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Abstract

This work analyzes the discrete solution of Hughes-Hartogs (HH) for the transmission rate max-

imization problem with power constraint in the OFDMA systems and explores mechanisms to reduce

the computational complexity of greedy algorithms. In addition to the solution characterization, a

computational complexity analysis is developed, considering the number of executed operations for

running time purpose. Moreover, we have compared the system capacity via the throughput obtained

with the HH solution, and its variants combined with three complexity reduction mechanisms. These

tools consist of an initial allocation bit vector calculated by rounding the results of the water-filling (WF)

solution, the multiple subchannels per iteration updating, and the adoption of a subchannel grouping

procedure. Our findings indicate that the update of multiple subchannels and the subcarriers grouping

techniques reduce the number of iterations required for convergence of the original HH, with some

throughput degradation. Also, the bit-allocation mechanism based on the WF is deployed as an alternative

to overcome the HH solution, increasing the computational complexity.

Index Terms

Orthogonal frequency-division multiplexing (OFDM), resource allocation, bit-loading, water-filling,

Hughes-Hartogs, discrete multitone (DMT).

I. INTRODUCTION

The orthogonal frequency division multiplexing scheme is an alternative for wireless trans-

mission among channels which suffering from deep fading. However, dividing the transmission
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band into N narrow subchannels generates the optimization problem of choosing the suitable

power on each subchannel that maximizes the transmission rate (optimization criterion).

The rate maximization problem with power constraints analyzed herein was extensively ex-

plored in past works, specially in the context of the wired discrete multitone (DMT) systems,

as well as in the wireless orthogonal frequency division multiplexing access (OFDMA) systems.

Particularly, the OFDMA is based on the same principle of divide the total system bandwidth

in shorter flat fading subchannels but sharing such spectral sub-bands resources with multiple

users.

Associated to these OFDMA features, there is an involved and intricated resource allocation

problem defined by the joint user subcarrier allocation and the respective subcarrier optimal power

allocation. From different perspectives, the complete optimization allocating power, subcarriers,

and bit-loading in multiuser OFDMA scenarios results in an exponential complexity to achieve

optimality [1], [2], [3], [4]. As well known, the optimal solution for the power allocation

problem is the water-filling solution [5], and optimally explored in [6]. But this optimal solution

assumes a non-integer number of allocated bits, which is inefficient on practical scenarios. In

the other extreme, several sub-optimal jointly iterative methods, such as Dinkelbach, Lagrange

dual decomposition algorithms, integer relaxation subcarriers allocation, subcarriers grouping

mechanisms and so forth have been deployed (see [7] and related references inside) aiming at

obtaining implementable resource allocation procedures.

Searching for practical solutions, discrete algorithms classified as bit-loading algorithms have

been developed in the last decades. The optimal bit-loading solution is the Hughes-Hartogs (HH)

algorithm [8], originally proposed for DMT systems. Because it is formulated on an exhaustive

search procedure, the Hughes-Hartogs solution demands a lot of computational resources to be

implemented. To minimize the computational complexity on discrete bit allocation, works such

as [9] have proposed efficient solutions exploring the system margin to compute the result with

less iterations.

Besides the rate maximization with power constraint, other works have studied resource allo-

cation problems with constraints of different nature. Past works such as [10], [11] have proposed

solutions for the power allocation problem admitting simultaneous constraints, including power,

bit error rate (BER) and modulation order.

The authors in [12] present a resource allocation algorithm based on a non-cooperative game

to distribute power and subcarriers in an OFDMA LS-MIMO system, aiming to maximize the
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spectral efficiency of an inter-cell interference environment. The found solution combines a

greedy procedure for subcarriers allocation and the classical water-filling solution to find the

Nash equilibrium within a few iterations.

The authors in [13] use a hybrid solution of the water-filling algorithm and a Nash game

formulation to distribute the power on the subchannels of a MIMO-OFDM scheme. The proposed

algorithm, which generalizes the applicability of the classical water-filling, jointly evaluate the

power required to attend a target SNR value and efficiently distribute it among the subcarriers.

