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Abstract: A Stochastic Resonator has been considered as an alternative signal processing tool

because of its noise-induced performance enhancement ability. Here, the resonator parameters,

steady states and transition time of the system are redefined for BPAM signals such that the region

in which the resonator benefits from noise can be identified. Simple parameter-induced stochastic

resonance (PSR) designs are then built, based on this analysis in order to configure the resonator

in the optimum region. Furthermore, Sine-induced SR based on using a periodic signal instead

of noise is introduced to enhance the system performance and compared with noise-enhanced SR

(NSR). It is shown that Sine-induced SR provides a performance enhancement as it needs less

power and does not require an adjustment relevant to the background noise. The results indi-

cate that a resonator improves the receiver performance by eliminating noise if its parameters and

BPAM characteristics are set accurately as given in the PSR designs, otherwise the resonator can

benefit from either a noise as in NSR, or a sine wave as proposed.

1. Introduction

Existing methods at mitigating noise may be ineffective at low Signal to Noise Ratios (SNRs),

whilst also being inapplicable at the nanoscale in terms of the signal processing and energy re-

quirements [1]. Stochastic Resonance (SR), is an alternative signal detection technique [2, 3],

where, as supposed to removing noise, one uses noise to enhance the system performance. The

term was first coined by Benzi et al. in 1981 [4, 5] and since then, SR has been observed in nu-

merous systems across many fields [6, 7, 8]. As more systems were seen to exhibit SR, several

generalized theories on the subject have thus been presented [9, 10, 11, 12, 13], but essentially,

SR means that the system performance is enhanced by the means of noise.

The performance of the systems exhibiting SR has a peak at a non-zero noise intensity. In

the literature, there are two methods used to enhance the performance, namely, noise-enhanced

SR (NSR), and parameter induced SR (PSR). In NSR, defining the type of resonant noise and its

correlation time, the effectual intensity is determined [14, 15, 16]. If an adjustment is required,

NSR needs the knowledge of the background noise, which can be obtained by adaptive search

methods, and this makes the system more complex. Moreover, the power consumption of a noise

source can be another problem. In PSR, the system parameters are determined for the optimum

performance [17, 18, 19] and intrinsically differ from one type of input signals to another. Whilst

there are many studies on weak periodic input signals, there is not any basic and precise design

methodology for a bipolar binary pulse amplitude modulated (BPAM) signal which is curious as
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it is one of the fundamental communications signalling motifs. In addition to this, no research

concerning the use of a deterministic (as supposed to noise) resonant signal could be found.

Therefore, in this paper, the aim is to design a basic stochastic resonator for detecting BPAM

signals and to subsequently increase the system performance by using a deterministic periodic

resonant signal as supposed to noise. Since existing designs do not focus on the input signal, we

define new parameters derived from the desired output and build a new stochastic resonator design

based on the characteristic of the BPAM signal. The unique relation between the output and the

system parameters is also clarified, and as a consequence, PSR methods are simplified. Then,

a periodic signal is introduced as a resonant signal. It is found that the use of a periodic signal

ensures a significant performance enhancement without tuning. To summarize, parameters defined

to analyse the SR system with Langevin equation, a further performance enhancement in NSR by

a sine wave, and simple desings for PSR are the key contributions of this paper.

This paper is organized as follows. In Sec. 2, the theory behind the stochastic resonator and

its implementation is discussed and the method used to determine the design parameters explained

and subsequently evaluated. The optimum configuration providing low BERs at low SNRs is also

presented. Sec. 3 introduces the generalised analysis allowing the reader to identify any resonator

configuration. Based on this analysis, simple PSR designs are also provided. In Sec. 4, the use of

a resonator is taken further with the notion of using NSR and Sine-induced SR. Finally, the paper

is concluded in Sec. 5.

2. The Stochastic Resonator

The stochastic resonator, in this paper, is a form of an overdamped Brownian motion in the sym-

metric quartic bistable potential [20, 21, 22, 23, 24]. It is modelled as a feedback system in which

the forward loop consists of an arbitrary amplifier with gain M followed by an integrator as shown

in Fig. 1. The feedback loop consists of two amplifiers with gains a and b and two multipliers.

Fig. 1: The BPAM receiver

Defining the transmitted signal, s(t), which is typically corrupted by AWGN, n(t), the input of

the stochastic resonator, x(t), is given by

x(t) = s(t) + n(t) + r(t), (1)
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where r(t) is an intentionally added resonant signal under the control of the system designer.

