Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Taxonomy of secure data dissemination techniques for IoT environment

A huge amount of data is generated from the interaction of various sensors and Internet of Things (IoT) enabled devices used in various smart industrial applications. This enormous amount of data requires fast processing, huge storage capacity, secure dissemination, and aggregation to make it resistant from the attackers. Secure data dissemination for IoT-based applications has been a prominent issue in consideration with the heterogeneity in generated data. Existing secure data dissemination schemes are inadequate to handle secure data distribution. Research communities across the globe are focused on the delivery of the data among the sensor nodes and overlook the difficulty of its secure streaming. Hence, there is a need to validate the performance of secure data distribution schemes for IoT networks using relevant parameters. Motivated from the aforementioned facts, in this study, we perform a comprehensive review on the state-of-the-art techniques, which can verify and validate the performance of data dissemination schemes for IoT networks. We present a solution taxonomy of various verification and validation methods along with their merits and demerits. Finally, recent issues and future directions on verification and validation methods for the secure data distribution in an IoT network is presented.

References

    1. 1)
      • 70. Lai, C., Li, H., Lu, R., et al: ‘Se-aka: A secure and efficient group authentication and key agreement protocol for LTE networks’, Comput. Netw., 2013, 57, (17), pp. 34923510.
    2. 2)
      • 23. Sharma, V., You, I., Kul, G.: ‘Socializing drones for inter-service operability in ultra-dense wireless networks using blockchain’. Proc. of the 2017 Int. Workshop on Managing Insider Security Threats (MIST ’17), Dallas Texas USA , 2017, pp. 8184.
    3. 3)
      • 71. Kumari, A., Tanwar, S., Tyagi, S., et al: ‘Fog computing for smart grid systems in the 5G environment: challenges and solutions’, IEEE Wirel. Commun., 2019, 26, (3), pp. 4753.
    4. 4)
      • 46. Singh, R., Tanwar, S., Sharma, T.P.: ‘Utilization of blockchain for mitigating the distributed denial of service attacks’, Secur. Privacy, 2019, n/a, (n/a), p. e96.
    5. 5)
      • 83. Das, A.K., Kumari, S., Odelu, V., et al: ‘Provably secure user authentication and key agreement scheme for wireless sensor networks’, Secur. Commun. Netw., 2016, 9, pp. 36703687.
    6. 6)
      • 77. Chung, Y., Choi, S., Lee, Y., et al: ‘An enhanced lightweight anonymous authentication scheme for a scalable localization roaming service in wireless sensor networks’, Sensors, 2016, 16, p. 1653.
    7. 7)
      • 89. Mistry, I., Tanwar, S., Tyagi, S., et al: ‘Blockchain for 5G-enabled iot for industrial automation: a systematic review, solutions, and challenges’, Mech. Syst. Signal Process., 2020, 135, p. 106382.
    8. 8)
      • 49. Wang, C., Chow, S.S.M., Wang, Q., et al: ‘Privacy-preserving public auditing for secure cloud storage’, IEEE Trans. Comput., 2013, 62, (2), pp. 362375.
    9. 9)
      • 87. Dolev, S., Krzywiecki, Ł., Panwar, N., et al: ‘Vehicle authentication via monolithically certified public key and attributes’, Wirel. Netw., 2016, 22, pp. 879896.
    10. 10)
      • 81. Srinivas, J., Mukhopadhyay, S., Mishra, D.: ‘Secure and efficient user authentication scheme for multi-gateway wireless sensor networks’, Ad Hoc Netw., 2017, 54, pp. 147169. Available at http://www.sciencedirect.com/science/article/pii/S1570870516302980.
    11. 11)
      • 72. Srivastava, A., Bhattacharya, P., Singh, A., et al: ‘A distributed credit transfer educational framework based on blockchain’. 2018 Second Int. Conf. on Advances in Computing, Control and Communication Technology (IAC3T), Allahabad, India, 2018, pp. 5459.
    12. 12)
      • 66. Lilien, L., Bhargava, B.: ‘A scheme for privacy-preserving data dissemination’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2006, 36, (3), pp. 503506.
