
In Search of the Origins and Enduring Impact of Agile Software
Development

Paul M. Clarke
School of Computing

Dublin City University, Ireland
Lero - Irish Software Research Centre

Paul.M.Clarke@dcu.ie

Rory V. O’Connor
School of Computing

Dublin City University, Ireland
Lero - Irish Software Research Centre

Rory.OConnor@dcu.ie

Murat Yilmaz
Department of Computer Engineering

Çankaya University
Ankara, Turkey

MYilmaz@cankaya.edu.tr

ABSTRACT
The Agile Manifesto is a philosophical touchpoint for all agile
software development (ASD) methods. We examine the manifesto
and some of its associated agile methods in an effort to identify
the major impacts of ASD. We have encountered some difficulty
in delineating agile and non-agile software processes, which is
partially the result of terminological confusion. It is clear from the
volume of published research that ASD has made a significant
contribution, and we have identified two lasting and important
impacts. Firstly, the reduction in iteration durations and secondly,
the push for reduced levels of documentation (especially in
relation to software requirements). Other aspects of the Agile
Manifesto may not have exerted a significant impact; for example,
the use of tooling to automate processes has become central to
continuous software engineering (CSE) and may not be wholly
congruent with the manifesto. Furthermore, many organisations
may still rely on business contracts despite calls in the manifesto
for greater levels of informal customer collaboration.

CCS CONCEPTS
• Software and its engineering → Software development
process management → Software development methods.

KEYWORDS
Agile Software Development; Continuous Software Engineering

1 INTRODUCTION
Agile software development is underpinned by the Agile
Manifesto [1] and can be considered to represent a philosophical
adjustment to the traditional software lifecycle models – though
many of the underlying concepts adopted in ASD are
reincarnations of previously existing concepts from traditional
software lifecycle models (a point that is explicitly recognised by
Kent Beck [2]).

The Agile Manifesto itself sets out the philosophy of ASD, and
it is to this philosophy that the various ASD approaches ascribe1.

1 Note that certain agile methods were published prior to the Agile Manifesto, but
for the purpose of the discussion in this paper, the salient concern is that all agile
methods are philosophically grounded in the Agile Manifesto to some extent.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

As such, the manifesto does not actually identify a lifecycle model
but rather the principles that agile lifecycle models should aspire
to, for example: regular customer collaboration as opposed to
strict contract adherence, and responding to changing
requirements as opposed to rigidly restricting the requirements
over long periods. However, this facility for changing
requirements on a regular basis is enabled through iterative
development that although a core feature of ASD, is not an
invention of the agile philosophy [3]. Along with incremental
development, iterative development has been noted as a beneficial
software process characteristic since at least the 1960s [4], [5].
This in part accounts for the difficulties that sometimes arise
when trying to classify the Unified Process [6] which might be
categorised as falling under a traditional lifecycle classification
but which other research has suggested to be aligned with ASD
[7]. Therefore, it seems that pinpointing the novelty of aspects of
ASD is perhaps not a straightforward proposition.

Our research presented herein focuses on the values presented
in the Agile Manifesto as a means to clarifying the origins and
impact of ASD. This exercise has highlighted some difficulties in
the very terminology adopted across software development in
general, which shares some conceptual space with earlier research
conducted by the authors [8], [9]. The first value of the Agile
Manifesto states that “Individuals and interactions [are valued] over
processes and tools” thus promoting the roles of humans and their
interactions in software development efforts - which is intuitively
appealing given that most software development is a human-
intensive activity. However, even in this first principle we find
potential difficulties in language. For example, how exactly do
individuals interact as they go about the task of developing
software? One possible response to this question could be that
individuals go about the task of producing software through the
disciplined application of a sequence of steps that will result in a
viable software product (a job which is enabled through
communication and collaboration); a response which we find to
be largely congruent with a long-established definition for the

or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

ICSSP '18, May 26–27, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6459-1/18/05 $15.00
https://doi.org/10.1145/3202710.3203162

ICSSP 2018, May 2018, Gothenburg, Sweden P. Clarke et al.

2

software process as “the sequence of steps required to develop or
maintain software” [10]2.