In the scope of cognitive radio (CR) systems, the work [14] uses the convex optimization

framework to maximize the throughput of a MIMO-OFDMA based scheme, maintaining a rea-

sonable interference level on the primary users and subjected to a maximum power constraint. The

authors split the original optimization problem into two coupled subproblems with more efficient

solutions. Moreover, the authors in [15] propose an algorithm for throughput maximization of

OFDMA-MIMO-CR systems that includes subcarrier assignment, spatial beamforming, power

allocation and bit-loading.

There are works proposing mechanisms for the bit-loading complexity reduction based on

greedy algorithms, at the cost of throughput system degradation. For instance, the work [16]

presents a solution for DMT applications which applies the standard bit-filling and bit-loading

algorithms combined with an initial bit-vector. The solution is calculated by rounding the results

of the WF optimal solution. Moreover, in the power line communications (PLC) context, beyond

the initial bit-vector allocation, the authors in [17] propose a solution deploying techniques for

computational complexity reduction, including a greedy algorithm updating multiple subchannels

per iteration, rather than just one, while assuming computationally efficient approximations to

compute the cost function.

The works [18], [19] utilize subchannels grouping techniques to reduce the computational

cost of the bit-loading solutions. The primary motivation of this kind of procedure comes from

the naturally high correlation between the adjacent subchannels in an OFDM/OFDMA system

operating under usual channel flatness condition. Hence, since the subchannel bandwidth is twice

or further smaller than the channel coherence bandwidth, the channel state information (CSI)

estimation of such adjacent subchannels can be grouped, and their respective channel gains can

approximated by a fixed value, with a little loss of accuracy in such estimations.

The contributions of this work is twofold. We characterize the bit-loading problem in OFDMA

systems with power constraint at the transmitter side, namely Hughes-Hartogs (HH). Moreover,
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we develop an extensive analysis on the average capacity versus complexity tradeoff for different

bit-loading strategies, especially analyzing the HH grouping strategy. The complexity order of

the algorithms and expressions for the complexity (running time) depending on the number of

OFDMA subchannels, N , are determined. In addition, the performance of the HH algorithm is

compared to its versions adopting three different mechanisms for the computational complexity

reduction: i) the initial allocation bit vector using the WF solution, ii) the updating of multiple

subchannels per iteration, and iii) the subcarriers grouping technique with different gain threshold

by group.

The remainder sections of the paper are organized as follows. In Section II, we present the

OFDMA system model considered, while in Section III we state the power allocation problem

and its discrete optimal solution. Afterwards, in Section IV we present the three mechanisms to

reduce the complexity of greedy algorithms, as well as the computational complexity of the HH

algorithm is discussed in subsection IV-D. After, in Section V the numerical simulation results

for the bit-loading power allocation algorithms are explored. Finally, the main conclusions are

offered in Section VI.

II. OFDMA SYSTEM MODEL

We consider an OFDMA system with K users and N subcarriers modulated by the QAM

symbol vector:

s = [X [0], ..., X [N − 1]]T , (1)

whose inverse discrete Fourier transforms (IDFT) is equal to

x = [x[0], ..., x[N − 1]]T (2)

We assume the bandwidth of each subcarrier sufficiently narrower than the channel coherence

bandwidth, i.e. B < (∆f)c, being possible to consider that each subcarrier is flat in frequency. In

addition, assuming the symbol period duration less than the channel coherence period, i.e., Ts <

(∆T )c, and admitting a cyclical prefix with time length equal or less than the channel maximum

delay spread be added at the begin of each symbol, resulting the inter-symbol interference (ISI)

effect could be completely mitigated. To perform the resource allocation process, we assume

that there are perfect channel state information (CSI) feedback during each symbol period.
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Considering H the circulant matrix with the channel impulse response, which is µ samples

long, and the noise vector of each sample, respectively:

h[0], ..., h[µ], and n = [n[0] ... n[N − 1]]T , (3)