    13. 13)
      • 84. Das, A.K., Sutrala, A., Kumari, S., et al: ‘An efficient multi-gateway-based three-factor user authentication and key agreement scheme in hierarchical wireless sensor networks’, Secur. Commun. Netw., 2016, 9, pp. 20702092.
    14. 14)
      • 64. Ding, R., Zhong, H., Ma, J., et al: ‘Lightweight privacy-preserving identity-based verifiable IoT-based health storage system’, IEEE Internet Things J., 2019, 6, (5), pp. 83938405.
    15. 15)
    16. 16)
      • 10. Bodkhe, U., Tanwar, S.: ‘Secure data dissemination techniques for IoT applications: research challenges and opportunities’, Software, Pract. Exp., 2020, n/a, (n/a), pp. 123. Available at https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2811 .
    17. 17)
      • 73. Kumari, A., Tanwar, S., Tyagi, S., et al: ‘Fog computing for healthcare 4.0 environment: opportunities and challenges’, Comput. Electr. Eng., 2018, 72, pp. 113.
    18. 18)
      • 47. Yuchuan, L., Shaojing, F., Ming, X., et al: ‘Enable data dynamics for algebraic signatures based remote data possession checking in the cloud storage’, China Commun., 2014, 11, (11), pp. 114124.
    19. 19)
      • 57. Kaâniche, N., Jung, E., Gehani, A.: ‘Efficiently validating aggregated IoT data integrity’. 2018 IEEE Fourth Int. Conf. on Big Data Computing Service and Applications (BigDataService), Bamberg, Germany, 2018, pp. 260265.
    20. 20)
      • 48. Wang, Q., Wang, C., Ren, K., et al: ‘Enabling public auditability and data dynamics for storage security in cloud computing’, IEEE Trans. Parallel Distrib. Syst., 2011, 22, (5), pp. 847859.
    21. 21)
      • 3. Tanwar, S., Parekh, K., Evans, R.: ‘Blockchain-based electronic healthcare record system for healthcare 4.0 applications’, J. Inf. Secur. Appl., 2020, 50, p. 102407.
    22. 22)
      • 2. Rathore, M.M., Ahmad, A., Paul, A., et al: ‘Urban planning and building smart cities based on the internet of things using big data analytics’, Comput. Netw., 2016, 101, pp. 6380. Industrial Technologies and Applications for the Internet of Things. Available at: http://www.sciencedirect.com/science/article/pii/S1389128616000086.
    23. 23)
      • 21. Langson, J.: ‘Security implications of data dissemination methods in wireless sensor networks’, Available at https://pdfssemanticscholarorg/9734/15286a035d2a541d7599e7faf06512229324pdf (Letöltve: 2017 11 26), 2017.
    24. 24)
      • 74. Hathaliya, J.J., Tanwar, S., Tyagi, S., et al: ‘Securing electronics healthcare records in healthcare 4.0: a biometric-based approach’, Comput. Electr. Eng., 2019, 76, pp. 398410.
    25. 25)
      • 40. Liu, B., Yu, X.L., Chen, S., et al: ‘Blockchain based data integrity service framework for IoT data’. 2017 IEEE Int. Conf. on Web Services (ICWS), Honolulu, HI, USA, 2017, pp. 468475.
    26. 26)
      • 11. Daneels, G., Municio, E., Spaey, K., et al: ‘Real-time data dissemination and analytics platform for challenging IoT environments’. 2017 Global Information Infrastructure and Networking Symp. (GIIS), St-Pierre, France, 2017, pp. 2330.
    27. 27)
      • 28. Brereton, P., Kitchenham, B.A., Budgen, D., et al: ‘Lessons from applying the systematic literature review process within the software engineering domain’, J. Syst. Softw., 2007, 80, (4), pp. 571583. Software Performance.