It appears therefore that the intended meaning of the term
process in the agile manifesto may not be consistent with certain
process definitions (many of which predate the manifesto). It may
be the case that the creators of the manifesto intended the term
process to refer to a large or bureaucratic process as opposed to
simply a process (or even a software process). A concern of the
manifesto creators, one suspects, centres on the potential for an
inflexible process to inhibit natural human faculties (such as face-
to-face communication and creativity) or to hinder efforts to
address innovation. It is nonetheless interesting that the term
process is positioned as somehow being less valued than other
considerations, when clearly if the process is “the sequence of
steps required to develop or maintain software” there is an
apparent disadvantage in devaluing its contribution in a business
that is beset with complex and interconnected activities.

A further interesting language observation in relation to the
manifesto concerns the increased value associated with
“responding to change over following a plan”. This is interesting
because any software development effort that is complex or large
or involves a number of team members inevitably requires
planning in order to achieve economic efficiencies and deliver
working software. Again, it is likely that the creators of the
manifesto intend a plan to mean the sometimes large, medium to
long-term and somewhat inflexible software development plans
that were (and continue to be) a feature of certain software
development approaches. One could purport that ASD involves
lots of planning - it is planning for changing requirements rather
than planning for static requirements [11]. It therefore seems to
be the case that there is some room for improvement in the
language adopted in the Agile Manifesto itself – this however does
not detract from the many advantages that the manifesto and
aligned approaches have conveyed and we must not overlook the
significant and positive impact that ASD has had on our field [12].

2 AGILE METHODS

2.1 Methods, Methodologies and Processes
In the context of ASD, it is interesting to note that it appears to
today be commonly accepted that agile software processes are
referred to as agile methods or agile methodologies [3], [13]. A
method “supplies a framework that tells how to go about …
[writing software] and identifies the places where creativity is
needed” [14] but this is a software process (i.e. a framework that
tells us how to go about writing software, which places an
emphasis on incorporating creativity). As such, the case for
introducing methodologies or methods in place of the established
term process is debatable, and this extends to their atomic
components, often referred to as practices but which could
perhaps be referred to using various pre-existing terms, for
example tasks and activities [15]. Applying this type of logic, the

2 Note that there are many published definitions for the term software development
process but that this particular one has been identified purely for illustrative
purposes.

label agile software development process may have been adopted
(in place of agile methods) in the first instance. Of interest, the
software development process was in earlier times referred to as
a software development methodology, as early as 1963 [16]. The use
therefore of the term methodology as an alternative label to process
is also not an invention of the agile movement (though it does not
appear to have been in widespread use prior to the advent of
ASD).

Even within the agile community, there is some discord over
how exactly the family of approaches should be termed, and it has
been observed by one of the founding fathers that the terms
method and methodology should be replaced by the term ecosystem
[17]. Perhaps the inclination to describe the process as a method or
methodology or ecosystem in the agile domain emanates from the
concept that the structure adopted should be of a “barely
sufficient” nature [17], containing only as much formal or
documented process as is beneficial, and therefore the use of the
term method or methodology sets the agile approach apart from
more comprehensive process elaborations; if this was the
intention, then it could have probably been satisfied just as well
(and with less recourse to debate on meaning) through use of an
alternative label, perhaps: agile software process.

2.2 Agility, Rigidity and Discipline
A central innovation of agile methods is the degree of agility

they support, a point that is well made by Barry Boehm and
Richard Turner [18]. This agility relates to an ability to change
requirements more frequently, the capacity to resolve client
interfacing issues through dialogue rather than litigation, and a
focus on producing working software rather than other
traditional deliverables such as supporting documentations.
However, it seems that drawing a clear distinction between agile
and non-agile processes is somewhat problematic, as is
demonstrated through examination of the language used to
describe this notional dichotomy. The juxtaposition of the terms
Agility and Discipline in the title of Boehm and Turner’s work [18]
is unfortunate as it carries with it the implicit suggestion that ASD
is something that may not be disciplined or which may not require
discipline (which of course is not the case, and which one suspects
was not intended by the authors). Perhaps an alternative title
might have read Balancing Agility and Rigidity?

