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Abstract
This paper proposes an optimal design of the orders of the discrete fractional Fourier

transforms (DFrFTs) and construct an overcomplete transform using the DFrFTs with these
orders for performing the sparse representations. The design problem is formulated as an
optimization problem with an 1L norm nonconvex objective function. To avoid all the orders
of the DFrFTs to be the same, the exclusive OR of two constraints are imposed. The
constrained optimization problem is further reformulated to an optimal frequency sampling
problem. A method based on solving the roots of a set of harmonic functions is employed for
finding the optimal sampling frequencies. As the designed overcomplete transform can exploit
the physical meanings of the signals in terms of representing the signals as the sums of the
components in the time frequency plane, the designed overcomplete transform can be applied
to many applications.

Keywords  Discrete fractional Fourier transform, overcomplete transform, sparse
representation, nonsmooth and nonconvex optimization, frequency sampling,
harmonic functions.

1. Introduction
Fractional Fourier transform (FrFT) maps the signals represented in the time domain to

the signals represented in a domain corresponding to a line in the time frequency plane [1].
This line is obtained by rotating the x-axis of the time frequency plane by a certain angle.
When the rotational angle is an integer multiple of  plus or minus half , then this line is the
frequency axis of the time frequency plane and the signals are represented in the frequency
domain. When the rotational angle is an integer multiple of , then this line is the time axis of
the time frequency plane and the signals are represented in the time domain. In general, the
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rotational angle could be any real number. Hence, this line could be inclined between the time
axis and the frequency axis of the time frequency plane and the signals are represented in a
domain which is partly a time domain and partly a frequency domain. Therefore, the FrFT can
be understood as the generalization of both the Fourier transform (FT) and the time domain
linear operations. As a result, the performances of all the existing applications based on either
the FT or the time domain linear operations can be improved or maintained if the FT or the
time domain linear operations is replaced by the appropriate FrFT. Because of this reason,
many signal processing applications based on the representations of the signals in the DFrFT
domains such as the filtering of signals [2]-[5], the sampling and the reconstructions of
signals [6]-[8], the watermarking as well as the encryptions and the decryptions of images
[9]-[10], the compressions of magnetic resonance images (MRIs) [11]-[13], etc, have been
developed.

On the other hand, recent developed techniques on the sparse signal representations
have been applied to many signal processing applications. It is well known that if the energies
of the signals are only localized in few components, then the signals can be sparsely and
efficiently represented [14]. For the compression applications, since only few coefficients are
used for the representations of the signals, the coding gains are very high. For the denoising
applications, as the signals are localized in few coefficients, the total numbers of coefficients
corrupted by the noises are small. Hence, the signal to noise ratios are also very high.
Therefore, the sparse representation plays an important role in the signal processing
community. However, in general signals being sparse in the time domain are not sparse in the
frequency domain and vice versa [14]. Also, many signals are neither sparse in the time
domain nor sparse in the frequency domain, but they are sparse in the domains corresponding
to some lines in the time frequency plane. In this case, the signals can be sparsely represented
via performing the DFrFTs [15]-[17]. However, the optimal orders of the DFrFTs are
unknown. That is, the optimal angles required to be rotated on the x-axis of the time
frequency plane are unknown. If the DFrFTs are chosen with the inappropriate orders, then
the transformed signals may not be sparse. In this case, the efficiencies of the representations
of the signals could be very poor. For the compression applications, the coding gains will be
very low. For the denoising applications, the signal to noise ratios will be also very low.
Because of this reason, this motivates us to find the optimal orders of the DFrFTs so that the
signals can be the sparsely and efficiently represented. In this case, the performances of the
existing applications such as the compression applications and the denoising applications
[11]-[13], [18] can be further improved.

In recent years, the sparse representations of signals based on the overcomplete
transforms have attracted a lot of attentions. An overcomplete transform is to map the low
dimensional signals in the time domain to the high dimensional signals in the transformed
domain [19]. Among them, the overcomplete wavelets are the common overcomplete
transforms used in the signal processing community. However, as the overcomplete wavelets
are not memoryless, so the averaging effects will be introduced. Besides, there are some
existing memoryless overcomplete transforms such as those based on the KSVD dictionary
[20]. These overcomplete transforms are obtained via performing the training on the data sets.
However, the vectors of these overcomplete transform matrices do not associate with any
physical meaning. Therefore, it is hard to persuade the experts in other fields to apply these
overcomplete transforms in their applications. On the other hand, the DFrFTs can represent
the signals as the sums of the components in the time frequency plane. In particular, if the
frequencies of the signals are linearly related to their times, then only few components in the
time frequency plane can be used to represent the signals and the signals are sparsely
represented. These components are in the lines of the time frequency plane. The direct
proportional constants between the times and the frequencies of the signals are related to the
slopes of the lines where these lines can be obtained by rotating the x-axis of the time
frequency plane. Therefore, the sparse components can be interpreted as the signal
components where their frequencies are linearly related to their times. It is worth noting that
different orders of the DFrFTs correspond to different direct proportional constants relating
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the frequencies and the times of the vectors of DFrFT matrices [1]. If different DFrFTs with
different orders are employed for the representations, then a boarder class of signals can be
represented. These physical interpretations of the signal representations help the experts in
other fields to understand how the frequencies of the signals are related to their times. As a
result, they can apply the DFrFTs to solve their problems in their fields. Because of these
properties, this motivates us to design an overcomplete transform using different DFrFTs with
different orders.