    28. 28)
      • 52. Zhang, F., Safavi-Naini, R., Susilo, W.: ‘An efficient signature scheme from bilinear pairings and its applications’, in Bao, F., Deng, R., Zhou, J. (Eds.): ‘Public key cryptography – PKC 2004’ (Springer, Berlin, Heidelberg, 2004), pp. 277290.
    29. 29)
      • 34. Chen, P., Cheng, S., Sung, M.: ‘Analysis of data dissemination and control in social internet of vehicles’, IEEE Internet Things J., 2018, 5, (4), pp. 24672477.
    30. 30)
      • 55. Paul, A., Jeyaraj, R.: ‘Internet of things: a primer’, Human Behavior Emerg. Technol., 2019, 1, (1), pp. 3747. Available at https://onlinelibrary.wiley.com/doi/abs/10.1002/hbe2.133.
    31. 31)
      • 27. Tanwar, S., Agarwal, B., Goyal, L.M., et al: ‘Energy conservation for IoT devices: concepts, paradigms and solutions’ (Springer, Singapore, 2019).
    32. 32)
      • 7. Arbia, D.B., Alam, M.M., Attia, R., et al: ‘Data dissemination strategies for emerging wireless body-to-body networks based internet of humans’. 2015 IEEE 11th Int. Conf. on Wireless and Mobile Computing, Networking and Communications (WiMob), Abu Dhabi, United Arab Emirates, 2015, pp. 18.
    33. 33)
      • 32. Kapitonov, A., Lonshakov, S., Krupenkin, A., et al: ‘Blockchain-based protocol of autonomous business activity for multi-agent systems consisting of UAVs’. 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), Linkoping, Sweden, 2017, pp. 8489.
    34. 34)
      • 19. Gonizzi, P., Ferrari, G., Gay, V., et al: ‘Data dissemination scheme for distributed storage for IoT observation systems at large scale’, Inf. Fusion, 2015, 22, pp. 1625.
    35. 35)
      • 41. Chalse, R., Selokar, A., Katara, A.: ‘A new technique of data integrity for analysis of the cloud computing security’. 2013 5th Int. Conf. and Computational Intelligence and Communication Networks, Mathura, India, 2013, pp. 469473.
    36. 36)
      • 4. Ladha, A., Bhattacharya, P., Chaubey, N.: ‘Iigpts: IoT-based framework for intelligent green public transportation system’, in Singh, P., Pawłowski, W., Tanwar, S., et al (Eds.): ‘Proceedings of first international conference on computing, communications, and cyber-security (IC4S 2019), lecture notes in networks and systems, (Springer, Singapore, 2020), vol. 121, pp. 183195.
    37. 37)
      • 22. Sfar, A., Natalizio, E., Challal, Y., et al: ‘A roadmap for security challenges in internet of things’, Digit. Commun. Netw., 2017, 4, pp. 130.
    38. 38)
      • 6. Bodkhe, U., Tanwar, S., Bhattacharya, P., et al: ‘Blockchain for precision irrigation: opportunities and challenges’, Trans. Emerg. Telecommun. Technol., 2020, pp. 135, https://doi.org/10.1002/ett.4059.
    39. 39)
      • 58. Lim, J., Kim, Y., Yoo, C.: ‘Chain veri: blockchain-based firmware verification system for IoT environment’. 2018 IEEE Int. Conf. on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 2018, pp. 10501056.
    40. 40)
      • 8. Suri, N., Tortonesi, M., Michaelis, J., et al: ‘Analyzing the applicability of internet of things to the battlefield environment’. 2016 Int. Conf. on Military Communications and Information Systems (ICMCIS), Brussels, Belgium, 2016, pp. 18.
    41. 41)
      • 42. Venkatesh, M., Sumalatha, M.R., SelvaKumar, C.: ‘Improving public auditability, data possession in data storage security for cloud computing’. 2012 Int. Conf. on Recent Trends in Information Technology, Chennai, India, 2012, pp. 463467.
    42. 42)
      • 50. Mukundan, R., Madria, S., Linderman, M.: ‘Efficient integrity verification of replicated data in cloud using homomorphic encryption’, Distrib. Parallel Databases, 2014, 32, (4), pp. 507534.