The integrator is based on the midpoint rule approximation which keeps the previous output,

yp, and the previous derivative, y′p, in its memory. The output, y(t) is thus

y(t) = yp +
y′a + y′p

2
× ts, (2)

where here, to illustrate the system working as close to a continuous system as possible, ts =
Tb/100, and Tb is the bit interval of s(t). Therefore, within this model there are three adjustable

parameters, a, b and M , together with one controllable signal, r(t), all of which will affect the

output to the stochastic resonator, y(t).
In order to achieve the aims of this work, the following process is required. Firstly, in the

absence of both n(t) and r(t), the steady state behaviour shall be analysed to determine the bounds

of a and b. This is followed by incorporating knowledge of the systems transient behaviour such

that a and b can be refined (if necessary) and M can be determined. The result of this section

therefore is that, given some knowledge of s(t), and still in the absence of n(t) and r(t), the

system should operate without an error. It is then possible to begin the analysis into how n(t)
affects the performance and subsequently how r(t) can be controlled to mitigate its effects.

2.1. Steady State Behaviours

Referring to Fig. 1, under the assumption that M = 1 for the duration of the steady state behaviour

analysis, the resonator’s output is derived from

dy

dt
= ay − by3 + x, (3)

where x(t) is only s(t) and s(t) follows a NRZ BPAM scheme, which can take only the values of

either A or −A during a bit interval Tb. For s′(t) = sign(y(t)) to have the same polarity as s(t)
does, a and b must be chosen carefully.

First of all, the resonator applies a barrier to the input. It can be calculated by determining the

local maxima (or minima) of dy/dt where x(t) = 0, and be given by hb =
√

4a3/27b. x(t) forces

output to have the same signs when A > hb. This is the first relationship between a, b and the

magnitude of the input, A, for error free operation.

To explain this, consider Fig. 2. If x(t) = A ≥ hb, i.e a positive BPAM symbol greater than

the barrier height, regardless of value of y(t) at the same instant, y(t) will settle to a positive value

as required. If x(t) = A < hb, i.e a positive BPAM symbol but with a magnitude lower than the

barrier height, depending upon the value of y(t) at the same instant, y(t) may settle to the positive

value, correctly, or the negative value incorrectly.

Secondly, it is needed to known exactly what y(t) will be. Although making the barrier smaller

than the input is enough for the polarity issue, later, it is going to be shown that the steady state

matters when the bit interval is taken into account. By definition, the roots of (3) are the steady

states, and there is only one real root if A > hb. As is typical within any system that the output

has a gain (or loss), k, the steady state can be given by kA where x(t) = A. If so, it must

satisfy (3), which reduces to 0 = akA − bk3A3 + A. Therefore, A > hb can be rearranged as
√

(ak + 1)/(bk3) >
√

(4a3)/(27b), which dictates that the parameter a times the gain k must be

smaller than 3, ak < 3. And, the parameter b is determined by (ak + 1)/(A2k3).
As a result, the resonator parameters (a, b) are determined to make output with a desired signs

and gain, k. It is based on the steady states of (3) with the assumption of having a sufficient time
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Fig. 2: The derivatives of output where the output of the system is derived by Langevin Equation, the noise is absent, and

x(t) = A.

for the output to become stable. However, the input is stable only for a period of time Tb, so the

output may not reach the steady state within the same period.

2.2. Transient Behaviours

As has been discussed so far, upon an input change, the output y(t) needs a finite time to transient

from −kA to kA when input x(t) = A. It is called the transition time tr, and parameters (a, b)
must be determined to satisfy tr < Tb.

The transition time tr can be derived from the integral of one over the derivative of output within

the interval [−kA, kA). Assuming that y = −kA and x(t) = −A at t < 0 and x(t) = A for t ≥ 0.

In such case, y(t) starts increasing according to its derivative. Then, tr is given by

tr(y . kA) =

y
∫

−kA

dt

dy
dy (4)

It is preferred to use y as an upper boundary from which the transition shape can be obtained.

In addition to that, the output never reaches kA theoretically. Due to the fact while y is getting

closer to kA, dt/dy goes infinite. Therefore, the upper boundary should be smaller than kA so it

is set to y = 0.99× kA which means the system is working to a 1% steady state error.

The derivation of (4) is provided in the Appendix, and it can be simplified as tr = ktn(ak, kA)
where tn is the normalized transition time, a function of ak and kA. Fig. 3 illustrates the effects of

kA and ak on tn, and it is obvious that tn goes to infinite while ak is getting closer to 3. Another

point to note is that the effect of kA on the normalized transition length is not significant when

compared to ak.

