trajectory can
be wrong and (vi) the requirement explicitly includes the
likelihood as extremely remote.

Fig. 6 shows the way the safety objective can be edited. The
safety objective is represented as a UML constraint (annotated
with SafetyObjective stereotype and the stereotype attributes),
but, because the safety objectives combine several parameters

e

Safety Objeclive Example usecase dagram (1) E3 [

ke

(i |

2

? 3

5
f<_i_>g SecondarySwrveillanceRadar %
s Adreraft
(=Y /

«eSafesveare CapabilityCapability=»
Fredict Trapeciories

i
i

(2 Edit SafetyUbjective

Severity
Exhierelp Remate j
Falwe Mode:
H Falure Mode ok
b oLoss i
" Cormuption

D ependeniCapabilites [1..%].
DependentCapabdities

Exposure Time:
[12000

Numbsar of Aircralts Exposed:

[

to undetected comuphion tmjectory code}

1
RelighilityCfSecondarySurveillance Trajectory <<Saful yObeotre== AN
{The probability of Undetected Corraption of Secondary Surweillance
Trajeclory hssignmment (by anyr sirerafl shall be no sreater than
Extremely remote after 2 minutes a2 lang as the falure condition leads

Annunciation:

d | Arnbigous L_l
Detection:
| Undetected j
Diagnaosis:

|

Le

I Incorrect Diagnosic possible

Contingency Measues:

e

I Cortingency ieasuras Avadable

Rate Development Hazardous Condition
I Fastl

Lo |

Drescriplion
The probahilty of Uadetected Conuplion of Secandany
Surveilance Traeclony Assignment for any aiicralt shall be no
oreaten than Extieraly remote aftes 2 minules a3 long as the
[afiee cordithon leads to undstected comuption Irajscton:

code
I

Figure 6 UML safety objective example

with specific values, we have developed specific wizards for
their creation. The wizard updates the stereotype attributes
and controls their consistency. In this figure, the safety
objective is attached to a safety capability (represented with a
UML use case) that represents the functionality in the
system for the construction of surveillance trajectories. This
safety requirement affects this capability and components
that support this functionality. The model includes UML
dependencies (annotated with SafetyDependency stereotype)
that represent the safety-aware traceability from use cases to
physical components.

We are going to introduce the design of a redundant and
connections checked component. This is a redundant kind
of component that verifies the consistency of its input and
output messages at the arrival and output of new messages
(component interfaces includes interceptors to evaluate it).
The objective of this component is to support software
components with high safety assurance levels. It reduces the
hazard of loss based on redundancy and data-checking
mitigation means: (i) Loss detectors, to identify the loss of
the component and the location where it was lost. (ii)
Replications, which distribute the invocation services
depending on availability of component replicas. (iii)

Isolation checks the initialisation of the node and the
initialisation of any other component in the same node.

To avoid problems of corruption and functional errors, the
component uses the following data-checking techniques: (i)
Syntactic data checks, which ensure the syntactic
redundancy of data types of messages. (i) Semantic data
checks, which ensure the consistency of data based on
domain specific functionalities. (iii) Input data checks for
the components that interface with external actors.

Replications and data checks are examples of mitigation
means that require an integration process because the data
checkers can raise exceptions that must be considered in the
process of message delivery. Software architects would use
this kind of component for the configuration/
characterisation of some safety critical application components.

Fig. 7 includes the component TrajectoryPrediction that
supports the capability included in Fig. 6. We apply the
mitigation means introduced to reduce the probability of error
and ensure the severity that the safety objective imposes on
this component (extremely remote). The SWAL of this
component must ensure this severity, and only the mitigation

< <Mitug stionke ans Defintion = >
LossDiatarctor {ApnlicationLevat, FailuraControl, Tapic)

«<<=MitigationMaansDafintion = =
Repligator {aApplicationievet, FailureControl, Topic})

<-<MitigationMeansDefintion» >
TsolationCheck {Topic, BpplicationLevel, FailureControl}

«<MitigationMeansapplied>> L

RadundantandConactionChackad {AppliadInFaileraMads, Prority- hication, ReductionGfRisk}

«-«MitigationMeansDefintian » > ‘
SyntaxDataCheck {Topic, FalureControl, ApplicationLavel}

- = MitgationMe ansDefintions> =
SemanticDataCheck {Topic, FailureControl, ApplicationLevel}

« < MitigatianMaansDafintion> >
InputDataCheck {Topic, FailureControl, ApplicationLevel}

% nt, Safe-awareComponentPhysical>»

T E—

TrajectoryPrediction {SWAL, NurmberOfinstances}

Figure 7 UML mitigation means and applied examples of mitigation means

means applied can reduce this SWAL. These mitigation means
can be used to reduce the errors and losses in components that
are affected by safety objectives such as the safety objective
included in Fig. 6. The mitigation means are UML classes
annotated with the MitigationMeansDefinition stereotype
and its attributes: the level of application of mitigation means
(component, process, system or hardware), the kind of failure
control (avoidance, propagation, detection and mitigation)
that the mitigation means provides and the topics of
application of mitigation means (architecture, size and timing,
initialisation and stop, input—output control, data
management, internal communication, error recovery policy
and fault tolerance). The combination of a certain set of
mitigation means provides a specific reduction of risk.
The MitigationMeansApplied determines this reduction, the
priority of applicability (the same component can reduce the
risk with different combinations) and the failure mode of
application (loss, undetected corruption or error).

Mitigation mean definitions and applications can be used
as reusable safety modelling elements: designed as model
libraries and reused in different projects.

3 Safety analysis languages

3.1 FMECA metamodel

FMECA (failure modes, effects and criticality analysis) is an
inductive approach to system design and reliability.

It identifies each potential failure within a system or
manufacturing process and uses severity classifications to
show potential hazards associated with these failures

We identify three main elements in FMECA
(Figs. 8-10 include the main diagrams of the FMECA
metamodel):

o FmecaSysiem. A FMECA safety analysis is constructed as
a hierarchy of blocks. A FMECA system holds properties
global to the analysis (such as name and reference
identifiers of the system, or its life time) and the main
block of the system. It supports the strategy of having some
common phrases that could be reused for the description of
failure modes and effects; this choice would be very useful
if the metamodel is used to create FMECA editors. The
SeverityCategory metaclass allows the characterisation of
some categories for severities. FmecaSystem includes a
classification of severity categories to be used for blocks and
for the system itself. Fig. 8 includes FmecaSystem and its
associations.

e Block. A block represents every component that makes up
the system to be analysed. Blocks are specialised as
SystemBlock, SubsystemBlock and FunctionBlock. This
specialisation is done mainly because the same parameters
in different blocks can have different semantics. That is, a
failure rate in a block can be an input of the analysis or a
result; in the conventional bottom-up execution of
FMECA, failure rates are input in FunctionBlocks whereas

FmecaSystem

14

Lt SeverityCategory + seyerityCategories 1
- category Text -

lifetarie . Double -
- operatingTimeFactor : Double | 1

_fmecaSystem * 77(:y Phrase

o severity : Text "
o description : Memo + _fmecaSystem

2 weighting : Dauble

+ _frmecaSystem

1 + rainBlock

] SystemBlock

P@B’ fock |

+ phrase$
1
system
* | + _bhlock

Figure 8 FmecaSystem in FMECA metamodel

F O SeveryCrlticality | .