    43. 43)
      • 25. Tyagi, S., Tanwar, S., Gupta, S.K., et al: ‘A lifetime extended multi-levels heterogeneous routing protocol for wireless sensor networks’, Telecommun. Syst., 2015, 59, (1), pp. 4362.
    44. 44)
      • 29. Kitchenham, B.A., Charters, S.: ‘Guidelines for performing systematic literature reviews in software engineering’, EBSE Technical Report, Software Engineering Group, UK, 2007, pp. 118.
    45. 45)
      • 75. Bodkhe, U., Bhattacharya, P., Tanwar, S., et al: ‘Blohost: blockchain enabled smart tourism and hospitality management’. 2019 Int. Conf. on Computer, Information and Telecommunication Systems (CITS), Beijing, China, 2019, pp. 15.
    46. 46)
      • 33. Aggarwal, S., Shojafar, M., Kumar, N., et al: ‘A new secure data dissemination model in internet of drones’. 2019 IEEE Int. Conf. on Communications (ICC) (ICC 2019), Shanghai, China, 2019, pp. 16.
    47. 47)
      • 62. Ab-Malek, M.S., Bin-Ahmadon, M.A., Yamaguchi, S., et al: ‘On privacy verification in the IoT service based on pn 2’, 2016, pp. 14.
    48. 48)
      • 18. Almasoud, A.M., Kamal, A.E.: ‘Data dissemination in IoT using a cognitive UAV’, IEEE Trans. Cognit. Commun. Netw., 2019, 5, pp. 849862.
    49. 49)
      • 51. Rossi, F., Schmid, G.: ‘Identity-based secure group communications using pairings’, Comput. Netw., 2015, 89, (C), pp. 3243.
    50. 50)
      • 16. Bodkhe, U., Mehta, D., Tanwar, S., et al: ‘A survey on decentralized consensus mechanisms for cyber physical systems’, IEEE Access, 2020, 8, pp. 5437154401.
    51. 51)
      • 56. Machado, C., Medeiros Fröhlich, A.A.: ‘IoT data integrity verification for cyber-physical systems using blockchain’. 2018 IEEE 21st Int. Symp. on Real-Time Distributed Computing (ISORC), Singapore, 2018, pp. 8390.
    52. 52)
      • 13. Radhika, R., Kulothungan, K.: ‘Improved data dissemination using intelligent stimulus mechanisms in IoT network’. Int. Conf. for Phoenixes on Emerging Current Trends in Engineering and Management (PECTEAM 2018), Chennai, India, 2018, pp. 112.
    53. 53)
      • 60. Kabra, N., Bhattacharya, P., Tanwar, S., et al: ‘Mudrachain: blockchain-based framework for automated cheque clearance in financial institutions’, Future Gener. Comput. Syst., 2020, 102, pp. 574587.
    54. 54)
      • 54. Zhu, H., Yuan, Y., Chen, Y., et al: ‘A secure and efficient data integrity verification scheme for cloud-IoT based on short signature’, IEEE Access, 2019, 7, pp. 9003690044.
    55. 55)
      • 68. Sampaio, L., Silva, F., Souza, A., et al: ‘Secure and privacy-aware data dissemination for cloud-based applications’. Proc. of the10th Int. Conf. on Utility and Cloud Computing (UCC ’17), Austin Texas USA, 2017, pp. 4756.
    56. 56)
      • 5. Tanwar, S.: ‘Fog computing for healthcare 4.0 environments’ (Springer, Nature Switzerland AG, 2020).
    57. 57)
      • 9. Amrutha, S., Mohanraj, T., Ramapriya, N., et al: ‘Data dissemination framework for IoT based applications’, Indian J. Sci. Technol., 2016, 9, pp. 112.
    58. 58)
      • 45. Fu, S., Wang, D., Xu, M., et al: ‘Cryptanalysis of remote data integrity checking protocol proposed by l. Chen for cloud storage’, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2014, E97.A, pp. 418420.