A demand to increase the breadth of agile development
methods for the purpose of scalability to large software
development enterprises has given rise to what we describe as a
set of quasi-agile process frameworks, including the Scaled Agile
Framework [19] and the Disciplined Agile Framework [20]. In the
case of the latter we see that the term disciplined is used to
augment the general agile concept, again with the implication that
more general agile processes are somehow lacking discipline
(when clearly any software development effort that involves
groups of individuals demands discipline in order to deliver useful
software). Such quasi-agile processes can incorporate some non-

In Search of the Origins and Enduring Impact of Agile Software
Development

ICSSP, May 2018, Gothenburg, Sweden

 3

agile practices and have sometimes been referred to as hybrid
processes, which it seems are quite common in practice and which
are designed to meet the needs of widely varied software
development contexts [21].

The challenge of defining a clear dichotomy between agile and
non-agile processes is not an issue that is evident only in Boehm
and Turner’s work. One of the primary advocates for ASD, Jim
Highsmith, has employed an equally unsatisfactory juxtaposition
when outlining the difference between the two approaches as
balancing Flexibility and Structure [17]. Of course, flexibility is not
achieved through the removal of structure, rather it is achieved
through the adoption of structures that support flexibility – and
one suspects that this is a further instance of unintended language
implications from the perspective of the original author.

2.3 Specific Agile Methods
There is considerable variation in the scope of different agile
approaches and significant research has been focused on the ASD
space [22]. Given the volume and diversity of approaches
belonging (or claiming to belong) to the agile family, it is not
surprising that it has been observed that there may be an absence
of attention to the methodology-independent truths of software
development, an effort which ought to be grounded in sound
theoretical frameworks that readily enable the evaluation of the
newness of approaches claiming to offer new conceptual impetus
[23], [24].

Efforts to pin down exactly what might be new in ASD reveal
that at an atomic practice level, many of the agile techniques
predate the agile movement [25], though this same source
acknowledges that although there may not be a great deal of
newness, the packaging and structure of agile methods has
ensured that certain earlier concepts that were perhaps
underappreciated prior to ASD have now come to be quite
effective, including, short iterations, customer engagement and
the frequent delivery of working software. Evaluations of newness
would be greatly aided through the reuse of existing accepted
terminology rather than through the creation of new terms that
serve to obfuscate pre-existing conceptual constructs such that
assessments of conceptual newness are rendered quite difficult.
Indeed, the development of a unified theory underpinning
software development would inevitably have to identify and
utilise terms in a precise and consistent manner, with the result
that new terms would ideally be reserved for genuine instances of
newness, such as can only be established through a robust
understanding of the history and evolution of the domain.

The advent of ASD has heralded the arrival of a large variety
of methods, including Extreme Programming (XP) [2], Adaptive
Software Development (ASD) [26], Feature Driven Development
(FDD) [27] and Scrum [28]. And while there is compelling
evidence to suggest that agile methods have had a significant
impact on software development, there are some deficiencies in
the currently available evidence surrounding the exact nature and
extent of this impact [29]. It has further been suggested that
individual constructs may be adopted and adapted from different
agile methods depending on the demands of the situational

context [30], an observation that legitimises efforts to map the
various practices across various agile methods [31].

2.4 New Terminology for Existing Concepts
A Sprint is “an iterative cycle of development work” [32] and as
such, is essentially the same concept as an iteration (in Royce’s
Waterfall [33]) or cycle (in Boehm’s Spiral [34]). One could
therefore legitimately claim that a sprint could have been
described using a combination of existing terms, perhaps as a short
iteration and it is not difficult to see how such language use would
have benefited the numerous software developers already familiar
with the term iteration. Of further interest from a terminological
perspective, Scrum is generally referred to by its creators as a
development process [32] or as a process framework [35] but not as
a method or methodology even though it is generally classified as
being in the ASD family. And the term sprint retrospective is
essentially equivalent to a review meeting wherein the last
iteration is evaluated for effectiveness and improvements are
proposed for future similar iterations.

The reviewing concept itself is older than software
development, dating back at least to Edwards Deming’s plan, do,
check, act approach [36] and in effect, the term sprint retrospective
might have been more intuitively accessible to the broader
software development community (and beyond to the many
interfaces to the development process) if identified using the
terminology: an iteration review meeting. Clearly Scrum has met
with considerable success, nevertheless, Scrum’s diversions from
a basic terminology perspective is an instance of terminological
drift that is perhaps an undesirable feature of software
development process terminology.