+ blockData

criticality ; Couble

R |
S + blockCriticalities ‘ ‘ ! [TalureFiate - Doubls
+ modeCriticalities | * — mitbf ; Double
G Block detectionHate © Double

7 Faiturebode z o Bég.'?tzger contribution : Double
— name . Te
; :gfeggi r;tég}t::';d o partNumber | Text
o failureMods : Memo : z?ej'em;:?:?.lﬂem () SubsystemBlock
: zi:;mﬁ' ion : Mewma @ quantily - Biginteger

ot . 4 failureModes o notes : Memo

a pecurrencelfumber : Double & blockDeseriotion - Meme
a detectionNumber : Dovble * + block . pron ; ’

. ' o functionDescription - Mermn -
o severtyNumber | Double o missionPhase - Metno S PanctionBlock
o mn - Double a : o —
o faiJ'ureDetec_tbnMet_th . Memo o g::;:-z;ﬂ;i:o#bogzgo
: ?&ﬁ??;}zggfwam - Moo = operatingTimeFactor | Double

4 - ¢ compensatingProvisions : Memo
+ offects | * * |+ causes 2 remark : Memo
+pavent| 0.1 + children

Figure 9 Block in FMECA metamodel

results in the SystemBlock. The BlockData metaclass contains
those attributes whose semantics can change whereas Block
contains all others. Fig. 9 includes Block and its associations.

o FuailureMode. Each block has failure modes, modes in
which the block could fail. These failure modes can be
primary or derived from a cause-effect relationship if the
failure occurrence depends on the failure of another block.
A safety tool allows to mark these cause-effect
dependencies at the same time as to provide a description
for the failure mode among other parameters. Primary
failure modes are represented by the class
FunctionFailureMode, whereas derived ones are usually
represented by SubsystemFailureMode. The final goal is to
trace primary failure modes affecting end-effects, which are
represented by the class SystemFailureMode. When the

criticality analysis is performed in FMECA, both blocks
and failure modes will end up with a criticality value for
each severity level concerning it. Fig. 10 includes the
description of FailureMode.

3.2 FTA metamodel

FTA [7, 6] is used during safety assessments to represent the
logical interaction of component failures and other events in a
system. It provides quantitative (probability theory is used),
and qualitative (in the way of minimal cut sets that are
combinations of events leading to a system-level failure
when happening together) information. FTA’s graphical
representation consists of a tree made up of logical gates,
such as AND & OR. Figs. 11-13 show diagrams that

include the three main modelling elements of the metamodel:

FSeveriiyCategory
L (GWodeData b modeData 1 . © category . Text
muodedipha : Dauble Hr-' _ _ FailureMode : SWEI’IU : Te_xt
failureRate : Double 1 +_falureModd © i Figinteger de*‘?':”'?""'(‘ - Mema
detectionRate - Double © reference - Text o weighting : Douhle
e faifurelMode - Memo -
+effects | o pets - Double + severity /' 4
- t functionDesceiption . Memo
o occurrencelumber | Double
o delectionNumber : Double -
,., © sevenlytlumber : Doubiz + modeCriticalities/™ {5 SeverltyCriticatlty |
© fpn Double .ﬁ' criticahty : Double
o failweDetactionMethod | Merno
+rauses | compensatingProvisions | Memo
E rermatks | Wemo
% SystemFailureMade & SubsystemFailureMode C# FunctienFailureMade

o mugsionCritical @ Boolean

-+ detectable : Boolean |

Figure 10 FailureMode in FMECA metamodel

) EtaSys‘lem l

failureRate : Double
lifetime ; Double
tathf : Double
mittr : Double

1
- syoto

o
=]
o
o

*

+ topEventyr 1
¢+ TopEvent |

-+ Evemt
e . Biginteger
* name : Text

> description : Mermo

+ source padNumber | Text
reference : Mamo
AV fen - Memo
DerivedEvent |———— = :

Figure 11 FtaSystem in FTA metamodel!

o FraSystem. A FTA system is constructed as a set of
interconnected gates. The metaclass FtaSystem holds all
the properties global to the system (such as a name and
reference IDs of the system, and life time). The first thing
to be done when starting an FTA is to define the hazard to
be analysed, which is represented with the metaclass
TopEvent, a specialisation of DerivedEvent. FtaSystem
references all the events within the system, with a special

& Importance

a fussellvVeselylmportance - Double
@ birnbaumimportance ; Double
& harlowProgchanimportance . Double

+ eventRanking
+ owner

m + gate

reference to the TopEvent. Fig. 11 includes FtaSystem
metaclass and its associations.

e Gate. A gate is a logical function of some inputs. Typical
logical functions are AND, OR and VOTE. The output of a
gate is an event derived from its inputs, represented with
DerivedEvent. The inputs are Events, either primary events
(PrimaryEvent) or the output of other gates (DerivedEvent).
Therefore we use to symbolise a gate by the combination of a
DerivedEvent and a Gate, holding most of the properties of
the former (name, identifiers and results) whereas by the
latter mainly the kind of gate. The metaclass DerivedResult
holds the data obtained from FTA calculations. The
most important results will be attached to the TopEvent, but
the calculations could output data for every DerivedEvent if
it is considered as a subtree. Other output data are related to
importance and minimal cut set analyses. Fig. 12
includes the metaclasses gate and DerivedEvent and their
relations.

o Ewent. If DerivedEvents characterise the result of a gate,
PrimaryEvents are the main events in an FTA. They
represent a primary failure of a component, an external event
or any other occurrence that could affect the global safety of
the system. Primary events have an associated failure model,
usually modelled with probability parameters. The most
typical failure model is the RateFailureModel created from a
constant failure and repair rate. BasicEvent is the metaclass to

v Event

id . Bigloteger

= name : Texd
dascription | Memo
pathumber - Text
refarence | Memo
kcn - Memo

+ sources

+

+ Dwmer) MinimalCutS

1

+ rasult

a ynavailability ;| Double

+ minimalCutSets | o failureFrequency . Doubla

+ owmer

s DerivedResult

7 VoteGate | i OrGate r AndGate

2 yote - Biglnteger

[+]

1avalality - Double
tailureFrequency : Double
conditionalf ailurelniensity © Double
o numberOfExpectedFailures : Double
@ unreliability : Double

@ totalDownTime : Double

@ totalllpTime : Double

@ meanTimeBetweenFailures : Double
¢ meanTimeToRepair : Double

¢ meanTimeToFailure : Double

Figure 12 Gate and DerivedEvent in FTA metamodel

2 failureRale : Double
@ availability : Double
@ reliability : Doubte

& uncettaintyMean : Double

@ uncettaintyStd © Double

@ uncertaintyaPercent - Double
: Dauble
: Double
: Doukble

@ uncertaintyS0Percent
& uncertainty?sPercent
@ uncertaintyPercentile

represent common primary events, such as the use of
UndevelopedEvent limited to primary event whose main
properties are not fully described. Fig. 13 includes Event and
its subclass PrimaryEvent.

4 Safety modelling framework

The safety modelling framework (SMF) includes a set of
tools (metamodels, profiles, model transformations and
evaluators of metrics) for the analysis and development of
safety-aware UML architectures. SMF has been designed
(Fig. 14) with reference to meta-object facilities (MOVF)
(MOF includes a set of foundation standards, e.g. MOF
core specification, XMI and JMI, that define a metadata
management framework; http://www.omg.org/mof) and
implemented using eclipse modelling framework (EMF)
EMEF is a framework used to define and implement
structured data models SMF includes a set of metamodels
and a UML profile to support modelling languages and
transformations based on these modelling languages.