    59. 59)
      • 44. Chen, L.: ‘Using algebraic signatures to check data possession in cloud storage’, Future Gener. Comput. Syst., 2013, 29, (7), pp. 17091715.
    60. 60)
      • 36. Gulati, A., Aujla, G.S., Chaudhary, R., et al: ‘Deep learning-based content centric data dissemination scheme for internet of vehicles’. 2018 IEEE Int. Conf. on Communications (ICC), Kansas City, MO, USA, 2018, pp. 16.
    61. 61)
      • 78. Bodkhe, U., Tanwar, S., Shah, P., et al: ‘Markov model for password attack prevention’. Proc. of First Int. Conf. on Computing, Communications, and Cyber-Security (IC4S 2019), Chandigarh, India, 2020, vol. 121, pp. 831843.
    62. 62)
      • 79. Amin, R., Biswas, G.P.: ‘A secure light weight scheme for user authentication and key agreement in multi- gateway based wireless sensor networks’, Ad Hoc Netw., 2016, 36, pp. 5880.
    63. 63)
      • 1. Budhiraja, I., Tyagi, S., Tanwar, S., et al: ‘Diya: tactile internet driven delay assessment NOMA-based scheme for D2D communication’, IEEE Trans. Ind. Inf., 2019, 15, (12), pp. 63546366.
    64. 64)
      • 90. Gul, M.J., Rehman, A., Paul, A., et al: ‘Blockchain expansion to secure assets with fog node on special duty’, Soft Comput., 2020, pp. 113. Available at https://doi.org/10.1007/s00500-020-04857-0.
    65. 65)
      • 86. Lai, C., Li, H., Lu, R., et al: ‘LGTH: a lightweight group authentication protocol for machine-type communication in LTE networks’. 2013 IEEE Global Communications Conf. (GLOBECOM), Atlanta, GA, USA, 2013, pp. 832837.
    66. 66)
      • 14. Farooq, M.J., Zhu, Q.: ‘Secure and reconfigurable network design for critical information dissemination in the internet of battlefield things (iobt)’, CoRR, 2017, abs/1703.01224, pp. 119. Available at http://arxiv.org/abs/1703.01224.
    67. 67)
      • 65. Majeed, A.: ‘Internet of things (IoT): a verification framework’. 2017 IEEE 7th Annual Computing and Communication Workshop and Conf. (CCWC), Coimbatore, India, 2017, pp. 13.
    68. 68)
      • 31. Lin, C., He, D., Kumar, N., et al: ‘Security and privacy for the internet of drones: challenges and solutions’, IEEE Commun. Mag., 2018, 56, (1), pp. 6469.
    69. 69)
      • 26. Kumari, A., Tanwar, S., Tyagi, S., et al: ‘Multimedia big data computing and internet of things applications: a taxonomy and process model’, J. Netw. Comput. Appl., 2018, 124, pp. 169195.
    70. 70)
      • 20. Balamurugan, V., Arun, V., Bhuvaneswary, V.K.: ‘Security threats and data dissemination in software defined VANET’, Int. J. Pure. Appl. Math., 2017, 117, pp. 399407.
    71. 71)
      • 85. Farash, M., Turkanović, M., Kumari, S., et al: ‘An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the internet of things environment’, Ad Hoc Netw., 2016, 36, pp. 152176.
    72. 72)
      • 80. Jiang, Q., Kumar, N., Ma, J., et al: ‘A privacy-aware two-factor authentication protocol based on elliptic curve cryptography for wireless sensor networks: A privacy-aware two-factor authentication protocol’, Int. J. Netw. Manage., 2016, 27, (3), p. e1937.
    73. 73)
      • 30. Kitchenham, B., Brereton, O.P., Budgen, D., et al: ‘Systematic literature reviews in software engineering – a systematic literature review’, Inf. Softw. Technol., 2009, 51, (1), pp. 715. Special Section - Most Cited Articles in 2002 and Regular Research Papers.
    74. 74)
      • 88. Bodkhe, U., Tanwar, S., Parekh, K., et al: ‘Blockchain for industry 4.0: a comprehensive review’, IEEE Access, 2020, 8, pp. 7976479800.