This paper proposes an optimal design of an overcomplete transform consisting of
different DFrFTs with different orders for the sparse representations of the signals. The design
of the orders of the DFrFTs was first proposed in [17]. Since the elements in the overcomplete
transform matrix are expressed in term of the highly nonlinear polynomials of the
trigonometric functions of the orders of the DFrFTs, the design problem is highly nonlinear
and nonconvex. In general, it is very challenging to find the globally optimal solutions of the
nonconvex optimization problems [21]. Moreover, the 1L norm operator is usually used for
formulating the sparse criteria. As the 1L norm operator is not differentiable, the design
problems are actually the nonsmooth optimization problems [22]. In this case, the
conventional gradient descent approaches cannot be directly applied for finding the solutions
of the nonsmooth optimization problems. Furthermore, since the transformed vectors can be
broken down into the sub-vectors, the optimal transformed vectors can be obtained by finding
the individual optimal sub-vectors. It is worth noting that each sub-vector is obtained by
computing the matrix multiplication of the corresponding DFrFT matrix to the corresponding
input vector. As the same input vector is multiplied to all the DFrFT matrices, all these
individual optimal sub-vectors as well as all the optimal DFrFT matrices will be the same. To
understand this phenomenon more, as the orders of the DFrFTs are in a continuous set, the
feasible set of the optimization problem is continuous. Since the objective function is also
continuous, the optimal orders of the DFrFTs will be localized within a small neighborhood
even though they are different. However, this is not meaningful for practical applications.
Therefore, this situation should be avoided. To address this issue, it is required to impose
certain constraints to the optimization problem such that these optimal orders of DFrFTs are
different and the absolute differences among them should be large enough to separate from
each others. Therefore, this paper proposes to impose the parameter free constraints to the
optimization problem to avoid all the orders of the DFrFTs to be the same and guarantee that
they are separated from each others. In particular, the constraints that the objective function
being either stationary (Here, the stationary points are the points where the gradients of the
objective function evaluated at these points are equal to zero.) or nondifferentiable at the
optimal orders of the DFrFTs are imposed to the optimization problem. In this case, the
feasible set of the optimization problem is discrete. However, this results to the optimization
problem subject to the XOR of two constraints. Nevertheless, this is not a conventional
optimization problem. The existing optimization algorithms cannot be directly applied for
finding the globally solution of this optimization problem. Therefore, it is required to propose
a new method for finding the solution of this optimization problem.

To handle the above difficulties, the optimal design of the orders of the DFrFTs is
reformulated as an optimal frequency sampling problem. The solution of this optimal
frequency sampling problem is found via finding the roots of a set of harmonic functions. The
outline of the rest of this paper is as follows. The DFrFT is reviewed in Section 2. The
formulation of the design problem is presented in Section 3. A new method for finding the
globally optimal solution of the optimization problem is shown in Section 4. An application
example is illustrated in Section 5. Finally, a conclusion is drawn in Section 6.

2. Review on DFrFT
Suppose that there are K discrete time finite length training signals and assume that all

these training signals have the same lengths. Let N be the lengths of these training signals
and  kx n for 0, , 1n N  and for 0, , 1k K  be the impulse responses of these
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training signals. In this paper, these training signals expressed in both the time domain and the
DFrFT domains are represented in the vector form. Let

   0 , , 1   
T

k k kx x Nx for 0, , 1k K  (1)
be the vector form of these training signals. Here, the superscript " T " denotes the
transposition operator. Denote a b and a bC  as the set of a b real valued matrices and
the set of a b complex valued matrices, respectively. Let N NC

F be a DFrFT matrix
with the order  ,    .

There are many different definitions of DFrFTs [23], [24] and employing different
definitions of DFrFTs will result to different transformed signals. However, it is found that the
differences among the transformed signals based on different definitions of the DFrFTs are
very small. It is worth noting that the DFrFT matrices can be expressed in the following form
for all the definitions of the DFrFTs:

 j Tdiag e 


 βF E E . (2)
However, different definitions of the DFrFTs correspond to different E . Here, E are the
real valued unitary matrices which are independent of  . That is:

T T
N EE E E I , (3)

where NI denotes the N N identity matrix,  diag z denotes the diagonal matrix with

its diagonal elements being equal to the elements of z and je β is denoted as
0

1N

j

j

j

e
e

e





 

 
   
  

β  , (4)

in which    0 1, , 0, , 1T T
N N    β   and n for 0, , 1n N  are also

independent of  .
The definition of the DFrFT presented in this paper is based on that shown in [23]. Let

nu for 1, ,n N  be the column vectors of E .Then, E can be obtained by performing
the following procedures.
Step 1: Define S and P as two N N matrices as follows:

 

2 1 0 0 1
21 2cos 1 0 0

40 1 2cos 0 0

2 1
1 0 0 1 2cos

N

N

N
N







 
 

     
 

      
 
 
  
  
   

S







     



(5)

and
2 0 0 0 0
0 1 0 0 1

1 0 0 1 1 0
2

0 0 1 1 0
0 1 0 0 1

 
 
 
 

  
 
  

  

P





     



. (6)
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Step 2: Since S and P are defined in the above, 1PSP can be evaluated. It can be
checked easily that 1PSP is a block diagonal matrix. Define the upper diagonal block matrix
and the lower diagonal block matrix as Ev and Od , respectively. That is:

1  
  
 

Ev 0
PSP

0 Od
. (7)

Here, both Ev and Od are two
2 2
N N
 matrices.

Step 3: Individually find the eigenvalues and the corresponding eigenvectors of Ev and Od .

Here, the dimensions of the eigenvectors of both Ev and Od are
2
N .

Step 4: Individually arrange the eigenvectors of Ev and Od according to the descending
orders of their corresponding eigenvalues. Denote the arranged eigenvectors as ke and ko

for 0, , 1
2
Nk   , respectively.

Step 5: Set

2

TT T
k k   u P e 0 (8)

and

2 1

TT T
k k    u P 0 o (9)

for 0, , 1
2
Nk   . Here, the dimensions of ku for 0, , 1k N  are N . Then, E is

defined as:
 0 1, , N E u u . (10)

For the further details, please refer to Table IV in [23].