Fig. 15 includes the SMF tool chain and coupling with
external tools. Current implementation couples SMF with
three modelling UML tools (T'A: Objecteering 5.3 and 6.0
and RSA based on UML2 eclipse plugin) and one safety
and reliability analysis tool (TB: ITEM). This tool chain
includes four main phases: (i) coupling of SMF and UML
modelling tools, (ii) transition from UML models to SAA,
(iii) transition from SAA to safety analysis models (FTA
and FMECA) and (iv) coupling with safety analysis tools.
In this tool chain there are four modelling languages
(UML, SAA, FTA and FMECA), and one UML profile
(safety profile) adapted to two UML tools. There are two
key model transformations: (i) T1: transformation from
UML + Profile to SAA and (ii) T2: transformation from

4.1 SMF interfaces

SMEF interchanges (TA, TB) models with three external tools
(Objecteering versions 5.3 and 6.0 UML2 Eclipse
plugin and RSA and ITEM). SMF reproduces the
metamodels of these tools inside EMF. Objecteering 5.3
and 6 use a metamodel-based approach to access to
Objecteering repositories and models. Objecteering 5.3
includes a tool specific language (] language) that includes
primitives to navigate over the metamodel. This tool and
language do not allow defining new metaclasses.
Objecteering 5.3 is a UML 1.4 metamodel (with some
minimal differences) and Objecteering 6 metamodel is an
evolution from 1.4 to UML 2.0 metamodel. We use three
different interchange methods:

1. SMF interchanges metadata with Objecteering 5.3. XMI
(http://www.omg.org/technology/documents/formal/xmi.htm)
is an OMG standard for exchanging metadata information
via XML. It can be used for any metadata whose meta-
model can be expressed in MOF. The most common use
of XMI is as an interchange format for UML models,
although it can also be used for serialisation of models of
other languages (metamodels). We have rebuilt
Objecteering 5.3 and 6.0 metamodels in EMF, and EMF
generators provide the Java API and XMI persistency. We
have developed a module in language J in Objecteering 5.3
for importation/exportation of this type of XMI files. The
interchange format is XMI files, and SMF and
Objecteering 5.3 are executed in two independent
processes. It is TA in Fig. 15 for Objecteering 5.3.

2. Objecteering 6.0 includes language J and a Java API. We
use this API to access Obijecteering repositories. The
implementation is written in Java and uses EMF
metamodel reflection to download Objecteering models in

SAA to FTA and FMECA. EMF repositories. This reflection combines EMF
Ry v | oo der 0) [O FixatF ANUTaMG dol
o Brglnteger @ Rarme | Tex unavailabilitylean . Dauble
namme . Test o dagonption Merno unavailability 310 © Double
dascrphon | Memo @ calculstedUnavadabily - Dowbda unavailabilityDistrbubion : Text
parthiumber ! Tes o calculstedFailureFraguancy | Doubie unavailabiiityinlerprelation © Tewl
reference : Mero failureFrequencyiesn : Double
fon ;Mo &8 failureFrequencySI0 - Double
failuraF requancyDistabutean : Taxt
o failurg Frequencylrtemretation . Tex
X]
S
+ ecfode] MsﬂFailumMnﬂel © RatsFallusModel
I " faitureRoteean : Double
—— e 2 failureRateStD - Doubla
- (' mporiaiice” R 4 failureRateistribulion @ Text

@ fussellveselylmportance : Double 1 Wmﬂﬂw
= e

bimbaurmlrmporance . Double
< barlewProschanimportsnce Couble
|-

G MinimatCarSer
s ynawailability | Double
o failureFrequency : Double

& UnitevelopedBvent

+&V9,L_|
o

< failureRatelnterpretation : Text
2 mgpairRatebaan | Double

@ reparRateStD Double

a repairfRateDistrbution : Texl

2 _repairRatelnterpretation Text

Figure 13 Event and PrimaryEvent in FTA metamodel

http://www.omg.org/mof
http://www.omg.org/technology/documents/formal/xmi.htm

EMOF{EMF

FFA/FMECA

Execution

Figure 14 Support of safety modelling languages and
transformations

SMF/EME /Eclipse

Figure 15 Safety modelling framework tool chain

reflection facilities (EMF provides dynamically the attributes
and relations of metaclasses) and Java reflection for the Java
APIL SMF includes EMF notifiers for all Objecteering 6.0
EMF metaclasses, which automatically updates
Objecteering repositories whenever any modification 1is
detected in EMF repositories. These notifiers are
implemented based on reflection facilities. It is TA in
Fig. 15 for Objecteering 6. With UML2.0, we use the
same approach, reusing UML2 plugin Java libraries. This is
TA in Fig. 15 for UML2.

3. We access ITEM repositories in a Jet database via an
Object/relational mapping framework. This framework
provides facilities to access ITEM databases, and we reuse
it as a Java library in SMF. This is TB in Fig. 15 for ITEM.

The design of model transformations depends on source
and target modelling languages. We developed the
transformations using a metamodel fagade pattern. The
transformation includes references to the metamodel
accessors methods (set and get Java methods), and this
makes the transformation dependent on the UML
metamodel. Currently in SMF, we support three kinds of
models as input (Objecteering 5.3, Objecteering 6.0 and
UML2), with important differences. We have created a
neutral UML metamodel, which presents any UML
metamodel. This metamodel is based on UML2 but it only
includes the modelling elements handled in SAA

transformations and profiles (Neutral UML includes 35
metaclasses, and the merged version of UML2 metamodel
includes 227 metaclasses). In this approach, transformation
only includes references to Neutral UML accessors and
Neutral UML handles the specific references to UML
accessors. At run-time, a Neutral UML model references a
concrete UML model (Objecteering 5.3, 6.0 or UML2).
Any model element in Neutral UML includes a reference
to a concrete element in the concrete model.

4.2 Safety modelling language
repositories

Safety modelling languages are SAA, FMECA and FTA.
For each modelling, language repository facilities were
created to handle models that use those languages.

SAA is an abstract modelling language (there is no
concrete syntax implementation of this language) used to
describe SAAs based on methods included in Eurocontrol
guidelines. The SAA metamodel defines a modelling
language based on the abstractions and conceptual model
introduced in Section 2.2. We could create a concrete
syntax to represent these models, but currently we represent
these concepts with UML modelling elements annotated
with safety extensions. We use SAA models to compute
metrics and to reduce the complexity of analysis model
generation.

FMECA and FTA are languages to express such safety
analyses. The languages are well understood, but to our
knowledge there is no attempt to formalise them in a
model-driven environment. These languages are currently
used for implementing transformations, being the target
and enabling to create safety analyses in a tool-independent
way, neither did we create an associate concrete syntax. In
its place, models are exported (TB) to the preferred safety
tool, which indeed contains a concrete syntax for these
languages.

4.3 Model transformations

Fig. 15 includes the transformation T1. This is a
transformation from UML + profile to SAA. The safety
profile was designed based on the SAA metamodel and the
conceptual model and, thus, there is a direct
correspondence between UML + profile elements and SAA
modelling elements. This transformation is tedious but
rather straightforward.