    75. 75)
      • 43. Yu, Y., Xue, L., Au, M.H., et al: ‘Cloud data integrity checking with an identity-based auditing mechanism from RSA’, Future Gener. Comput. Syst., 2016, 62, pp. 8591.
    76. 76)
      • 67. Kowsigan, M., Priyadharshini, P.: ‘Security in data and dissemination of distributed data in wireless sensor network’, Int. J. Pure. Appl. Math., 2018, 118, (18), pp. 15131520.
    77. 77)
      • 53. Qin, Z., Yuan, C., Wang, Y., et al: ‘On the security of two identity-based signature schemes based on pairings’, Inf. Process. Lett., 2016, 116, (6), pp. 416418.
    78. 78)
      • 12. Farooq, J., Zhu, Q.: ‘On the secure and reconfigurable multi-layer network design for critical information dissemination in the internet of battlefield things (IOBT)’, IEEE Trans. Wirel. Commun., 2018, PP, pp. 123.
    79. 79)
      • 59. Kireeti, K., Kiranmayee, B., Nagini, S.: ‘An efficient secure protocol for integrity checking of data files outsourced to remote server’. 2018, pp. 666670.
    80. 80)
      • 15. Liang, X., Zhao, J., Shetty, S., et al: ‘Towards data assurance and resilience in IoT using blockchain’. 2017 IEEE Military Communications Conf. (MILCOM 2017), Baltimore, MD, United States, 2017, pp. 261266.
    81. 81)
      • 24. Sarhan, Q.I.: ‘Internet of things: a survey of challenges and issues’, Int. J. Internet Things Cyber-Assurance, 2018, 1, (1), pp. 4075.
    82. 82)
      • 39. Ahmad, F., Adnane, A., Kurugollu, F., et al: ‘A comparative analysis of trust models for safety applications in IoT-enabled vehicular networks’. 2019 Wireless Days (WD), Manchester, United Kingdom, 2019, pp. 18.
    83. 83)
      • 38. Teng, H., Liu, Y., Liu, A., et al: ‘A novel code data dissemination scheme for internet of things through mobile vehicle of smart cities’, Future Gener. Comput. Syst., 2019, 94, pp. 351367.
    84. 84)
      • 35. Liu, L., Chen, C., Qiu, T., et al: ‘A data dissemination scheme based on clustering and probabilistic broadcasting in VANETs’, Veh. Commun., 2018, 13, pp. 7888.
    85. 85)
      • 37. Almasoud, A.M., Selim, M.Y., Alqasir, A., et al: ‘Energy efficient data forwarding in disconnected networks using cooperative UAVs’. 2018 IEEE Global Communications Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 16.
    86. 86)
      • 17. Tanwar, S., Singh, P.K., Kar, A.K., et al: ‘Proceedings of ICRIC 2019- recent innovations in computing’ (Springer, Nature Switzerland AG, 2020).
    87. 87)
      • 61. Lomotey, R., Rickabaugh, J., Slivkanich, N., et al: ‘Data verification and privacy in IoT architecture’. 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 2019, vol. 2642-939X, pp. 6671.
    88. 88)
      • 76. Kumari, S., Li, X., Wu, F., et al: ‘A user friendly mutual authentication and key agreement scheme for wireless sensor networks using chaotic maps’, Future Gener. Comput. Syst., 2016, 63, (C), pp. 5675.
    89. 89)
      • 82. Nicanfar, H., Jokar, P., Beznosov, K., et al: ‘Efficient authentication and key management mechanisms for smart grid communications’, IEEE Syst. J., 2014, 8, (2), pp. 629640.
    90. 90)
      • 69. Kong, Q., Lu, R., Ma, M., et al: ‘A privacy-preserving and verifiable querying scheme in vehicular fog data dissemination’, IEEE Trans. Veh. Technol., 2019, 68, (2), pp. 18771887.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-sen.2020.0006
Loading

Related content

content/journals/10.1049/iet-sen.2020.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address