Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Tracking performance and robustness analysis of Hurst estimators for multifractional processes

Tracking performance and robustness analysis of Hurst estimators for multifractional processes

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors focus on the tracking performance and the robustness of 12 sliding-windowed Hurst estimators for multifractional processes with linear trend local Hölder exponent, noisy multifractional processes and multifractional processes with infinite second-order statistics. Four types of multifractional processes are synthesised to test the tracking performance and robustness of these 12 sliding-windowed Hurst estimators. They are (i) noise-free multifractional process; (ii) multifractional process corrupted by 30-dB signal-to-noise ratio (SNR) white Gaussian noise; (iii) multifractional process corrupted by 30-dB SNR impulse noise; and (iv) multifractional stable process, which has no finite second-order statistics. Furthermore, the standard error of different sliding-windowed Hurst estimators are calculated in order to quantify the accuracy and robustness. This study provides a guideline and principle in the selection of Hurst estimators for noise-free multifractional process, noise-corrupted multifractional process and multifractional process with infinite second-order statistics. The results of this analysis show that the sliding-windowed Kettani and Gubner's method provides the best-tracking performance for multifractional processes with linear trend local Hölder exponent and good robustness to noise.

References

    1. 1)
      • R.G. Clegg . A practical guide to measuring the Hurst parameter. Int. J. Simul. Syst. Sci. Technol. , 2 , 3 - 14
    2. 2)
      • S.V. Muniandy , S.C. Lim , R. Murugan . Inhomogeneous scaling behaviors in Malaysia foreign currency exchange rates. Physica A , 407 - 428
    3. 3)
    4. 4)
    5. 5)
      • M. Li , W. Zhao , S. Chen . mBm-based scalings of traffic propagated in internet. Math. Probl. Eng.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • R. Navarro , R. Tamangan , N. Guba-Natan , E. Ramos , A.D. Guzman . The identification of long memory process in the ASEAN-4 stock markets by fractional and multifractional Brownian motion. Philippine Stat. , 65 - 83
    12. 12)
    13. 13)
      • Sheng, H., Chen, Y.Q.: `Robustness analysis of the estimators for noisy long-range dependent time series', Proc. ASME 2009 Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., 2009, San Diego, USA.
    14. 14)
      • Peltier, R.F., Vehel, J.L.: `Multifractional Brownian motion: definition and preliminary results', Technical report, Institut National De Recherche En Informatique Et En Automatique, 1995.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • Middleton, D.: `Statistical-physical models of man-made and natural radio noise, part II', Report 76–86, Institute for Telecommunication Sciences, April 1976.
    19. 19)
      • H. Sun . Predictor-corrector method for variable-order, random-order fractional relaxation equation.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • W. Rea , L. Oxley , M. Reale , J. Brown . Estimators for long range dependence: an empirical study. Electron. J. Stat. , 785 - 798
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • G. Samorodnitsky , M.S. Taqqu . (1994) Stable non-gaussian random processes: stochastic models with infinite variance.
    28. 28)
      • M.S. Taqqu , V. Teverovsky , R.E. Feldman , R.J. Adler , M.S. Taqqu . (1998) On estimating the intensity of long-range dependence in finite and infinite variance time series, A practical guide to heavy tails: statistical techniques and applications.
    29. 29)
    30. 30)
    31. 31)
      • J. Beran . (1994) Statistics for long-memory processes.
    32. 32)
    33. 33)
      • A.N. Kolmogorov . Wienersche spiralen und einige andere interessante kurven im hilbertschen. Raum. C. R. (Dokl.) Acad. Sci. URSS (N.S.) , 115 - 118
    34. 34)
    35. 35)
      • S.V. Muniandy , S.C. Lim . Modeling of locally self-similar processes using multifractional Brownian motion of Riemann–Liouville type. Phys. Rev. E , 4
    36. 36)
    37. 37)
    38. 38)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2010.0170
Loading

Related content

content/journals/10.1049/iet-spr.2010.0170
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address