Transformation T2 represents the generation of safety
analysis models taking SAA models as input. Although we
have implemented this transformation in Java, we designed
it using a set of rules to represent the transformation. Each
transformation rule is designed with two collaborations: (i)
query collaboration, which is the query on SAA models for
the execution of the rule and (ii) construction collaboration,
which represents the new instances created in FTA and

appliedln

sal 1:Safet

saComp: SafeAwareComponent
nitions Apphed MM Lﬂmﬂus
i N

daEvConpl DeavadEvent
Ale=CR,
name=sCompl name
] reference=soComp] reference \;;;;““ derEx*dmaB DerivedE vent
derbaduimad DrerivedEvegt description=nComp| memo ==
pte=AND
pte=AND]
HNERCY .
rebimad Pri vent 1A P Event P Event 2vhimaB Pri Ervent evComnp 1B Pri veat
game=mnmd] name + mad2.nzme| |peme=Erer+ Tin” + Compl.name| |osme=Comuption + ™" + Compl nsme| (nsme=mmd! nyme + mmdl name| |oame=Loss + "1™ + Comp] neme
e e e fe Compl refermnce reference=sCompl reference reference=nmna. reference reference=nCompl reference
description=roma memo description=saConp? memo description=saCompl mema description=mma memo description=aComp? mama
fuitursModet=Fate faiturzhiodet=Rate faifureModei=Rate faituredodst=Rate GilereModet=Rate
faitureR iskReduction?| |faitureRatemsaComip] Swal3 feluRatemsarCompl. Swali3 faitureR iskReduction2| |EhmeRatemssConipl Swald

Figure 16 FMECA: query collaboration on the top and construction collaboration at the bottom

FMECA models during the rule execution. Further details of
T2 will be given in the next section.

5 Safety analysis model
generation

In this section, we introduce our general solutions for the
construction of safety analysis models based on
development architectures. Our approach identifies safety
characteristics of the system and associates them with
system elements that will be used later to generate the
safety analyses. For this reason, it is essential that all safety
characteristics and links to be used in the safety analysis are
identified and formalised. The UML extensions for safety
realise this condition for our safety analysis purposes. Safety
analysts should learn how to include safety parameters into
the architecture; that is, they should know how to use the
UML extensions. In contrast, they do not need to know
the details of the safety analysis languages. The creation of
safety analyses models from safety annotations in UML is a
transformation where we convert development models into
safety analysis models. The following subsections will
describe how this transformation converts UML entities
(system elements and safety annotations) into safety analysis
model entities (FMECA blocks, failure modes and FTA
events and gates).

5.1 Safety analysis automation

As there are numerous safety analysis methods, there are also
different ways to perform FMECA or FTA according to
particular objectives. This variety found in safety analyses
contrasts with analyses in other fields such as real-time
systems, where the objective is unambiguous (makes the
system schedulable) and the application of the analysis is
implicit in the analysis (no different ways to perform the

analysis). The aim that is,
pursued by applying FMECA and FTA to software
architectures, is framed in the general process of PSSA of
Eurocontrol: to evaluate how an architecture can cause
some hazards to occur, to estimate whether the architecture
can fulfil the safety objectives of the system, to allocate
SWALSs to software components for making it possible to
accomplish these objectives and to discern mitigation
means to prevent hazards from occurring. It is important to
note that some safety analyses are subject to automation: (i)
Those that extensively use information stored in a way that
allows its processing (for those an MDA approach
facilitates this processing, obviously, by requiring that safety
characteristics are recorded using a modelling language), (ii)
Those from which we learn more from the results of the
analysis (an organised table, a graph or some meaningful
ciphers) than from the process.

In an evolutionary process, like the PSSA and Eurocontrol
approaches, automation is of great importance, with safety
analyses growing at the same time as software models,
reflecting the progress of the design. Nevertheless, some
potential issues may arise as a consequence of the way humans
interact with automation. For instance, actions must be taken
so that safety analysts understand what the automation is
doing and why. The best approach is for them to collaborate
in the automation process, which also helps to prevent them
from disliking or not relying on the automation process.
There is also the danger that analysts will abuse automation
by losing awareness of the process and becoming less
conscious of errors. Therefore even though automation may
avoid tedious analyses, it should be applied with caution.

Safety engineers create safety analysis models instead of
safety models not bound to a specific analysis. They do not
model hazards, failure modes and safety relationships, but

rather FTA, FMECA, ETA or Markov; thus, their models
must be reworked to perform any other type of safety
analysis, however similar. On the other hand, safety models
could enable to create different safety analyses. The creation
of safety analysis models from safety annotations in UML
is a model transformation in which we convert
development models into safety analysis models. To
formalise FT'A and FMECA languages, we designed the
corresponding metamodels. They intend to be agnostic to
any specific implementation of these types of analyses in a
safety tool.

5.2 FMECA model creation

FMECA model generation is derived from the model of
software components. Each FMECA component
corresponds to a software component. The following
attributes are common to all components:

o Failure mode. Each component can have an associated set
of failure modes.

o Failure vate for each failure mode. This is the failure rate for
cases where the component does not use any mitigation
means.

® Hagzards associated for each failure mode. These are the final
effects on the operational environment.

o Severity level for each failure mode. This is the worst
possible consequence that could result from each
component failure mode.

Safety-aware capabilities and safety-aware components
from architecture models shape the structure of an
FMECA model by constituting FMECA blocks. A
function block can only represent a bottom-level
safety-aware component (one which does not depend on
any other). Conversely, a top-level safety-aware capability
(one with at least one safety objective associated directly)
is represented by a top-level subsystem block. The only
way to include a mitigation mean in an FMECA
model is in unison with the safety-aware component it
affects.

A safety objective is an invariant that the system must fulfil,
so that when it is not fulfilled we identify a failure mode of
the system (the system block). Failure modes of safety-
aware components are hard to identify. In a preliminary
safety assessment, we use common keywords like
corruption, loss and error; other schemes are valid though.

In FMECA, the dependency between blocks is like a
parent-child relationship whereas the dependency between
failure modes is a cause-effect relationship (limited from a
child to its parent). In software models, safety-aware
elements are interrelated by means of safety dependencies
that we use to create the hierarchy of the analysis model.

This proposal makes it necessary to replicate FMECA
model elements in some cases; for instance, when a
safety-aware component affects two safety-aware
capabilities, we create two subsystem blocks for the safety-
aware capability.

5.2.1 FMECA transformation rules: The following
rules represent how the FMECA models are constructed.

1. The general rules for the generation of FMECA models

are:

2. Only one FmecaSystem is created with its corresponding
SystemBlock.

3. SafetyAwareCapability not affecting any other with
SafetyDependency = A SubsystemBlock is created for
the SafetyAwareCapability ~whose parent is the
SystemBlock. A SystemFailureMode in the SystemBlock is
created for each SafetyObjective that affects the
SafetyAwareCapability.

4. SafetyAwareCapability affecting another SafetyAware
Capability with a SafetyDependency = A Subsystem
Block is created for the former, the latter being the parent.

5. SafetyAwareComponent affecting a SafetyAwareCapability
with a SafetyDependency = A SubsystemBlock is created for
the former, the latter being the parent.