2.4.1 Agile Requirements.
The term software requirements is in use at least as early as 1965
[37] and was possibly commonly adopted for some time prior to
that point. Use Cases may be utilised when identifying
requirements and have been reported to have “fulfilled the role of
software requirements well” [38] and within ASD there are a
number of terms used for the purpose of identifying software
requirements, many of which appear to be related to the use case
concept.

In ASD, the term feature is adopted with a number of features
constituting the scope (and a number of features may be required
in order to deliver a single piece of functionality). FDD adopts a
similar convention to ASD, where features are small client-valued
functions that can be delivered in two weeks and where sets of
features may be utilised to deliver higher-level complex functions.
In both cases, the concept of function or functionality is likely to
resonate somewhat with a use case, with individual features
holding the potential to deliver some value to the customer on a
regular basis through short development iterations.

Other agile approaches, for example Scrum and XP, encourage
the adoption of user stories for requirements identification (though
Scrum product backlogs do not insist on the use of user stories
[39]). Scrumban [40] provides a new set of definitions again for
some pre-existing requirements-related terms, including: a feature

ICSSP 2018, May 2018, Gothenburg, Sweden P. Clarke et al.

4

is “an atomic use case… the simplest practical expression of: what
does the user want?” and a use case is a “description of how the
product will be used, in the context of the user”. Scrumban further
asserts that a feature is “the minimum testable unit of customer
value”. Why exactly there may sometimes be a reluctance to work
with established definitions (as is the case in Scrumban’s
treatment of the terms feature and use case) is difficult to fully
qualify but it may be that where process innovations are industry-
led, there is a lack of familiarity with academic processes such as
literature reviewing and peer-reviewing. It could also be the case
that innovators seek to differentiate their contributions from
existing or related concepts – perhaps even in cases where there
is an absence of meaningful differentiation. In other instances, it
may simply be the case that new process architects are unfamiliar
with the entirety of the existing software process landscape (a
position for which some sympathy is warranted as there is now
such a large body of complicated material published in this space).

Returning to the user story terminology, it is perhaps most
appropriately described as a brief, written description of
functionality that will be valuable to either a user or purchaser of
a system or software, and which is often accompanied by a rough
estimate of the associated implementation effort [41]. User stories
can be visualised on paper cards, which can be considered to
represent rather than document a software requirement [42] and
subsequent dialogue about the paper card story will flesh out the
detail via conversation, leading ultimately to confirmation of what
exactly is needed to satisfy the user story [43]. While user stories
share some conceptual ground with use cases, the two can be
considered to be fundamentally different – use cases place an
earlier focus on larger volumes of documentation which can be
subject to maintenance throughout the lifetime of the software
[41] – whereas user stories (as identified on story cards) tend to be
discarded once the story has been dealt with [41]. User stories, as
adopted in Scrum, are likely to be broadly equivalent to features
in FDD and ASD.

Whether they be captured as user stories, or use cases, or
features, there are benefits to the general agile approach to
requirements management, not least the fact that the definition of
detailed and sometimes inadequate software requirements
specifications which are a feature of many non-agile approaches
may be replaced with a flexible, temporal, interactive, and a just-
in-time treatment of user requirements [44]. Beyond language
considerations, we would like to highlight that within ASD,
different approaches to requirements engineering have emerged,
for example concerning the extent to which requirements are
documented [45].

2.4.2 Agile Roles.
In [46] we are told that “the ScrumMaster fills the position normally
occupied by the project manager” with the ScrumMaster
responsible for managing the Scrum process but not for the
definition and management of the work itself. However, pure self-
organisation may be unworkable in practice, with the theoretical
disjoint between work management and process management
being difficult to realise in certain Scrum environments where
teams may need a team member pushing the workload towards

completion [46], [47]. In some cases, the ScrumMaster may tend
to naturally assume this authority [48] (though [46] puts this issue
down to a failure to implement Scrum correctly). Therefore, in at
least some instances, the ScrumMaster may – even if incorrectly
so – operate as a traditional project manager.