3. Problem formulation
Suppose that the overcomplete transform consists of M DFrFTs with different orders.

Denote the vector of the orders of the DFrFTs as
    1

0 1, , ,T M
M    
  α  (11)

and the overcomplete transform matrix as

0

1M

NM NC


 



 
 

  
 
 

F

F
F
 , (12)

where
m

F are the DFrFT matrices with the orders of their transforms  ,m    for
0, , 1 m M . Here, the overcomplete transform matrix is constructed by putting these

DFrFT matrices together such that the total number of the rows of the overcomplete transform
matrix is more than the total number of its columns. Let 1MN

k C c for 0, , 1k K  be
the corresponding transformed vectors. Then, these transformed vectors can be represented as
follows:

k kFx c for 0, , 1k K  . (13)
The objective of the overcomplete transform matrix design problem is to find an optimal α
(which is equivalent to find the optimal DFrFT matrices) such that the transformed vectors kc
are sparse.

The common criteria for formulating the sparse objective functions are via the 0L norm
operator. For this case, the objective is to find the optimal orders of the DFrFTs such that the
sum of all the 0L norms of the transformed vectors is minimized. However, the globally
optimal solutions of the 0L norm optimization problems are in general not uniquely defined.
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Hence, it is very difficult to select the globally optimal solutions. On the other hand, as
discussed in [25], [26], the 0L norm optimization problems can be approximated by the
corresponding 1L norm optimization problems and the solutions of the corresponding 1L
norm optimization problems will be also sparse if the restricted isometry conditions are
satisfied. Therefore, this paper employs the 1L norm operator to formulate the optimal
design of the orders of DFrFTs.

Since kc are complex valued, it is required to define an 1L norm operator for the
complex valued vectors. Let

,0 , 1, ,
T

k k k MNc c    c  for 0, , 1k K  . (14)
The most common definition on the 1L norm operator for the complex valued vectors is:

    1 2 2

, ,1,
0

MN

k k n k n
n

real c imag c




 c


. (15)

However, as k kFx c for 0, , 1k K  , 2 2 2

1, 1,k k kM c Fx x
 

for 0, , 1k K  .
It can be seen that the two norms of the transformed vectors are independent of the orders of
the DFrFTs. Therefore, the orders of the DFrFTs cannot be designed via the formulation with
this definition of the 1L norm operator. Also, as the phases of kc for 0, , 1k K  cannot
be computed from their norm values, there is no control on the phase parts of the transformed
vectors via this definition of the 1L norm operator. Moreover, unlike the conventional FT, kc
for 0, , 1k K  are not necessary to be the conjugate symmetric vectors for the real
valued signals. For some applications such as the compression applications, some transformed
coefficients are dropped. In this case, the reconstructed signals may be complex valued and
severe distortions will be resulted. Similarly, for the communication applications, the noises
are corrupted to the transformed coefficients. In this case, the transformed signals will be
complex valued and the phase distortions of the decoded signals will also be very severe.

To address this problem, this paper proposes a new definition of the 1L norm operator
for complex valued vectors as follows:

   
1 1

, ,1
0 0

MN MN

k k n k n
n n

real c imag c
 

 

  c . (16)

Here, both  kreal c and  kimag c are the real valued vectors. As

   1 1 1k k kreal imag c Fx Fx , they only involve the conventional 1L norm operator

instead of the square root of the conventional 2L norm operator. Also, the objective function
is convex with respect to F . Because of these nice properties, this paper applies this new 1L
norm operator to kc for 0, , 1k K  for designing the orders of the DFrFTs. Now, the
optimal design of the orders of the DFrFTs is formulated as the following optimization
problem:
Problem (Q )

min
α

   
1 1 1

, ,
0 0 0

K MN MN

k n k n
k n n

real c imag c
  

  

 
 

 
   , (17a)

subject to   1
0 , , T M

M   α  , (17b)

0

1M

NM NC


 



 
 

  
 
 

F

F
F
 (17c)

and k kFx c for 0, , 1k K  . (17d)
It is worth noting that the feasible set of Problem (Q ) is continuous. That means, if an

optimal order of the DFrFT is found, then all the points in a small neighbor of this optimal
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order of the DFrFT could be the rest of the other optimal orders of the DFrFTs. However, this
case should be avoided. Denote the optimal orders of the DFrFTs as m

 for 0, , 1m M  .
It is required to find m

 for 0, , 1m M  such that

m n   for m n and for  , 0, , 1m n M  . (18)
To address this difficulty, it is worth noting that the objective function of the optimization
problem evaluated at the locally optimal orders of the DFrFTs is either nondifferentiable or
differentiable with their first order derivatives being equal to zero and their second order
derivatives being positive. However, the required computational power for identifying those
differentiable points with their first order derivatives being equal to zero and their second
order derivatives being positive is very large. Therefore, this paper only identifies the
stationary points and the nondifferentiable points of the objective function at the first stage of
the algorithm. As the gradients of the objective function evaluated at those stationary points
are equal to zero, we have:

    1
1

1 10
lim = lim 0m

m m
m m m m

K

k k
km m

d d real imag
d d


 

     



  

 
c

F x F x


. (19)

On the other hand, the right hand limits of the gradients of the objective function are not equal
to the left hand limits of the gradients of the objective function when the gradients of the
objective function are evaluated at those nondifferentiable points. That is:

1 1lim = limm m

m m m mm m

d d

d d
 

        


c c 
. (20)