6. SafetyAwareComponent affecting another SafetyAware
Component with a SafetyDependency and affected by
others = A SubsystemBlock is created for the former, the
latter being the parent.

7. SafetyAwareComponent affecting another SafetyAware
Component with a SafetyDependency and not affected by
any other = A FunctionBlock is created for the former,
the latter being the parent. A FunctionFailureMode is
created for each foreseen failure mode (3 in the current
scheme: Error, Loss and Corruption).

8. In the tree FmecaSystem, all the FailureModes of a child
affect the FailureModes of the parent. If the parent has no
FailureMode, one is created for it.

9. SWAL of the SafetyAwareComponent in combination
with the RiskReduction of the MitigationMeanApplication
= They are equally apportioned among failure modes.

10. Criticality of the SafetyObjective = It is assigned as the

severity of the SystemFailureMode that represents the
SafetyObjective.

Fig. 16 depicts an example including rules 3 and 7.

5.3 FTA model creation

FTA models should start by defining a hazard. As mentioned
for FMECA, the non-fulfilment of a safety objective
constitutes a hazard. Consequently, it seems reasonable that a
different FTA model has to be created for each safety
objective in the system and, thus, we will end up with several
FTA models for only one system. In FTA, it can be
reasonable to create an FT'A model from a lower-level hazard
although this is not supported by our FT'A model generation.

Primary events will represent the failure of a bottom-level
safety-aware component. The other important element in
FTA, gates, will represent the failure of a higher-level
safety-aware component or capability. Because of the lack
of information about safety dependencies, we must suppose
the worst case and use the OR gate; a gate will produce
true data if one of the components supporting it fails.

Mitigation means impede failure propagation in a degree
according to risk reduction, so that they are represented as
AND gates. Only some failure modes of the component will
be mitigated, those declared in the mitigation mean definition.

5.3.1 FTA transformation rules: The following rules
represent how the FTA models are constructed.

1. SafetyObjective = An FtaSystem is created for each
SafetyObjective. The TopEvent of the system is also
created, holding an OrGate.

2. SafetyAwareCapability attached to a SafetyObjective =
For the former, a DerivedEvent holding an OrGate is
created. The output of this DerivedEvent is connected to
the TopEvent.

3. SafetyAwareCapability affecting another SafetyAware
Capability with a SafetyDependency = For the former, a
DerivedEvent holding an OrGate is created. The output of
the created DerivedEvent is connected as a source of the
DerivedEvent of the latter.

4. SafetyAwareCapability affecting other SafetyAware
Capability with a SafetyDependency = For the former, a
DerivedEvent holding an OrGate is created. The output of
the created DerivedEvent is connected as a source of the
DerivedEvent of the latter.

5. SafetyAwareComponent affecting another SafetyAware
Component with a SafetyDependency = For the former,
a DerivedEvent holding an OrGate is created. The output
of the created DerivedEvent is connected as a source of the
DerivedEvent of the latter.

6. SafetyAwareComponent with no MitigationMean
Applications = A PrimaryEvent is created for each
foreseen failure mode (3 in the current scheme: Error, Loss

and Corruption). The PrimaryEvents are connected as a
source of the DerivedEvent representing the component.

7. SafetyAwareComponent with a MitigationMean
Application but at least one of the MitigationMeanDefinitions
of the MitigationMeanApplications is not implemented by the
SafetyAwareComponent = as 6.

8. SafetyAwareComponent with MitigationMeanApplication
and all the MitigationMeanDefinition’s are implemented by
the SafetyAwareComponent =

a. For each foreseen failure mode not mitigated, a PrimaryEvent
is created and connected to the DerivedEvent representing the
component.

b. For each mitigated failure mode, a DerivedEvent holding an
AndGate is created, the output of which is connected to the
DerivedEvent representing the Component. Two
PrimaryEvents are created and connected to it: one for the
mitigated FailureMode and one representing the effects of the
MitigationMeanApplication.

9. SWAL of the SafetyAwareComponent = The SWAL,
previously converted to likelihood, is equally apportioned
among the failure modes.

10. RiskReduction of the MitigationMeanApplication
= It is equally apportioned among the mitigated failure
modes.

Fig. 17 depicts an example including the rule 8 (also 9
and 10).

o

=2{rixTiependency
aCap 3. Safe AveareCapability

BieCap SubsystemBlock ssfmCap2-SubsystemFaitwehdode

;

oame=saCapl oame name="Fahire mods in"+saCapl name

reference=saCapl reference reference=saCapl reference

deseniphionmsaCap? name descnpticn=saCap?. memo

eftect

3 SubsystemBlock Xt

zitureMode

;

namwe=szCap3 name

referepce=saCap3 reference
descriptinn=saCap3.name

name="Failure mods in"+52Cap3 name
reference=saCap3 reference
description=saCap3 mema

Figure 17 FTA: query collaboration on the top and
construction collaboration at the bottom

5.4 Inputs and results

The automation of analysis model construction takes as input
UML development architectures annotated with safety
extensions and provides tables (FMECA), trees (FMECA,
FTA) and diagrams (FTA) depicting the models. Safety
analysts can now inspect them to see how the safety-critical
elements of the architecture work together. FMECA

Use case diagram: safe-aware capabibty and safety objectnre

<cafe anareCapabiling=> ™y
Consult SFPL

‘emb : ...l.'eCap:biliw - Ej

=
_ L. PR Conte-Aspects Functionak-fpply Sratege
- cf.CPR Conted Aspects Functional Apply Tactical
[dlﬂPR-Cmm-Aq)m-cht'iond:Md 20 Ao |
4 3

DependeriComponents |0.7]:

|- DepandentGompenerts. i|
ofl CPR-Prymcal CORLM PS
f:CPR.Phyucal FOPS:PS_CS
AI:CPR Phy=ical FOIPS FROMTEN]_CS
- dICPR Prymzal FCPSDAD

| msﬂuw =

raean defirition and mity

SAA model

Statie diagram: safe-aware corponent, mubgat

r@, Edit Safa-awareComponent «W .
SWAL ic:
I3 Fopie: -
: Size Timi :'
za Timing
f e LI Indizhzation Stop
Number of inslances. <<BafeawenCompynents> Ingrut Aot Control
[2 - FDM [ita Managament LI
InplamartadbitigationMasm. T Failure Coninol.
E implementsdMiigalion Meana MOMA MM <D LApphed> =i Failrs Corirol
- GRCPR-Physical FOPS-MMDefis MM_FFD_M1 {Prictity Of Application = ¢
. G 1] Appiisd in Faihurs Xods ® Correption Propagebon
ol PR Physical FDP'S. MM Defts. MM_EFT)_08 Demm'cﬂm:flww:mﬁ;\mm:m{_l Detect ';‘n"
ol CP R Physical FDPS- MM Deffs MM_EFD_0% Reduction of Risk = (.75 Miigati
ICER: Pryzcal FOPS:MMDefis MM_EFD_11 i st Lev
DependentComponents [0 — -
- DegenderiComponents - i~ Applcaton Level
PR Physical- CORLMPS j <<ulitipauond feanDefinition>> Undetectec
AR Fhysical FOPS F5_CS E:C"::““
AICF Phesical FOPS FRONTEND_CS Sedtem
R CPF Prysical: FOPS:DAY i
CRCPR Physical-FOPSPRE =l Hardarn
Ok Carcel | oK Careel

Figure 18 UML models annotated with the safety profile and SAA model backing them

a Use case diagram: safe-aware capability and safety objective

b Static diagram: safe-aware component, mitigation mean definition and mitigation mean applied

¢ SAA model

can indicate the severity of function failure modes by
only setting the severity of system failure modes (this
setting is already implemented in the automatic
transformation). FT'A can provide us the list of minimal
cut sets, that is, the combinations of bottom-level
failures leading to a hazard when happening together;
we should pay attention to combinations with only one
element.