As the input signal has a bit interval, Tb, ktn must be smaller than Tb in order the output to

transient and settle down before the following bit comes, such that ktn < Tb. Additionally, from

Fig. 3, tn is always greater than 2, which result in 2 < tn < Tb/k. However, the relation between
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Fig. 3: The effects of ak and kA on the normalize transition time, tn(y).

k and the bit interval Tb causes an attenuation problem because k has been used for determining

output steady state. For example, if the receiver is designed for BPAM signal with Tb = 1ns, then

k has to be smaller than 5× 10−10. Such attenuation is not practical.

The attenuation problem can be solved by the parameter M in Fig. 1. Considering that tr has

k multiplier, the derivative of the output must have 1/k multiplier, and it does, which is obvious

when (3) is re-written as

dy

dt
= M

1

k

(

aky −
ak + 1

(kA)2
y3 + kA

)

. (5)

In (3), M is introduced to eliminate the effect of k on tr and to have a control on the frequency

response. It can be given by

M = m×
k

Tb

, (6)

where m is related to the normalized transition time tn. That must be greater than tn but does not

have to equal to tn so it is preferred to use different notations.

As a result, the new parameters used to define the resonator are kA for output steady state, ak
for barrier height, and m for frequency response. A resonator can be analysed and designed by

only two of them as shown next.

2.3. Parameter Choices

The choice of parameters is critically important for the output performance of the resonator. First,

an example with significant parameters is illustrated and then the optimum values based on the

output performance is obtained.

The example is a resonator design with the parameters ak = 1.5 and m = 3. Given the input

characteristics and desired output;

Tb = 10−9s, A = 1, ydesired = 1,
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The design thus has the variables;

k = ydesired/A = 1,
a = ak/k = 1.5,
b = (ak + 1)/(A2k3) = 2.5,
M = (mk)/(Tb) = 3× 109.

The output of the stochastic resonator with these parameters can complete the transition in a bit

interval time as illustrated in Fig. 4 (a) so that it can follow the input sign. When m is set to 1
which is smaller than the minimum normalized transition time tn(ak = 1.5, kA = 1) ≃ 2.46, a bit

interval is not long enough to complete the transition as illustrated in Fig. 4 (b). When ak ≥ 3,

hb ≥ A so that the output sticks in either positive or negative side. Fig. 4 (c) illustrates the case

where ak = 3. It is clear that, because of the barrier height hb, the output does not change its sign

while the input has both negative and positive values. As a result, in terms of design, there are two

significant parameters with simple inequalities 0 ≤ ak < 3 and m ≥ tn(ak, kA). However, these

inequalities do not specify the optimum values of the parameters where the background noise is

present.
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, y
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time(s)
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, y
(t
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Fig. 4: The output of stochastic resonators with (ak = 1.5, m = 3), (ak = 1.5, m = 1), and (ak = 3, m = 3) respectively.

Note that k = 1, input is s(t) with dash line, and output is y(t) with solid line.

When the signal is weak, the presence of the background noise is supposed to increase the

performance. This is valid for ak ≥ 3. However, as Fig. 5 indicates, if the signal is not weak

(ak < 3), the background noise and the barrier hb decrease the performance. Therefore, ak must

be smaller than 1.

The other parameter m is directly related to the input signal frequency 1/Tb, and Fig. 6 indicates

that m = 3 is almost optimum. When m is greater than that, the BER curve moves through the

higher SNRs. When m is 2 and 1, the curve is shaped so that the BER slightly decreases at lower

SNRs, but significantly increases at higher SNRs. Therefore, to have low BERs in general, m must

be set to 3.

The stochastic resonator, whose output is given by (3), has been designed in a way different

from those in the literature. It is based on the generalization of the parameters in terms of the signal
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n(t) and n(t) ∼ N(0, σ2

n)

characteristics. It provides a better understanding on the relations between the signal amplitude

and the frequency response of the system. New parameters k, ak, kA, tn, m and M are defined.

It is emphasized that m and ak are the most significant parameters. They are used to determine

the frequency response of the system and the barrier to the input signal amplitude. Finally, the

optimum values of m and ak are specified by the means of the output performance. The application

of this design on PSR method and further analysis are discussed in the next section.

3. Analysis and Design for PSR

The parameters defined in the section 2. are used to analyse the stochastic resonator whose re-

sponse depends on not only the bit interval but also the amplitude of the input signal. Although

well-known transformations cannot be applied because of that, the new interchangeable parameters

which represent those; a, b, M , A and Tb together help us to analyse and design the resonator.