It is obvious to see that the set of the orders of the DFrFTs satisfying either the stationary
condition or the nondifferentiable condition consists of a finite number of points. In other
words, the feasible set of the optimization problem is discrete. Therefore, all the points in a
small neighbor of the globally optimal solution of the optimization problem but not including
this globally optimal solution are not in this feasible set. Because of this nice property, the
above issue is solved. Therefore, the above two constraints are imposed to the optimization
problem. Now, Problem (Q ) is reformulated as follows:
Problem (P )

min
α

   
1 1 1

, ,
0 0 0

K MN MN

k n k n
k n n

real c imag c
  

  

 
 

 
   , (21a)

subject to   1
0 , ,    T M

Mα , (21b)

0

1M

NM NC


 



 
 

  
 
 

F

F
F
 , (21c)

k kFx c , (21d)

and 1lim =0m

m m m

d

d


  

c
or 1 1lim = limm m

m m m mm m

d d

d d
 

        


c c 
. (21e)

Here, Problem ( P ) is subject to four conditions. The first three conditions defined in (21b),
(21c) and (21d) are required to be satisfied simultaneously. However, the fourth condition
defined in (21d) consists of two parts and these two parts are not satisfied simultaneously.
Either one of these two parts is satisfied.

Now, define
         cos 0 , ,cos 1 ,sin 0 , ,sin 1

T

m m m m mN N           θ   for 0, , 1m M  (22)
and

 0 1, , M θ θ θ . (23)
Then, the following theorem enables us to convert the highly nonlinear objective function of
α to a linear objective function of θ .
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Theorem 1
2 2NK N X such that Problem ( P ) is equivalent to the following optimization

problem:
Problem (P )

min
θ

1

1
0

M

m
m




 Xθ , (24a)

subject to          cos 0 , ,cos 1 ,sin 0 , ,sin 1
T

m m m m mN N           θ   , (24b)

 0 1, , M θ θ θ , (24c)

and 1lim =0m

m m m

d

d


  

c
or 1 1lim = limm m

m m m mm m

d d

d d
 

        


c c 
. (24d)

Proof:
Let

 0, , 1 TN β  (25)
and

,0 , 1, ,
T T

k k k N kx x    x E x   for 0, , 1k K  . (26)
Then, we have:

   m m

m

j j
k k kdiag e diag e 


  β βF x E x E x  (27)

for 0, , 1m M  and for 0, , 1k K  . Denote

 
,0,0 ,0, 1

, 1,0 , 1, 1

k k N

k k

k N k N N

x x
diag

x x



  

 
    
  

X E x


   


for 0, , 1k K  . (28)

Then, we have:
m

m

j
k ke




 βF x X for 0, , 1m M  and for 0, , 1k K  . (29)
Denote

0

1

a

K 

 
   
  

X
X

X

  (30)

and
a NK N

NK N a





 
  
 

X 0
X

0 X




 . (31)

Then, we have
 

  
 

  

 

  

 

  

 

1 1

1
0 0

1

1

0

1 1

1

cos 0

cos 1

sin 0

sin 1

cos 0 sin 0

cos 1 sin 1

m

m

M M
ma NK N

m
m m mNK N a

m

m mM

a a
m

m m

j
a

N

N

N N

real e imag









 

 

 


  







  
 
 
   
      
 
 
   

     
    

     
            

 

 



β

X 0
Xθ

0 X

X X

X









  

   
1

10

m

M
j

a
m

e 





 βX
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    
    

0 01

0
1 11 1

1 1

1 10 0
1 1

1 10 0

m m

m m

m m

M
j j

m
K K

M K
j j

k k
m k
M K

k k
m k

real e imag e

real e imag e

real imag

 

 

 


 


 

 
 

 

 

 

       
               
              

 

 







β β

β β

X X

X X

X X

F x F x

 

. (32)

The result follows directly. This completes the proof. 
It can be seen in (28) that there are N elements in each row of kX for 0, , 1k K  .

By defining a finite impulse response filter with the values of its impulse response equal to
the values of these N elements of a row of kX for 0, , 1k K  , and denoting the
frequency response of the filter corresponding to the thp row of kX as  ,k pX  for

0, , 1k K  and for 0, , 1p N  , then we have

 
1

, , ,
0

N
j n

k p k p n
n

X x e 






 . (33)

Hence,

    

 

1 1 1

1 1 10 0 0

0 0
,0,0 ,0, 1 ,0,0 ,0, 1

1
, 1,0 , 1, 1 , 1,0 , 1, 1

1

m m

m m

m

M M K
j j

m k k
m m k

j j
k k N k k N

j N
k N k N N k N k N N

real e imag e

x x e x x e
real imag

x x x xe

 

 



  
 

  

 
 

 
     

 

     
           
          

  β βXθ X X

 
      

   

      

1 1

0 0 1

1

1 1 1 1 1

, , , ,
0 0 0 0 0

1 1 1

, ,
0 0 0

m

m m

M K

m k j N

M K N N N
j n j n

k p n k p n
m k p n n

M K N

k p m k p m
m k p

e

real x e imag x e

real X imag X



 

 

 

   

    
 

    

  

  

   
   
   
       

    
          

 



  





 

.(34)

It is worth noting that the signals represented in the frequency domain are 2 periodic, so
the frequency domain can be characterized by  ,  . On the other hand, the set of the
orders of the DFrFTs is also characterized by  ,  . From (34), we can see that the

objective function of Problem ( P ) is       
1 1 1

, ,
0 0 0

M K N

k p m k p m
m k p

real X imag X 
  

  

   . Therefore,

finding the globally optimal solution of Problem ( P ) is equivalent to find M optimal
sampling frequencies  ,m    for 0, , 1m M  such that

      
1 1 1

, ,
0 0 0

M K N

k p m k p m
m k p

real X imag X 
  

  

   is minimized. In other words, it is equivalent to

find  ,m    for 0, , 1m M  such that the absolute sum of both the real parts and
the imaginary parts of the frequency responses of all these NK filters evaluated at these
sampling frequencies is minimized.