Advocates of Scrum have legitimised this role naming with the
assertion that the ScrumMaster needs to be distinguished from the
traditional Software Project Manager role (a role which has existed
at least since the 1960s [49]), that their authority should
essentially be indirect, with their knowledge and policing of
Scrum practices being the limit of their power [46]. This being the
case, the traditional Process Manager role would appear to overlap
greatly with that of a ScrumMaster, especially when the Process
Manager role is “to provide information to specialise and
instantiate the process model, and to activate and monitor the
execution of this instantiated model” [50]. Even in rugby, from
which Scrum claims to draw its inspiration in metaphor, there is
no ScrumMaster (there is a Scrum Half, who has varying degrees
of authority in terms of calling different pre-planned plays at
different times).

4 CONCLUSIONS
In this paper, we have sought out the origin and enduring impact
of ASD. We have identified two clear characteristics of agile
methods as practiced that distinguish them from earlier
approaches. First, the general treatment of requirements tends to
be different. Whereas earlier approaches mostly focused on
elaborating detailed documented requirements, in ASD
requirements may be addressed via discardable user story cards.
Second, the insistence on more frequent releases differentiates
agile methods from earlier process frameworks. From the 1980s
onwards there have been documented efforts to reduce the
durations of iterations [34], [51], [52], however, the Agile
Manifesto and the methods that have drawn inspiration from it,
have dialed up the intensity of the drive towards very short
iterations, each producing releasable software.

It may be the case that the classical notion of ASD is somewhat
passé. The rise of continuous software engineering [53] (CSE) and
the adoption of tooling to continually integrate software and
automate deployments may consign many agile methods into
history. However, the Agile Manifesto’s DNA is evident in these
CSE approaches, since the ambition towards “continuous delivery
of valuable software” is stated in the first principle of the
manifesto (such that CSE could be classified under ASD). The
Agile Manifesto itself does show some signs of misfit with
emerging practice, especially in its advocacy of “individuals and
interactions over processes and tools”; CSE places a central
emphasis on the automation of processes via tooling [53]. CSE at
least represents a new phase in ASD.

Many agile practices were in situ prior to ASD and the
insistence on developing new terms for existing concepts was
perhaps unhelpful to the broader community. Since it is a
generally accepted fact that no single software process is perfectly
suited to all software development settings [54], a significant
complexity must arise for software practitioners in shaping the

In Search of the Origins and Enduring Impact of Agile Software
Development

ICSSP, May 2018, Gothenburg, Sweden

 5

many available process frameworks (agile and non-agile alike)
[55], each of which often adopts differing terms. Clearly, however,
we must also accept that the wide variety of application domains
and development settings may necessarily frustrate attempts to
unify terminology for software development as a distinct
discipline (each different domain may demand its own terms or
term adaptation). Finally, we suggest that certain aspects of the
manifesto may not have had the impact that was envisaged, for
example, one suspects that contract negotiation remains a
fundamental business instrument in many engagements.

ACKNOWLEDGMENTS
This work was supported by Science Foundation Ireland grant
13/RC/2094 to Lero – the Irish Software Research Centre.