Given a, b, M , A and Tb, parameters ak and m can be determined. First, to find out ak, the

barrier obtained from (3) must be equal to the barrier derived by A and ak; hb =
√

4a3/27b =
√

4(ak)3A2/27(ak + 1). Then, ak and normalized A can be given by

A =

√

a3(ak + 1)

b(ak)3
=

√

a3

b
An, (7)

where

An =

√

(ak + 1)

(ak)3
. (8)

Secondly, to determine m and normalized Tb, ak in (8) and a are used in (6) as

m = MaTb/ak = Tbn/ak, (9)

where

Tbn = MaTb. (10)

7



These two normalizations have only one precise solution and bring out a fundamental analysis

of a resonator. Fig. 7 is created by these normalizations. It can be used to determine m and

ak parameters indicating the region in which resonator works. For example, if An = 10 and

Tbn = 100, ak ≪ 1 and m ≫ 3. So the resonator works in the region where SR effect can not

be observed (ak ≪ 1), and BER is low at high SNRs (m ≫ 3). Fig. 7 is more practical when

compared to (8).
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Fig. 7: Normalized amplitude and bit interval with corresponding m and ak parameters

Similar to this analysis, PSR designs can also be simplified. Essentially, there are two possible

tuning methods; the first one, PSR-1, is determining the optimum a, b, and M for a given A and Tb.

The second one, PSR-2, is determining the optimum input signal characteristics A and Tb where

a, b, and M are given. The M parameter is set to 1 for the following designs to have more general

expressions. As stated in Sec. 2.3, the variables for optimum BER performance must be chosen as

m = 3 and ak ≪ 1. For PSR-1, the resonator can be designed by

k = Tb/m,
a = ak/k,
b = (ak + 1)/(A2k3).

(11)

For PSR-2, A and Tb are determined by (7) and (9) as

k = ak/a,
Tb = m× k,

A =
√

a3(ak+1)
b(ak)3

.
(12)

An analysis for a stochastic resonator and PSR designs have been given in this section. The

analysis is based on determining m and ak by the normalized amplitude and bit interval of the

signal applied to the resonator. PSR methods are established in (11) and (12). Setting m = 3 and

ak ≪ 1 is sufficient to have an optimum BER performance for these designs. Although PSRs are

simplified and provide significant performance improvement, they may not be applicable in some

circumstances. When PSR is not available, another method, NSR, can be applied as discussed in

Sec. 4.
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4. NSR and Sine-induced SR

When the input signal, s(t), is weak according to the system barriers, the output can not transient.

In this case, the resonant signal r(t) can help the input to exceed the system barriers and improve

the system performance. The resonant signal can be either a type of noise as in NSR method or a

periodic wave as indicated in this section. These two resonant signals are going to be compared in

terms of BER performances and power requirements.

NSR can be used when the parameters and the input characteristics are chosen to have a weak

input signal. The PSR-1 design method of Sec. 3 is used to build the resonator to demonstrate

an NSR application. Here, the input is a BPAM signal with A =
√

4/27 and Tb = 9. Critical

parameters are set as m = 3 and ak = 3 to observe SR effect, and as a result, resonator parameters

are a = 1 and b = 1. If there is only a BPAM signal at the input, the resonator output will show

either positive or negative values depending on the first bit received as in Fig. 8 (a). When an

AWGN resonant noise with an optimum power (BER is minimum at SNR, 20log(A/σ) ∼= −14 dB

in Fig. 5) is added to the input, the output starts to transient along with BPAM signal as shown in

Fig. 8 (b).

2 4 6 8 10 12
-2

-1

0

1

2

k×
 s

(t
),

 y
(t

)

t × Tb

(a)

2 4 6 8 10 12
-2

-1

0

1

2
k×

 s
(t

),
 y

(t
)

t × Tb

(b)

2 4 6 8 10 12
-2

-1

0

1

2

k×
 s

(t
),

 y
(t

)

t × Tb

(c)

Fig. 8: Outputs of the stochastic resonator with the parameters; a = 1, b = 1 and s(t) is BPAM with A =
√

4/27 and

Tb = 9. (a) x(t) = s(t). (b) x(t) = s(t) + r(t) where r(t) ∼ N(µ = 0, σopt = 1.93). (c) r(t) = 2A sin(2π(1.3/Tb)t).

However, with this method, NSR, suffers from some drawbacks. For instance, when back-

ground noise n(t) is present, the resonant noise r(t) has to be re-adjusted to have the optimum

SNR. Although it can be easily determined by σ2
opt = σ2

n(t) + σ2
r(t), background noise power must

be known. Even if σ2
n(t) can be measured, when σn(t) is already higher than σopt, injecting any

resonant noise r(t) will cause a decrease in performance. Besides these drawbacks, as a source,

resonant noise may demand high power, especially when background noise power is much less

than the optimum one.