However, Problem ( P ) is different from the conventional filter design problems [21],
[22]. This is because the filter coefficients in the conventional filter design problems are
unknown and they are required to be determined. Here, the filter coefficients in Problem ( P )
are known. However, the sampling frequencies are unknown and they are required to be
determined. Also, for the conventional filter design problems, the domains of the frequency
responses of the filters are  ,  . It is a continuous set. On the other hand, as the
constraints on the orders of the DFrFTs are imposed to Problem (P ), the orders of the DFrFTs
are in a discrete set. Moreover, for the conventional filter design problems, we have:
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     

       

1 1

, , , , ,
0 0

, ,0 , ,0

, , 1 , , 1

cos sin

cos 0 , , cos 1 sin 0 , , sin 1

N N

k p k p n k p n
n n

k p k p

k p N k p N

X x n j x n

x x
N j N

x x

  

   

 

 

 

 

   
               
      

 

   

. (35)

Since the optimization variables of the conventional filter design problems are the filter
coefficients, the objective functions of these optimization problems are the linear functions of
the optimization variables. However, the objective function of Problem (P ) is:

     

 

 

 

 

1 1

, , , , ,
0 0

, ,0 , , 1 , ,0 , , 1

cos sin

cos 0 sin 0
, , , ,

cos 1 sin 1

N N

k p m k p n m k p n m
n n

m m

k p k p N k p k p N

m m

X x n j x n

x x j x x
N N

  

 

 

 

 

 

 

   
             
       

 

   

. (36)

Since the optimization variables of the optimal sampling problem are the sampling frequencies
and the objective function of the optimal sampling problem involves the sine and cosine
functions of the optimization variables, the objective function of Problem ( P ) is a nonlinear
function of the optimization variables.

In fact, Problem (P ) is a nonsmooth optimization problem. As discussed in Section 1, the
conventional gradient descent approaches [22] cannot be directly applied for finding its
locally optimal solutions. Moreover, Problem ( P ) is a nonconvex optimization problem. In
general, it is very difficult to find its globally optimal solution [21]. This is because the total
number of the locally optimal solutions are unknown and it is different to guarantee to reach
all the locally optimal solutions. Furthermore, one of the constraints of Problem (P ) is neither
the conventional equality nor the conventional inequality constraints. In fact, it involves the
XOR of two constraints. Existing algorithms cannot be directly applied for finding the
solution of this optimization problem due to the XOR of two constraints. To tackle these
difficulties, a new solution method is proposed below.

4. Solution method
Define

   
1

, , ,
0

cos
N

c
k p k p q

q
f x q 





 (37)

and

   
1

, , ,
0

sin
N

s
k p k p q

q
f x q 





 (38)

for 0, , 1k K  , for 0, , 1p N  and  ,     , as well as

      
1 1

, ,
0 0

K N
c s
k p k p

k p
f f f  

 

 

  . (39)

From (33), we have
    , ,

c
k p k pf real X   (40)

and
    , ,

s
k p k pf imag X    . (41)

It is obvious to see that the objective function of Problem ( P ) is

        
1 1 1 1

, ,
0 0 0 0

M K N M

k p m k p m m
m k p m

real X imag X f  
   

   

    . Hence, in order to minimize the

objective function of Problem ( P ), it is equivalent to find M different sampling frequencies
 ,m    for 0, , 1m M  in the discrete feasible set defined by either (19) or (20)
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such that  
1

0

M

m
m

f 



 is minimized. Recall the above discussion, the objective function of the

optimization problem is either stationary or nondifferentiable when it is evaluated at the
locally optimal sampling frequencies. For the nondifferentiable points, since the harmonic
functions are always differentiable, the objective function is not differentiable only at the
points where the absolute operators are not differentiable at these points. This implies that the
operands inside the absolute operators in the objective function are equal to zero when they are
evaluated at these sampling frequencies. Hence, in order to find these nondifferentiable points,
it only requires to find the sampling frequencies such that the operands inside the absolute
operators in the objective function are equal to zero. For the stationary points, the operands
inside the absolute operators in the objective function are not equal to zero when they are
evaluated at these sampling frequencies, but the gradient of the objective function is equal to
zero when it is evaluated at these sampling frequencies. However, as the objective function
involves the sum of the absolute values of the polynomials of the harmonic functions and the
signs of the polynomials of the harmonic functions are not known before the sampling
frequencies are determined, computing the gradient of the objective function is challenging.
To address this difficulty, it is worth noting that the objective function is piecewise
differentiable and the points at the boundaries of the pieces are the nondifferentiable points. As
these nondifferentiable points are already found and the signs of the polynomials of the
harmonics functions within these pieces remain unchanged, the signs of the polynomials of the
harmonics functions within these pieces can be found by evaluating the signs of the
polynomials of the harmonics functions just around these nondifferentiable points. As a result,
the objective function can be expressed as the sum of the signs of the polynomials of the
harmonics functions just around these nondifferentiable points multiplying the polynomials of
the harmonic functions. Since the derivatives of the polynomials of the harmonic functions are
still the polynomials of the harmonic functions, finding the stationary points of the objective
function becomes finding the roots of a new set of the polynomials of the harmonic functions.
The details are as follows:

Let ,
c
k pL for 0, , 1k K  and for 0, , 1p N  be the total number of the roots

of  ,
c
k pf  in  ,  . Denote these roots as

,, , ck p

c
k p l

 for , ,0, , 1c c
k p k pl L  . Also, denote

the set of these roots as

 
,

, , ,0 , , 1
, , c

k p

c c c
k p k p k p L

 


   . (42)

Similarly, let ,
s
k pL for 0, , 1k K  and for 0, , 1p N  be the total number of the

roots of  ,
s
k pf  in  ,  . Denote these roots as

,, , sk p

s
k p l

 for , ,0, , 1s s
k p k pl L  . Also,

denote the set of these roots as

 
,

, , ,0 , , 1
, , s

k p

s s s
k p k p k p L

 