H =















h[0] h[1] · · · h[µ− 1] 0 · · · 0

0 h[0] · · · h[µ− 2] h[µ− 1] · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 h[0] · · · h[µ− 2] h[µ− 1]















(4)

suppressing the cyclical prefix samples, which suffer from ISI, the signal y on the receptor can

be described as:

y = Hx+ n (5)

Considering an N × N DFT Q matrix, the demodulated symbols at the receptor can be

described as:

r = Qy = QHx+Qn

= QHQHs +Qn

= Ĥs+N (6)

where N is the DFT matrix of the noise vector n, and Ĥ is the diagonal matrix filled with the

samples of the channel frequency response.

Remark 1. We use Ak to denote the set the subcarriers assigned to the user k. In our work,

we consider the orthogonal assignment of the frequency resources, i.e. each subcarrier can be

allocated for a single user per OFDMA symbol. However, other schemes with the OFDMA

characteristics allow subcarriers sharing by more than one user, e.g., the MC-CDMA-MIMO

model system treated in [20].

Considering that the focus of this work is on the power allocation problem, herein, we will not

consider the optimization of the OFDMA channel resources distribution. So, we have adopted the

criterion of dividing equally blocks of contiguous subcarriers between the users for subchannels

assignment, such as the 3GPP LTE standard [21]. Other methods can be used for the subcarriers

distribution, such as the use of a solver to evaluate the original mixed-integer optimization

problem or its linear formulation presented on [22], iterative sub-optimal algorithms [7] or

December 27, 2018 DRAFT



6

heuristic solutions [23].

III. OPTIMIZATION PROBLEM

The classical resource optimization problem considered consists of the maximization of the

total capacity of the OFDMA system with power constraint. The optimization problem is defined

as follows:

maximize
p∈ℜN

+

K
∑

k=1

∑

i∈Ak

bi =

K
∑

k=1

∑

i∈Ak

log2

(

1 +
pk,iδk,i

Γ

)

(7)

s.t.
∑

i∈Ak

pk,i ≤ Pmax, k = 1, 2, . . . , K

p = [p1, p2, . . . , pN ] � 0

where N the number of OFDMA subchannels, Ak denotes the set of subcarriers assigned to the

user k;

δk,i =
|hk,i|2

N0B
(8)

is the channel gain normalized by the thermal noise power, with |hk,i|2 as the power gain of

the i-th subchannel for the user k, N0 is the noise spectral density and B is the band of each

subchannel; bi and pi represent the number of bits and the power allocated on each subchannel,

respectively, while Γ the SNR gap and Pmax the maximal available power constraint per user.

The optimal power vector solution for this problem is the well-known water-filling, which

results in fractional allocated-bits because of its continuous characteristic. When we treat a

practical scenario, the water-filling solution can’t be implemented completely, because we would

need infinite granularity on the system modulation constellation [24].

A. HH Algorithm

To overcome the granularity problem one can use a sub-optimal solution which assumes dis-

crete bit allocation. Hence, when considering practical scenarios, the Hughes-Hartogs algorithm

[8] provides optimal solution for the optimization problem (7), assuming discrete bits allocation,

but sub-optimal solution when considering continuous information quantities. Moreover, the

HH approach is based on exhaustive search, demanding a lot of computational resources to be

computed.
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Remark 2. For the sake of notation simplicity, hereafter we have dropped the index identifying

the k-th user, assuming that subcarrier allocation procedure has been done in a previous step,

since herein our focus is on subcarrier power and bit-loading allocation. Also, for uniformity

purpose, we have assumed that for each active user (k = 1, . . .K) in the OFDMA system there

is an equal spectral resource available, defined by N · B [Hz].

