Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Unsupervised video anomaly detection using feature clustering

Unsupervised video anomaly detection using feature clustering

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the problem of automatic anomaly detection for surveillance applications. A general framework for anomalous event detection in uncrowded scenes has been developed which consists of the following key components: (i) an efficient foreground detection model based on a Gaussian mixture model (GMM), which can selectively update pixel information in each image region; (ii) an adaptive foreground object tracker that combines the merits of Kalman, mean-shift and particle filtering; (iii) a feature clustering algorithm, which can automatically choose the optimal number of clusters in the training data for scene pattern modelling; (iv) a statistical scene modeller based on Bayesian theory and GMM, which combines trajectory-based and region-based information for enhanced anomaly detection. The resulting approach achieves fully unsupervised anomaly detection in surveillance video. The experimental results show improved detection performance compared with the state-of-the-art methods.

References

    1. 1)
      • Kratz, L., Nishino, K.: `Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models', IEEE Conf. Computer Vision and Pattern Recognition, June 2009, Miami, FL, p. 1446–1453.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • A.Y. Ng , M.I. Jordan , Y. Weiss . On spectral clustering: analysis and an algorithm. Adv. Neural Inf. Process. Syst. , 849 - 856
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • Zivkovic, Z.: `Improved adaptive Gaussian mixture model for background subtraction', Proc. 17th Int. Conf. Pattern Recognition, August 2004, p. 28–31.
    15. 15)
      • K. Ball , D. Lyon , D.M. Wood , C. Norris , C. Raab . A report on the surveillance society.
    16. 16)
    17. 17)
      • H. Li , D.R. Bull , A. Achim . (2010) Unsupervised feature based abnormality detection.
    18. 18)
    19. 19)
      • Beymer, D., Konolige, K.: `Real-time tracking of multiple people using continuous detection', IEEE Int. Conf. Computer Vision Frame-Rate Workshop, 1999.
    20. 20)
    21. 21)
      • Wiliem, A., Madasu, V., Boles, W., Varlagadda, P.: `Detecting uncommon trajectories', Computing: Techniques and Applications, December 2008, Canberra, ACT, p. 398–404.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • L. Zelnik-Manor , P. Perona . Self-tuning spectral clustering. Adv. Neural Inf. Process. Syst. , 1601 - 1608
    26. 26)
    27. 27)
      • Stauffer, C., Grimson, W.E.L.: `Adaptive background mixture models for real-time tracking', Computer Society Conf. Computer Vision and Pattern Recognition, 1999, Fort Collins, CO, p. 246–252.
    28. 28)
    29. 29)
    30. 30)
      • Porikli, F., Haga, T.: `Event detection by eigenvector decomposition using object and frame features', IEEE Computer Society Conf. Computer Vision and Pattern Recognition Workshops, June 2004, p. 114–121.
    31. 31)
      • Y. Bar-Shalom , T.E. Fortmann . (1988) Tracking and data association.
    32. 32)
    33. 33)
      • Mehran, R., Oyama, A., Shah, M.: `Abnormal crowd behavior detection using social force model', IEEE Conf. Computer Vision and Pattern Recognition, June 2009, Miami, FL, p. 935–942.
    34. 34)
      • Horprasert, T., Harwood, D., Davis, L.S.: `A statistical approach for real-time robust background subtraction and shadow detection', IEEE Frame-Rate Applications Workshop, 1999, Kerkyra, Greece.
    35. 35)
      • Cai, Y., Freitas, N., Little, J.J.: `Robust visual tracking for multiple targets', Ninth European Conf. Computer Vision, May 2006, Graz, Austria, p. 107–118.
    36. 36)
    37. 37)
      • Friedman, N., Russell, S.: `Image segmentation in video sequences: a probabilistic approach', 13thConf. Uncertainty in Artificial Intelligence, 1997, San Francisco, CA, p. 175–181.
    38. 38)
      • Bashir, F.I., Khokhar, A.A., Schonfeld, D.: `Segmented trajectory based indexing and retrieval of video data', Proc. 2003 Int. Conf. Image Processing, September 2003, p. 623–626.
    39. 39)
      • Li, H., Achim, A., Bull, D.R.: `GMM-based efficient foreground detection with adaptive region update', IEEE Int. Conf. Image Processing, November 2009, Cairo, p. 3181–3184.
    40. 40)
      • Collins, R., Lipton, A., Kanade, T.: `A system for video surveillance and monitoring', Proc. American Nuclear Society Eighth Internal Topical Meeting on Robotics and Remote Systems, 1999.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2011.0074
Loading

Related content

content/journals/10.1049/iet-spr.2011.0074
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address