   . (43)

Define    
1 1

, ,
0 0

,
K N

c s
k p k p

k p

 
 

 

      . Suppose that the elements in  are arranged in the

ascending order. Let
1 1

, ,
0 0

2
K N

s c
k p k p

k p
L L L

 

 

   be the total number of elements in  . Define

these sorted elements as i for 0, , 1i L  . That is, i j  for i j and for

 , 0, , 1i j L  . Then, we have

      , , ,signc c c
k p k p i k pf f f   (44)

 1,i i     , for 0, , 2i L  , for 0, , 1k K  and for 0, , 1p N  , and

      , , ,signs s s
k p k p i k pf f f   (45)

 1,i i     , for 0, , 2i L  , for 0, , 1k K  and for 0, , 1p N  ,
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as well as

            
1 1

, , , ,
0 0

sign sign
K N

c c s s
k p i k p k p i k p

k p

f f f f f    
 

 

 

  (46)

 1,i i     and for 0, , 2i L  . Define

   
1

, , ,
0

sin
N

c
k p k p q

q

f x q q 




  (47)

for 0, , 1k K  and for 0, , 1p N  , and

   
1

, , ,
0

cos
N

s
k p k p q

q

f x q q 




 (48)

for 0, , 1k K  and for 0, , 1p N  .
Then,

           

          

1 1

, , , ,
0 0

1 1

, , , ,
0 0

sign sign

sign sign

K N
c c s s
k p i k p k p i k p

k p

K N
c c s s
k p i k p k p i k p

k p

d d df f f f f
d d d

f f f f

    
  

   

 
 

 

 
 

 

   
 

 



  
(49)

 1,i i     and for 0, , 2i L  . Denote the total number of the roots of  d f
d




for

 1,i i    as ˆ
iL for 0, , 2i L  . Denote these elements as

, ii j for ˆ0, , 1i ij L  and for
0, , 2i L  . Denote the set of the sampling frequencies corresponding to these nondifferential

points and these stationary points as

 
0 1 2
ˆ ˆ ˆ0 0 ,0 1 1,0 2 2 ,0 10 , 1 1, 1 2 , 1

ˆ , , , , , , , , , ,
LL L LL L L L         
     

 


      . (50)

To characterize the set ̂ , it only requires to find the roots of (37), (38) and  d f
d




 1,i i     and for 0, , 2i L  . As all these functions are the polynomials of the harmonic

functions, the elements in ̂ can be found efficiently via applying the existing methods for
finding the roots of the polynomials of the harmonic functions. In particular, the polynomials
of the harmonic functions are expressed as the conventional polynomials via the half angle
formula [27], [28]. Then, the roots of these conventional polynomials are found via the
Newton's method [29]. More precisely, the guesses of the solutions of the polynomials are
initialized. Then, these guesses of the solutions are updated by subtracting the current guesses
of the solutions to the ratios of the functional values to the gradients of the functions
evaluated at these current guesses. By iterating this procedure until the algorithm converges,
the roots of the polynomials are found. By generating the other initial guesses, different roots
may be obtained. By repeating these procedures, eventually all the roots of the polynomials
are found.

Once ̂ is determined, the functional values of these nondifferentiable points and these
stationary points are computed. Next, these nondifferentiable points and these stationary
points are sorted in the ascending order. Finally, the first M nondifferentiable points or the
stationary points with their second order derivatives being positive are selected. Denote the
set of these M selected points as  . Although there are  

2

0

ˆ1 1
L

p
p

L




 


points in ̂ in

which 2

0

ˆ
L

p
p
L







points are the stationary points and L points are the nondifferential points, it is

not required to compute the second order derivatives of all these 2

0

ˆ
L

p
p
L







stationary points.

Only some points are required to compute their second order derivatives. Therefore, the
required computational power of the proposed algorithm is very low. By constructing the
optimal overcomplete transform using the DFrFTs with different orders, the transformed
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vectors are sparse. Compared to the existing penalized techniques, our proposed method is
can find the optimal orders of the DFrFTs in a more effective and efficient manner.

The result is summarized in the following theorem:
Theorem 2

The M elements in  are the M globally optimal orders of the DFrFTs.
Proof:

Since the M elements in  are the nondifferentiable points and the stationary points
with their second order derivatives being positive and they have been considered in the whole
frequency range  ,  , these M elements in  are the M globally optimal orders of
the DFrFTs. This completes the proof. 

The algorithm can be summarized as follows:
Algorithm 1
Step 1:

Based on a predefined definition of the DFrFT, compute the matrix E .
Step 2:

Compute T
k kx E x for 0, , 1k K  and

 
,0,0 ,0, 1

, 1,0 , 1, 1

k k N

k k

k N k N N

x x
diag

x x



  

 
    
  

X E x


   


for 0, , 1k K  .

Step 3:
Find the roots of the following equations using the method summarized in Algorithm 2:

   
1

, , ,
0

cos
N

c
k p k p q

q
f x q 





 for 0, , 1k K  and for 0, , 1p N  ,

and

   
1

, , ,
0

sin
N

s
k p k p q

q
f x q 





 for 0, , 1k K  and for 0, , 1p N  .

Composite the discrete sets
,
c
k p and

,
s
k p for 0, , 1k K  and for 0, , 1p N 

using the roots of  ,
c
k pf  and  ,

s
k pf  , respectively.