One of our final aspirations with the safety analyses is to
allocate SWAL to safety-aware components. Allocating a
SWAL to a component does not imply calculating a failure
rate for software, and hence SWALs cannot be used in the
safety assessment process as can hardware failure rates. In the
case of model-driven engineering with hardware, we could
map component hardware assurance level to failure rates in

safety analysis models, and the safety tool could provide
quantity results.

The methodology provided by Eurocontrol

strictly forbids allocating a failure rate to the
software and we have to assume that the software fails.
Allocation of SWALs is accomplished by looking at the
overall system design in its operational environment.
Therefore it is essential to keep the link between the safety-
aware component to the end-effect and its maximum
tolerable frequency of occurrence. Our work provides the link
between a safety-aware component and the hazard but not to
the end-effect, although it can be easily obtained from other
documents. We have worked on safety analysis creation to
provide quantity results by automating some hand-made
processes ; these values can be used to derive SWALs.

6 Example and validation
6.1 Example

This section provides a comprehensive example including the
whole process proposed in the paper. The process is rather
complicated and the best way to become familiar with it is
by means of a simple but comprehensive example model.
The model does not contain a complex component-based
architecture but a single software component. Another
software component is included into the model to represent
the mitigation mean application. This insertion would
improve the safety of the system by reducing the occurrence
probability of a component failure. In this example we have
a capability, ‘consult system flight plan (SFPLY, by which
an air traffic controller (ATC) requests information about a
flight plan. This capability needs to fulfil a safety objective,
‘SO_1: The probability of detected and undetected
corruption for greater than 5 min shall be no greater than
10-5 per hour. The capability is hypothetically supported
by a single component, flight data management (FDM).
To achieve the safety goal, safety engineers have allocated a
mitigation mean to this component MM_1: Processing
servers are replicated on different nodes’.

Fig. 184 illustrates how, with the help of the safety profile,
the constraint SO_1 is linked to the capability consult SFPL
expressed as a use case. This relation is articulated within a
use case diagram, and using the stereotypes SafetyObjective
and SafetyAwareCapability. An ad-hoc editor enables us to
make the component FDM dependent on the capability.
Fig. 184 shows the safety-aware component, which has
applied a mitigation mean. Within a static diagram we

FTA model

50 1 TopFvent

s

Coneule SFPLDerivadFyvent

represent the component as a package annotated with a
stereotype SafetyAwareComponent. A constraint with
stereotype MM Applied indicates the application of MM_1,
which the component properly implements (as shown in
the ad-hoc editor on the left). Another editor (on the right)
enables the definition of the mitigation mean. Finally 18¢
shows the safety-aware model that backs the previous
models and editors’ data.

So far, safety engineers need to collect information from
several documents, meetings and know-how to build the
analyses. SAA models collect the information likely to be
used during the analyses construction, so that safety staff
could build the analyses based on it. SAA models
constitute the input of the transformation T2.
Transformation T2 currently automates our proposal for
the construction of FMECA and FTA. It basically consists
in arranging the data included in SAA models to bring up
safety analyses. The transformation creates in essence a
graph of nodes from another one. The last step of the
process would be the assessment of the analyses by safety
staff, as soon as they import the analyses in their preferred
safety (and graphical) tool.

Fig. 19a shows the output of the transformation for a FTA
(note that not all model elements are included for simplicity,
e.g. FtaSystem). This analysis will assess the safety objective
SO_1, which is transformed into a TopEvent. ‘Consult
SFPL and ‘FDM’ are mapped into DerivedEvent resulted
from OR gates, whereas ‘Error’ and ‘Loss’ failure modes of
FDM into BasicEvents. Since the failure mode
‘Corruption” has been mitigated, an AND gate is used to

FTA graph in Ttem Toolkit

pate=OF.
FDM DerivedEvent
gate=0OR
source souve
DM BasicEvent 3 1DEv-DerivedFvent
name=FError souree lgalFAND
FDM\dh BasicEvent
nzme=L.o3s sowpe | oWITE
FDMc-BasicEvent i
M1 BavicFvent
name={omrup

a

Figure 19 Fault tree model and representation within item toolkit

create a reduction of the failure mode’s probability. This
means that the corruption of FDM will only show up at
the system level when both the failure mode occurs and the
mitigation mean does not impede its propagation. When
the output model is imported in the safety tool with the
provided support, safety engineers can assess the FTA
within the tool (Fig. 194)).

Fig. 20 is the equivalent of Fig. 19 for FMECA. Side
Fig. 204 shows the output of the transformation for a failure
mode, effect and criticality analysis (as with FTA, note that
not all model elements are included, e.g. FmecaSystem).
This analysis assesses the system as a whole, as one can
realise when the SystemBlock is ‘atm’. ‘Consult SFPL’ is a
SubsystemBlock and ‘FDM’ is translated into a
FunctionBlock. The not-fulfilment of the only safety
objective, ‘SO_1’, constitutes the only SystemFailureMode.
Three FunctionFailureModes can be found: ‘Loss,
‘Corruption’ and ‘Error’. The failure mode at system-level is
also called ‘end-effect, and learning what are the failure
modes at a low level which can cause its occurrence is one
the main purposes of FMECA. This is shown in the table of
Fig. 204, which can be obtained with the safety tool ITEM).

6.2 Validation and discussion

That was a simple example with a few elements and, thus,
one could easily create manually the FT'A within the safety
tool. We applied SMF to the evaluation of a subsytem in a
real project: EUROCAT. This is a flight plan management
system that improves current implementations of flight plan
systems. Thales-ATM is currently developing the system.

The system baseline has more than three million lines of
code and we cooperated on the early safety evaluations of
one subsystem. This subsystem is modelled in Objecteering
5.3 and the size of the XMI model is 13 MB (the size of
the UML2 merged metamodel is 1.3 MB, so the size of
this subsystem model is around ten times the size of the
UML2 metamodel). EUROCAT project represents a good
scalability study for SMF. The performance bottle neck is
in the generation and load of XMI files. Section 4.1
includes alternative solutions for Objecteering 6 that we
have evaluated with this model, and the performance
problems are solved using Java API. Thales-ATM uses
version 5.3 because most tools, generators and other
modules are not yet available in version 6.

The size of the EUROCAT subsystem allowed us to
validate our proposal focusing on the analysis generation
scalability. For this subsystem, we updated the architecture
model with safety annotations based on FHA results of this
project. According to these results we created safety
objectives and we defined some mitigation means. The
safety annotations were done with the UML profile and
some graphical user interface wizards that made the
application of UML extensions more user-friendly and
secure. Profile and SAA metamodel provided good support
for the integration of safety annotations in the architecture.
In the end, we end up with a model with 21 safety-aware
capabilities, 19 safety-aware components, five mitigation
mean definitions and nine mitigation mean applications.