A periodic signal is suggested as an alternative to resonant noise. For the sake of simplicity,

it is considered as a sine wave, Bsin(2πft), which can also help the input to exceed the system

barrier as shown in Fig. 8 (c). It is aimed to detect effectual sine waves providing a significant

performance improvement. BER performance results for various sine waves are illustrated in Fig.

9 where σn(t) = 0 and σn(t) = 0.68 respectively. When σn(t) = 0, there are many sine waves
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Fig. 9: BERs where r(t) is B sin(2πft), and σn(t) = 0 and 0.68 respectively.

providing error free output signal of which performance cannot be plotted in log scale, and there

is a pattern restricting the amplitudes, B, and the frequencies, f . Such as in Fig. 9 (b), this pattern

is narrowed by the background noise (σn(t) = 0.68), thus, output is not error free any more. For

this example where m = 3, ak = 3 and SNR = −5 dB, a basic curve fitting is applied to find out

the best f and B couples as illustrated in Fig. 10. The fitted curve for resonant sine waves can be

given by

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

B/A

f 
× 

T
b

Fig. 10: Frequency and Amplitude couples (dots) pro-

viding lowest BERs and fitted curve (solid) given in (13).
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Fig. 11: BERs where x(t) = s(t) + n(t) + r(t) and

n(t) ∼ N(0, σ2
n). NSR performance with r(t) ∼

N(0, σ2
r). Sine wave SR performance with r(t) =

2A sin (2π(1.3/T b)t).

f × Tb =
1

1−B/A
+B/A+ 0.3. (13)

Choosing B ≥ 2A and f ≥ 1/Tb, the BER decreases significantly. On the other hand, the power

of the sine wave is basically B2/2. To consume less power, B must be 2A and f is thus 1.3/Tb.

Both NSR and sine wave SR can be compared in terms of performance and power issues. It

is clear from Fig. 11 that NSR cannot enhance the performance further than that obtained by the

optimum background noise. However, sine wave SR decreases the BER as much as a PSR method
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does. When it comes to power requirement, it is seen that resonant noise power, σ2
r(t), is between

0 and σ2
opt, while the power of sine wave is always B2/2. The minimum power consumption in

sine wave SR is only 10log((B2/2)/(A2)) = 3 dB so that σ2
r(t) is always greater than B2/2 where

SNR > SNRopt + 3 dB. It can be concluded that whilst sine wave SR needs less energy and does

not requires an adjustment depending on background noise, it provides an increase in performance.

5. Conclusions

A stochastic resonator can be used as an alternative signal processing tool at low SNRs and po-

tentially applications where size and energy considerations are paramount. Owing to the expres-

sions given for steady states and transition time, comprehension and application of this resonator

becomes attainable. Furthermore, the analysis shown here simplifies the application of PSR meth-

ods. A resonator filters the background noise and thus, the system performance can be enhanced

considerably by the means of only two parameters a and b. While digital filters are providing a

similar performance with hundreds of coefficients, having only two coefficients may be the most

significant advantages of the resonator. Finally, a sine wave is proposed as a resonant signal instead

of noise where PSR methods are not available. The evidence presented thus far supports the idea

that a sine wave supplies a better performances enhancement while decreasing the complexity and

power consumption.

6. Appendices

To separate the roots of (3) where x = A, the right hand side can be rewritten as:

dy

dt
= −b(y − kA)(y − r1)(y − r2), (14)

where one root is kA and the r1,2 is given by

r1,2 = kA

(

−
1

2
± i

√

3

4
−

ak

ak + 1

)

. (15)

To be able to write down the expression for t(y), p and q are introduced as

q = kA

√

3

4
−

ak

ak + 1
, (16)

p = kA/2, (17)

r1,2 = −p± iq. (18)

(4) is thus

t(y) =
1

−b

y
∫

−kA

(

D

(y − kA)
+

E

(y − r1)
+

E

(y − r2)

)

dy, (19)

where,

D =

(

(kA)2
(

2−
ak

ak + 1

)

+ kA

)

−1

, (20)
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and

E, F =
D

2

(

− 1∓ i
1 + p

q

)

. (21)

Finally, t(y) is given by

t(y) =
D

−b

{

ln

(

y − 2p

−4p

√

p2 + q2

(y + p)2 + q2

)

+
2 + p

2q
×

(

arctan
( q

y + p

)

+arctan
(q

p

)

+ πu(y + p)

)

}

, (22)

where u(l) = 0 while l < 0 otherwise 1 and where −kA < y < kA. If variables D, p and q are

represented by a function of ak and kA, and if b is written as fb(ak, Ak)/k, then, (22) becomes

k × f(ak, Ak).
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