Step 4:
Composite the discrete set  by union ,

c
k p and ,

s
k p for 0, , 1k K  and for

0, , 1p N  as well as the set of the boundary points  ,  . Sort the elements in  in
the ascending order and obtain the elements i for 0, , 1i L  .
Step 5:

Find the roots of the following equation:

           

          

1 1

, , , ,
0 0

1 1

, , , ,
0 0

sign sign

sign sign

K N
c c s s
k p i k p k p i k p

k p

K N
c c s s
k p i k p k p i k p

k p

d d df f f f f
d d d

f f f f

    
  

   

 
 

 

 
 

 

   
 

 



  

 1,i i     and for 0, , 2i L  using the method summarized in Algorithm 2. Composite

the set ̂ by union  and the set of the roots of  d f
d




.

Step 6:
Find the first M nondifferentiable points or the stationary points with their second

order derivatives being positive. Composite the set  using these M points.
Step 7:

Construct the optimal overcomplete transform using the DFrFTs with these M orders.
Algorithm 2
Step 1:
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The polynomials of the harmonic functions are expressed as the conventional
polynomials via the half angle formula. Denote an obtained polynomial as  g x and the

order of this polynomial as N . Define an acceptable value on the absolute differences of the
obtained solutions between two consecutive iterations as  .
Step 2:

Initialize 1m  .
Step 3:

Initialize 1k  and a guess of a solution of the polynomial as *
,k mx .

Step 4:

Compute  
 

*
,

*
,* *

1, ,

k m

k m
k m k m

x x

g x
x x

dg x
dx





  and iterate this step until * *
1, ,k m k mx x    .

Step 5:
Compute the order of the DFrFT based on the obtained solution in Step 4 using the

inverse half angle formula.
Step 6: Increment the value of m and go back to Step 3 until m N  .

Since Algorithm 2 is based on the iterative based Newton method, the convergence of
the algorithm depends on the convergence condition of the Newton method. In particular, the

algorithm is guaranteed to be converged if  
*
,

1
k mx x

dg x
dx



 for all k and for 1, ,m N  .

Besides, as there are  
2

0

ˆ1 1
L

p
p

L




 


elements in ̂ in which  and  are the two

boundary frequencies in ̂ , only  
2

0

ˆ1 1
L

p
p

L




  


sampling frequencies are required to be

computed. Therefore, the required computational power for finding all the stationary points
and the nondifferential points is bounded by  

2

0

ˆ1 1
L

p
p

L




  


multiplied to the required

computational power for finding a root of a polynomial with its order being bounded by the
maximum order of all the polynomials. As discussed in the above, only some points are
required to compute their second order derivatives, so the total required computational power
of our proposed method is low.

5. Application example
In this Section, an example on a frequency modulated transmitted signal is illustrated to

demonstrate the application value of the proposed method.
Let  m t ,  r t ,  t , A and c be the message, the transmitted signal, the

complex valued zero mean additive white Gaussian noise, the gain of the transmitted signal
and the frequency gain of the transmitted signal, respectively. That is:

 
 

 
t

j c m d
r t Ae t

 


 
 
   . (51)

We have

 
 

 
n

k
j c m k

r n Ae n

 
  
 


  (52)
for the corresponding discrete time signal. Here, 1A  is chosen for the illustration because
of the normalization reason. c is set at 0.3. This is because it is small enough to prevent the
occurrence of the overflow of the phase out of the 2 range. A complex valued zero mean
additive white Gaussian noise is added to the signal. It is used to model the noisy
environments in the practical situations. The variances of both   real n and
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  imag n are set at 0.1. It is the common noise level used in the practical situations. To
demonstrate the application value of the proposed method, the image “Lena” with the size
256 256 is transmitted. The first 255 columns of the image are regarded as the training
signals and the last column of the image is regarded as the test signal. That is, 256N  and

255K  . Now, the last column of the image is represented in the form of (52). Denote the
transmitted test signal as  testx n for 0, , 1n N  . To construct the overcomplete
transform, it is required to determine the value of M . It is worth noting that M is the
overcomplete ratio. That is, it is the ratio of the total number of the rows of the overcomplete
transform matrix to that of its columns. As the transformed signal based on a positive order of
the DFrFT is related to that based on the corresponding negative order of the DFrFT, M
should be chosen as twice of the overcomplete ratio. Besides, the larger the value of M
results to a more sparse representation of the signal, but it requires a more computational
effect. Therefore, M is used to tradeoff between the sparsity of the representation and the
computational cost. In many practical applications, the overcomplete ratios are either chosen
as two or three. Therefore, both 4M  and 6M are employed for the illustration in this
paper.

According to (34), we define the corresponding objective function as follows:

        
1 1

, ,
0 0

K N

k p k p
k p

J real X imag X  
 

 

     ,     . (53)

From (17a), (32) and (34), we can see that the functional value of  J  is equal to the sum
of the 1L norms of the real parts and the imaginary parts of all the transformed vectors. This
is also equal to the objective functional value of Problem ( Q ). Figure 1 plots  J 

 ,     and for 4M  . Here, the definition of the DFrFT is based on that discussed in
[23]. It can be seen that the two positive values of  corresponding to the lowest two
objective functional values of  J  in which  J  are either nondifferentiable or
stationary with their second order derivatives being positive are 0 0.2060  and

1 0.2780  . By using these two orders of DFrFTs, 0

1





 
  
  

F
F

F
can be constructed. As

k kFx c for 0, , 1k K  , kc can be represented as the linear combination of the
columns of F with the linear combinational coefficients being defined by kx . Here, the
columns of