The model contained enough elements to validate the
generation of safety analysis and those analyses fit the needs

FMECA model
atm Sy stemBlock 30 L FunchonFaibrehdode
| children
Consult SFPL SubsysternFailurediode S0 _1_Consult SFPL SubsysternFalureliods
modes
| children
FDM-FunctionBlock Loss:FunctionFaiturehode
modes
Cormuption FunetionF silnralviode
modes
ErrorFunctionF aiture’oda
maodes
a
FMECA result table
End Effects
Mode-Ref. ID | End Effect | Severity ID | Severity Description | Detectabie ID| Detectable ,
iSO_1 FOM.1 Loss
1 cfi.0 :Major severe - Large Reduction in Safety Margins:FOM.2 Corruption
.FDM_3 Emor |

Figure 20 FMECA model and result table in item toolkit

b

they were designed for. The creation of the analyses without
automation support would have required hard work. The
stage of development implied changes in the architecture
that had to be tracked by safety engineers and incorporated
into safety analyses. What is more, the inherent evolutionary
property of PSSA, to reach the combination of mitigation
means that make it possible to meet safety requirements,
added new changes to be tracked. In our approach, change
is welcomed because reworking the analyses tracking
changes is done automatically. Our approach scaled with the
bottleneck previously mentioned. Generating the analyses
took about 2 h caused by exporting the models using the
Objecteering 5.3 programming support. Removing this
step, the generation took less than 5 min.

Safety engineers could evaluate the generated analyses.
However, we acknowledge that it is critical that analysis
model generation needs to be adapted to safety engineers’
particularities. They need to perform analyses to assess the
architectures following a particular assessment methodology
but also following their viewpoints (Section 5.1 coped with
this concern). Work is needed in the SAA language to
accept safety properties from different methodologies and
analysis methods. A particular configuration in the analysis
model generation may not fit the needs of every project and
safety analysts. Safety engineers need to see the real benefits
of the automated generation to cooperate in the election of
the configuration. In the validation project, the easiness to
create the analyses facilitated comparing alternative software
architectures in search of optimality: safety feasibility,
software requirement fulfilment, cost reduction and
parameters.

Our work implied clear advantages: (i) engage safety
engineers in the architecture design from the beginning
benefiting the safety quality and cost of the project, (ii)
safety information was stored in a way that can be
processed not only for safety analysis generation, (iii) data
consistency management where changes in the architecture
design are translated into safety analyses, and safety
properties are only annotated in architecture designs and
(iv) analysis automation. The potential for the automatic
generation of safety analyses becomes apparent when the
system model grows or/and when there is a real benefit to
maintain consistency between system models and safety
analyses.

7 Related work

We will now introduce some related work about the support
of safety in MDD. Some related work focuses on the
automatic generation of code for safety critical systems like

which use MDA for developing the software for the
F-16 modular mission computer application software. In
this experiment, they focused mainly on the automatic
generation of software and on system portability across
platforms. This reference is neither meant to represent
safety concepts, nor possible safety assurance levels.

Software fault-tree analysis (SFTA) is an example of the
adaptation of FTA to software systems. Most SFTA research
efforts have been directed towards requirements or code.
Components and software architectures require different
levels of abstraction. Towhidnejad ez propose some
ideas for the application of FTA in software design. In this
approach, FTA is part of the analysis of software designs.

Pai and Dugan propose some UML extension for the
description of hardware and software redundancy, reliability
dependencies and reconfigurations as well as, the
transformation of UML models into FT'A models. These
notations are useful for the analysis of systems that mitigate
risk with redundancy methods. However, they do not
consider other methods such as checklists. The extensions
are used to annotate deployment modelling elements, but
they do not annotate architectural modelling elements such
as interfaces or component behaviour description.

Other alternative analysis methods include the evaluation
of contracts between components. The assembly and
coupling of components developed by third parties create
risks because of the incompatibility of the security and
reliability characteristics of components. Some experimental
methods are used for the specification of security attributes
and for the evaluation of contracts

Avionics architecture description language (AADL [20])
is a good example of a modelling language that integrates
reliability and safety analysis methods. The components can
be equipped with reliability models, which are Markov
chains that relate fault events and error states. The system
description must describe how errors propagate among
components. A reliability analysis tool combines the
reliability models of individual components into a global
Markov chain, and uses a separate tool (in this case the
SURE/PAVE/PAWS tool from NASA Langley) or the
Markov chain analysis. In safety analysis, each process has
its own address space in an implementation. Safety levels
and memory allocation properties can be declared for
components. The Metall tool partitioning analyser can
partially verify that no error in a component with a lower
safety level can propagate to a process with a higher safety
level. Currently some efforts have been initiated to integrate
AADL in modelling standards (UML 2.0 profile).

includes some UML extensions for the description of
hazards and their relation to risks. The risk assessment
subprofile of standard uses the new extensions and
UML modelling elements in the description of models of
hazards and risks. In this paper, we propose a solution that
is, integrated with UML modelling elements, but we assume
component-based software architectures, PSSA methods and
FTA and FMECA analysis methods. The concepts
described in this paper are specific to safety critical systems,
and specially integrated with development architectures.
They can be supported by quality of service (QoS) profile

or could be adapted as an improvement to a risk
assessment subprofile.

They take the same choice of developing
a UML profile, in this case for developing safety-critical
systems compliant with RTCA DO-178B. This is indeed
an extensive effort to create a profile, which could be used to
automatically generate information that could even be
submitted to certification authorities, for example,
contributions to failure conditions and software requirement
traceability. They use rules to extract this information from
models. They do not seem to use the profile to generate
analysis models, but certainly it could replace ours in our
approach within an RTCA DO-178B environment.

We came across a recent research work on determining
critical components and connectors using risk factors
(considering complexity and severity levels) These risk
factors are used to determine fault proneness among
components, and hence they pay more attention to the
components while coding and testing them.

An example of a problem identified by the Eurocontrol
method is the execution of PSSA, and when the architecture
is not completely defined it can lead to several problems; for
instance, the architecture can be over-engineered to deal
with uncertainty in the design [24]. The process we propose
to perform PSSA can be considered as a lightweight PSSA
as well. Nevertheless, our approach is based on the
annotation of software architectures specified in UML and
on the automatic generation of safety analyses, whereas their
work focuses only on safety issues. Some other work in
York enumerates several issues that arise when
conducting PSSA, some of which we want to highlight as
we think our proposal can contribute to this discussion. The
first issue is to track changes in the design updating the
assessment. This is how PSSA can motivate design decisions
but tracking every change can cause the project to overrun
budgets. A lightweight method of doing PSSA that
becomes more rigorous as the design matures would be the
best option, and an automatic lightweight method, as we
propose, would be much better. The second issue deals with
who owns the design and leads the design specification.
Working on the same models must help safety and software
engineers can cooperate as their communication is based on
common foundations; when software engineers change the
architecture, safety engineers can evaluate it immediately,
and when safety engineers discover a way to create a safer
version of the architecture, they can pass on the changes to
software engineers. Qur vision facilitates the creation of
integrated project teams even though some difficulties
involving cultural change might still need to be resolved.
The third issue is to identify the failure modes of incomplete
designs that have not yet been implemented. We are
evaluating how to add support for the failure mode
description in order to incorporate failure modes in

architecture models, when identified; the automatic process
would use these descriptions, adding them to the analysis
results. The fourth issue concerns how to cope with the
modification and evolution of the system, for which our
approach offers some guidance.