REFERENCES
[1] M. Fowler and J. Highsmith, "The Agile Manifesto," Software Development, pp.
28-32, 2001.
[2] K. Beck, Extreme Programming Explained: Embrace Change. Reading,
Massachusetts, USA: Addison-Wesley, 1999.
[3] M. Lindvall, V. Basili, B. Boehm, P. Costa, K. Dangle, F. Shull, R. Tesoriero, L.
Williams and M. Zelkowitz. "Empirical findings in agile methods," Extreme
Programming and Agile Methods — XP/Agile Universe 2002, pp. 197-207, 2002.
[4] C. Larman and V. R. Basili, "Iterative and incremental development: a brief
history," IEEE Computer, vol. 36, no. 6, pp. 47-56, 2003.
[5] V. R. Basili and A. J. Turner. "Iterative enhancement: A practical technique for
software development," IEEE Transactions on Software Engineering, vol. SE-1, no. 4,
pp. 390-396, 1975.
[6] I. Jacobson and S. Bylund, The Road to the Unified Software Development
Process. Cambridge: Cambridge University Press, 2000.
[7] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta, Agile Software
Development Methods - Review and Analysis. VTT Publications Number 478.
Finland: VTT Technical Research Centre of Finland, 2002.
[8] P. Clarke, A. L. Mesquida Calafat, D. Ekert, J. Ekstrom, T. Gornostaja, M.
Jovanovic, J. Johansen, A. Mas, R. Messnarz, B. Nájera Villar, A. O’Connor, R. V.
O’Connor, M. Reiner, G. Sauberer, K. D. Schmitz and M. Yilmaz, "An investigation of
software development process terminology," Proceedings of the 16th International
SPICE Conference, pp. 351-361, 2016.
[9] G. Sauberer et al., "Do we speak the same language? terminology strategies for
(software) engineering environments based on the elcat," Systems, Software and
Services Process Improvement. EuroSPI 2017. Communications in Computer and
Information Science, Vol 748, pp. 653-666, 2017.
[10] W. S. Humphrey, A Discipline for Software Engineering. Reading,
Massachusetts, USA: Addison-Wesley, 1995.
[11] M. Paulk, "Agile Methodologies and Process Discipline," Crosstalk – the Journal
of Defense Software Engineering, vol. October, pp. 15-18, 2002.
[12] T. Dyba and T. Dingsoyr. "Empirical studies of agile software development,"
Information and Software Technology, vol. 50, no. 9-10, pp. 833-859, 2008.
[13] J. A. Highsmith, Agile Software Development Ecosystems. Boston: Addison-
Wesley, 2002.
[14] J. Rumbaugh, "What is a method?" Journal of Object Oriented Programming, vol.
8, no. 6, pp. 10-16, 1995.
[15] ISO/IEC, ISO/IEC 12207:1995 Information Technology – Software Life-Cycles
Processes. Geneva, Switzerland: ISO, 1995.
[16] J. J. Connelly and Y. R. Osajima, Management Report: Controlling Production of
Complex Software. Technical Memorandum TM-LO-810/101/00. Santa Monica, CA:
System Development Corporation, 1963.
[17] J. Highsmith, "What is agile software development?" Crosstalk – the Journal of
Defense Software Engineering, vol. 15, no. 10, pp. 4-9, 2002.
[18] B. Boehm and R. Turner, Balancing Agility and Discipline - A Guide for the
Perplexed. Boston, Massachusetts, USA: Pearson Education Limited, 2003.
[19] D. Leffingwell, "Scaled agile framework,"
http://www.scaledagileframework.com/.
[20] S. Ambler, "The disciplined agile (DA) framework,"
http://www.disciplinedagiledelivery.com/blog/.
[21] Hybrid software and system development in practice: Waterfall, scrum, and
beyond, "Kuhrmann, M.; diebold, P.; munch, J.; tell, P.; garousi, V.; felderer,
M.;McCaffrey, F.; trektere,
K.; linssen, O.; hanser, E.; prause, C.R." Proceedings if the International Conference
on Software and Systems Processes, pp. 30-39, 2017.