0
F and

1
F are the basis vectors of the DFrFT matrices using the DFrFTs with

the orders 0 and 1 , respectively. These basis vectors tell the corresponding relationships
between the times and the frequencies of the signal. As a result, this representation exploits
this important time frequency information of the signal. On the other hand, since these two

values of  are not in the set , , 0, ,
2 2
     

 
, this implies that the signal with the

highest sparsity is neither represented in the time domain nor in the frequency domain.
Instead, the signal has the highest sparsity represented in the DFrFT domains with the orders
of the DFrFTs being equal to 0.2060 and 0.2780 . Figure 2a and Figure 2b show the real
parts and the imaginary parts of the coefficients of the signal represented in the time domain,
respectively. This is equivalent to represent the signal in the DFrFT domain using the DFrFT
with 0  . Figure 3a and Figure 3b show the real parts and the imaginary parts of the
coefficients of the signal represented in the frequency domain, respectively. This is equivalent

to represent the signal in the DFrFT domain using the DFrFT with
2
  . Figure 4a and

Figure 4b show the real parts and the imaginary parts of the coefficients of the signal
represented in the DFrFT domain using the DFrFT with 0.2060  , respectively, and
Figure 4c and Figure 4d show the real parts and the imaginary parts of the coefficients of the
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signal represented in the DFrFT domain using the DFrFT with 0.2780  , respectively.
The total numbers of the coefficients with their magnitudes being larger than 10% of their
maximum magnitudes as well as the percentages of these large value coefficients are shown in
Table 1. It can be seen clearly that there are 186 real valued coefficients and 147 imaginary
valued coefficients with their magnitudes being larger than 10% of their maximum
magnitudes for the DFrFT with 0.2060  , which contributes 65.0% of the total number of
the coefficients. On the other hand, there are 158 real valued coefficients and 167 imaginary
valued coefficients with their magnitudes being larger than 10% of their maximum
magnitudes for the DFrFT with 0.2780  , which contributes 63.5% of the total number of
the coefficients. However, there are 92.2%, 78.9% and 78.9% of the coefficients with their
magnitudes being larger than 10% of their maximum magnitudes for the DFrFT with 0  ,

2
  and   , respectively. From here, it can be concluded that the signals represented

in the DFrFT domains with the orders being equal to 0.2060 and 0.2780 are more
sparse than that represented in the time domain, the swapped time domain and in the
frequency domain.

Figure 1.  J  with the definition of the DFrFT discussed in [23].

(a) (b)
Figure 2. (a) The real part coefficients and (b) the imaginary part coefficients of the signal

represented in the DFrFT domain using the DFrFT with 0  .
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(a) (b)
Figure 3. (a) The real part coefficients and (b) the imaginary part coefficients of the signal

represented in the DFrFT domain using the DFrFT with
2
  .

(a) (b)

(c) (d)
Figure 4. (a) The real part coefficients and (b) the imaginary part coefficients of the signal
represented in the DFrFT domain using the DFrFT with 0.2060  . (c) The real part
coefficients and (d) the imaginary part coefficients of the signal represented in the DFrFT

domain using the DFrFT with 0.2780  .
Table 1. The total numbers of the coefficients with their magnitudes being larger than 10% of
their maximum magnitudes as well as the percentages of these large value coefficients with

4M  .
Orders of the
DFrFTs

Total numbers of
large real valued
coefficients

Total numbers of
large imaginary

valued coefficients

Total numbers
of large value
coefficients

Percentages
of large value
coefficients

0  229 243 472 92.2%
0.5  203 201 404 78.9%

  199 205 404 78.9%
0.2060  186 147 333 65.0%
0.2780  158 167 325 63.5%
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On the other hand, as the total number of the local minima of  J  is much more than 4,
there are more than 4 nondifferentiable points and stationary points with their second order
derivatives being positive in ̂ . In fact, one may choose another even value of M which is
larger than 4 and employ more than 2 DFrFT matrices with different orders to construct the
overcomplete transform. Here, if 6M  is chosen, then the obtained three positive values of
the orders of the DFrFTs are 0.2300  , 0.2060  and 0.2180  . In this case, the
total numbers of the coefficients with their magnitudes being larger than 10% of their
maximum magnitudes as well as the percentages of these large value coefficients are shown in
Table 2.
Table 2. The total numbers of the coefficients with their magnitudes being larger than 10%
of their maximum magnitudes as well as the percentages of these large value coefficients

with 6M  .
Orders of the
DFrFTs

Total numbers of
large real valued
coefficients

Total numbers of
large imaginary

valued coefficients

Total numbers
of large value
coefficients

Percentages of
large value
coefficients

0  225 239 464 90.6%
0.5  198 202 400 78.1%

  188 197 385 75.2%
0.2300  178 169 347 67.8%
0.2060  188 144 332 64.8%
0.2180  147 205 352 68.8%

6. Conclusions
The objective of this paper is to design the optimal orders of the DFrFTs and construct

an overcomplete transform using the DFrFTs with these orders for performing the sparse
representations. The design of the orders of the DFrFTs is formulated as an optimization
problem. In order to obtain a practical and a meaningful representation, the DFrFTs should
have different orders. To address this difficulty, the constraint that the objective function
evaluated at these locally optimal solutions is either stationary or nondifferentiable is imposed.
In this case, the continuous feasible set becomes a discrete feasible set. Then, the optimal
order design problem is further reformulated as the optimal frequency sampling problem. In
particular, the absolute sum of both the real parts and the imaginary parts of the frequency
responses of a set of filters evaluated at the sampling frequencies is minimized. By finding the
roots of a set of harmonic functions and sorting the roots of these harmonic functions in the
ascending order, the first M optimal orders of the DFrFTs which are either the
nondifferentiable points or the stationary points with their second order derivatives being
positive are taken as the M globally optimal orders of the DFrFTs. Since there is a finite
number of nondifferentiable points and the stationary points, it only requires to find the roots
of a finite number of harmonic functions. Also, only some orders of the DFrFTs are required
to compute their second order derivatives. Therefore, the total required computational power
of our proposed method is low. From the application viewpoints, as the transformed signals
are represented in the DFrFT domains corresponding to the lines in the time frequency plane,
the designed overcomplete transform can exploit the physical natures of the signals.
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