8 Conclusions

MDD solutions provide support to improve the integration of
software development and safety analysis. MDD
infrastructures (e.g. meta object faciliies and UML
extensions) provide facilities to hold this integration.
However, some improvements are needed; these
improvements include the invocation of services in other tools
and solutions to interchange modelling tool components that
adapt model-driven facilities to domains and technologies.
Safety analysis tools do not provide APIs for evaluating safety
models from other modelling tools; modelling tools should
provide API for the invocation of services from other tools,
and the exportation of these modelling tool services should be
defined with standard methods, currently not available.
Current generation of UML modelling tools (e.g. RSA and
Objecteering 6) need improvements to integrate basic MDD
tools, such as metamodels, profiles, transformations, well-
formedness rules, and JMI-based (Java Metadata Interface,
based on MOF, defines a dynamic, platform-neutral
infrastructure that enables the creation, storage, access,
discovery, and exchange of metadata; http://jep.org/
about]Java/communityprocess/final /jsr040/index.html) code
with a common asset. In SMF we have done important
efforts to integrate these different types of tools.

Compared with hardware, software safety issues have
received limited attention, since it is a fact that software has
caused few safety problems. However, as software is
increasingly becoming part of system functioning, gaining
assurance for software is very important. The earlier this
assurance is gained, the greater benefits we will be able to
obtain. In this paper, we have presented a framework for
conducting a preliminary assessment of the safety of a
software system. Safety and software engineers can work
together to arrive at a complete definition of software
architecture with the tool support outlined in this paper.
Part of this support is simply a specific implementation
with room for different adaptations. For instance, safety
engineers and certification authorities require their own
type of analysis, by this we mean not only whether it is
FMECA or FTA, but also how the analyses are
implemented. Companies usually have a favoured safety
tool to which our implementation could be tailored.
Although the process we propose is largely tailored to
Eurocontrol PSSA, we believe it can be applied fairly
generally to the task of evaluating high-level models.
Finally, work is also necessary because there is no common
understanding of how to deal with software safety. After
integrating our approach in a real development of air
navigation systems, we corroborate some of the added
value. The main benefits to safety and software engineers

http://jcp.org/

working on the same models include the immediate
availability of traceability between safety concepts and
software elements, consistency in software architecture and
safety information throughout process. Another
achievement of our work is to automate the generation of
safety analyses, which has already been discussed. In
evolutionary processes like PSSA, this is a bonus in that it
helps avoid the need to perform the analyses manually
again and again. We consider that the separation of safety
and safety analysis modelling is a must. Certain safety
analyses can be considered as different arrangements of
elements from a well known safety vocabulary such as
hazard, fault, failure and failure propagation. Modelling
and characterising safety vocabulary enable the derivation of
a safety analysis from safety models. The UML profile
proposed here could be extended in this way.

9 References

European organization for the safety of air navigation:
‘Air navigation systems safety assessment methodology’,
Eurocontrol, April 2005

Modelware web page, available at: http://www.
modelware-ist.org/

BRIONES J.F., DE MIGUEL M., SILVA 1.P,, ALONSO A.: ‘Integration of
safety analysis and software development methods’. Proc.
1st Int. Conf. System Safety, IEE, June 2006

BRIONES J.F., DE MIGUEL M., SILVA I.P, ALONSO A.: ‘Application of
safety analyses in model driven development’. Proc. 5th
IFIP Workshop on Software Technologies for Future
Embedded & Ubiquitous Systems, LNCS, May 2007

REIBMAN AL, VEERARAGHAVAN M.: ‘Reliability modeling: an
overview for system designers’, IEEE Comput., 1991, 24,
(4), pp. 49-57

LEVENSON N.: ‘Safeware: system safety and computers’
(Addison Wesley, 1995)

NUREG-0492 : ‘Fault tree handbook’ (Nuclear Regulatory
Commision, US, 1981)

DUNN w.: ‘Designing safety-critical computer systems’,
IEEE Comput., 2003, 36, (11), pp. 40—46

FROLAF, MILLER C.: ‘System safety in aircraft acquisitions’.
Technical report, Logistics, Management Institute,
Washington, DC, 1984

Object Management Group: UML profile for modeling
quality of service and fault tolerance characteristics and
mechanisms final task force, OMG document number
ptc/2005-05-02, available at: http://www.omg.org/cgi-
bin/;doc?ptc/2005-05-02

Military standard: ‘Procedures for performing a
failure mode, effects and criticality analysis’, 1980,
MIL-STD-1629A

BUDINSKY F., STEINBERG D., MERKS E., ELLERSICK R., GROSE T.J.:
‘Eclipse modeling framework’ (Addison-Wesley
Professional, 2003), ISBN 0131425420

Objecteering web page, available at: http://www.
objecteering.com/

ITEM software web page, available at: http://www.
itemuk.com/

Lockheed Martin ‘MDA success story’, available at:
http://www.omg.org/mda/mda_files/LockheedMartin.pdf

LEVESON N., HARVEY P: ‘Analyzing software safety’, IEEE
Trans. Softw. Eng., 1983, SE-9, (5), pp. 497—-507

TOWHIDNEJAD M., WALLACE D., GALLO A.: ‘Fault tree analysis
for software design’. Proc. Software Engineering
Workshop, 27th Annual NASA Goddard, IEEE Computer
Society, December 2002

PAI G., DUGAN J.: ‘Automatic synthesis of dynamic fault
trees from UML system models’. Proc. Int. Symp.
Software Reliable Engineering, IEEE Computer Society,
November 2002

KHAN K., HAN 1.: ‘Composing security-aware software’,
IEEE Software, 2002, 19, (1), pp. 34—41

AADL: ‘SAE architecture analysis & design language’,
available at: http://www.aadl.info/

DE MIGUEL M., PAULY B., PERSON T., BRIONES LF.: ‘Model-based
integration of safety analysis and reliable software
development’. Proc. Workshop in Objectect Oriented Real-
Time Dependable Systems, Words, January 2005

ZOUGHBI G., BRIAND L., LABICHE Y.. ‘A UML profile for
developing airworthiness-compliant (RTCA DO-178B),
safety-critical software’. Carleton University Report TR
SCE-06-19, December, 2006

GOSEVA-POPSTOIANOVA K., HASSAN A., GUEDEM A., ABDELMOEZ W,,
NASSAR D.E.M., AMMAR H., ET AL.: ‘Architectural-level risk analysis
using UML, IEEE Trans. Softw. Eng., 2003, 29, (6), pp. 946—960

DAWKINS S.K., KELLY T.P,, MCDERMID J.A., MURDOCH J., PUMFREY D..:
‘Issues in the conduct of PSSA’. Proc. Int. System Safety Conf.,
ISSC, August 1999

LISAGOR 0., MCDERMID J.A., PUMFREY D.J.: ‘Safety analysis of
software architectures — lightweight PSSA’. Proc. Int.
System Safety Conf., ISSC, August 2004

http://www
http://modelware-ist.org/
http://www.omg.org/cgibin/;doc?ptc/2005-05-02
http://www.omg.org/cgibin/;doc?ptc/2005-05-02
http://www
http://objecteering.com/
http://www
http://itemuk.com/
http://www.omg.org/mda/mda_files/LockheedMartin.pdf
http://www.aadl.info/