[22] T. Dingsøyr, S. Nerur, V. Balijepally and N. B. Moe. "A decade of agile
methodologies: Towards explaining agile software development," J. Syst. Software,
vol. 85, no. 6, pp. 1213-1221, 2012.
[23] P. Johnson, M. Ekstedt and I. Jacobson. "Where's the Theory for Software
Engineering?" IEEE Software, vol. 29, no. 5, pp. 96-96, 2012.
[24] K. J. Stol and B. Fitzgerald. "Uncovering theories in software engineering," 2nd
SEMAT Workshop on a General Theory of Software Engineering, pp. 5-14, 2013.
[25] N. Abbas, A. M. Gravell and G. B. Wills. "Historical roots of agile methods" Agile
Processes in Software Engineering and Extreme Programming, pp. 94-103, 2008.
[26] J. Highsmith, Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. New York, USA: Dorset House Publishing, 2000.
[27] S. R. Palmer and J. Felsing, A Practical Guide to Feature-Driven Development.
Upper Saddle River, New Jersey, USA: Prentice Hall, 2002.
[28] K. Schwaber and M. Beedle, Agile Software Development with SCRUM. Upper
Saddle River, New Jersey, USA: Prentice Hall, 2002.
[29] S. Stavru. "A critical examination of recent industrial surveys on agile method
usage," J. Syst. Software, vol. 94, pp. 87-97, 2014.
[30] P. Clarke and R. V. O'Connor. "The situational factors that affect the software
development process: Towards a comprehensive reference framework," Journal of
Information and Software Technology, vol. 54, no. 5, pp. 433-447, 2012.
[31] P. Diebold and M. Dahlem. "Agile practices in practice: A mapping study,"
Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, pp. 1-10, 2014.
[32] K. Schwaber, "SCRUM development process," 10th Annual Conference on
Object-Oriented Programming Systems, Languages and Applications, 1995.
[33] W. Royce, "Managing the development of large software systems: Concepts and
techniques," Western Electric show and Convention Technical Papers, 1970.
[34] B. Boehm. "A spiral model of software development and enhancement," IEEE
Computer, vol. 21, no. 5, pp. 61-72, 1988.
[35] K. Schwaber and J. Sutherland, The Scrum Guide™. Scruminc, 2013.
[36] W. Edwards Deming, Elementary Principles of the Statistical Contrl of Qualiry.
Tokyo, Japan: Nippon Kagaku Gijutsu Renmei, 1950.
[37] W. F. Bauer and E. K. Campbell, Advanced Naval Tactical Command and Control
Study (Informatics Report TR-65-58-2). Prepared for Advanced Warfare Systems
Division, Naval Analysis Group, Office of Naval Research by Informatic Inc., 1965.
[38] D. Kulak and E. Guiney, Use Cases: Requirements in Context. Boston, MA:
Addison-Wesley, 2004.
[39] P. Deemer, B. Vodde, C. Larman and G. Benefield, "Scrum primer: A lightweight
guide to the theory and practice of scrum," http://www.scrumprimer.com/;. 2015.
[40] C. Ladas, Scrumban: Essays on Kanban Systems for Lean Software Development.
Seattle, WA: Modus Cooperandi Press, 2008.
[41] M. Cohn, User Stories Applied: For Agile Software Development. Boston, Mass.:
Addison-Wesley, 2004.
[42] R. Davies, The Power of Stories. Practitioners Report / Poster Presentation at the
2nd International Conference on Extreme Programming and Flexible Processes in
Software Engineering (XP 2001). 2001.
[43] R. Jeffries, "Essential XP: Card, Conversation, and Confirmation," XP Magazine,
vol. August 30, 2001.
[44] D. Leffingwell, Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise. NJ: Pearson Education, 2010.
[45] F. Paetsch, A. Eberlein and F. Maurer. "Requirements engineering and agile
software development," Twelfth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2003.
[46] K. Schwaber, Agile Project Management with Scrum. WP Publishers &
Distributors Pvt Limited, 2004.
[47] M. Cristal, D. Wildt and R. Prikladnicki. "Usage of SCRUM practices within a
global company," IEEE International Conference on Global Software Engineering,
2008, pp. 222-226, 2008.
[48] N. B. Moe, T. Dingsoyr and T. Dyba. "Overcoming barriers to self-management
in software teams," IEEE Software, vol. 26, no. 6, pp. 20-26, 2009.
[49] M. M. Jones and E. McLean, "Management problems in large-scale software
development projects," Industrial Management Review, vol. 11, pp. 1-15, 1970.
[50] R. Conradi, C. Fernström, A. Fuggetta and R. Snowdon. "Towards a reference
framework for process concepts," Software Process Technology. Proceedings of the
Second European Workshop, EWSPT '92, pp. 1-17, 1992.
[51] C. Larman, Agile and Iterative Development: A Manager's Guide. Boston:
Addison-Wesley, 2004.
[52] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development
Process. Reading, Massachusetts: Addison Wesley Longman, Inc., 1999.
[53] R. V. O'Connor, P. Elger and P. Clarke, "Continuous Software Engineering - A
Microservices Architecture Perspective," Journal of Software: Evolution and Process,
vol. 29, no. 11, pp. 1-12, 2017.
[54] P. Clarke, R. O'Connor, B. Leavy and M. Yilmaz. "Exploring the Relationship
between Software Process Adaptive Capability and Organisational Performance,"
IEEE Transactions on Software Engineering, vol. 41, no. 12, pp. 1169-1183, 2015.
[55] Clarke, P., O'Connor, R. V., Leavy, B., "A complexity theory viewpoint on the
software development process and situational context," Proceedings of the 2016
International Conference on Software and System Process (ICSSP 2016), 2016.