The HH algorithm calculates the energy incremental cost to allocate one more bit on the

subcarriers, choosing the one with the smallest cost [8]. The process is performed bit-by-bit

until the allocated energy reaches the constraint. The energy incremental cost to allocate the bit

of number bi on the i-th subcarrier is equal to:

∆ǫi(bi) = 2bi
Γ

δi
. (9)

where δi is the channel gain normalized by the thermal noise power related to the user allocated

on the i-th subcarrier.

Algorithm 1 shows a pseudo-code for the HH solution. Firstly, it is defined the incremental

cost matrix with the amount of energy required to allocate the first bit on each subchannel;

Palloc is the power sum allocated to the user in the current iteration. Afterwards, is executed a

minimum search, allocating the bits on the channels whose present the lowest cost, until the

total energy allocated reaches the power constraint.

Algorithm 1 HH bit-loading algorithm

1: Initiate

2: Palloc = 0
3: bi = 0, ∀i = 1, ..., N
4: ∆ǫi = 2bi Γ

δi
∀i = 1, ..., N

5: while Palloc < Pmax do

6: Find c such that ∆ǫc ≤ ∆ǫi ∀i 6= c
7: If Palloc +∆ǫc > Pmax, terminate the algorithm

8: Allocate 1 bit on the subchannel c

9: Palloc = Palloc +∆ǫc
10: ∆ǫc = 2bc Γ

δc
11: end while

12: Terminate
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IV. MECHANISMS FOR COMPLEXITY REDUCTION

A. Initial allocation bit vector

In its original formulation, the HH algorithm initiates with the bit vector null, or filled with

the maximum number of bits allowed on the system, dependent on the adoption of the bit-filling

or the bit-removal criteria.

The choose of a specific initial allocation bit profile can reduce the iterations number required

for convergence of the allocation algorithm, decreasing its running time. Some works study the

initial allocation bit vector that minimizes the iterations number of the system.

One possible initial allocation bit vector is calculated by rounding the results of the WF solu-

tion, evaluating discrete results. The WF solution is developed applying the Lagrange multipliers

optimization technique on the problem (7), resulting in the equation:

pi = Cλ −
Γ

δi
(10)

where Cλ is a constant called "water level":

Cλ =
1

N

(

Pmax +

N
∑

i=1

Γ

δi

)

(11)

With the vector p(0) = [p
(0)
1 ... p

(0)
N ] calculated by the equation (10), the elements b

(0)
i of the

initial allocation bit vector b(0) = [b
(0)
1 ... b

(0)
N ] are evaluated by the expression:

b
(0)
i =

⌊

log2

(

1 +
p
(0)
i δi

Γ

)⌋

(12)

Thus, the allocation process initiates with the initial allocation bit profile defined by the b(0)

obtained vector, rather than the prior null bit vector.

B. Update multiple subcarriers per iteration

The HH algorithm implementation given on the pseudo-code Algorithm 1 predicts the update

of only one bit on only one subcarrier per iteration. One alternative for operation consists on

updating only one bit on κ subcarriers during each iteration, choosing the κ subcarriers with the

lowest bit incremental energy cost.

The process of updating multiple subcarriers is a simple strategy to reduce the iterations

number required for convergence; at prior, the mechanism is able to decrease the number of
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iterations of the HH algorithm by a κ factor. Despite that, this strategy results in degraded

capacity rates in comparison with the obtained by the HH algorithm in its original formulation,

because these strategy don’t guarantee the minimal incremental cost at each algorithm step. For

example, at a determined step in an algorithm execution with N = 2 and κ = 2, allocate 2

bits on the subcarrier 1 may have smaller incremental cost than dividing the 2 bits between the

subchannels.

C. Subcarriers grouping strategy

The subcarriers grouping process has the objective of divide the system’s subchannels in sets

with fixed channel gain. This process can be done using grouping algorithms, generally based

on the subcarriers’ gain. As a consequence of the grouping process, the subcarriers are reduced

to their groups, performing the allocation process onto the groups, in place of each subcarrier

independently.

The channel impulsive response r(t) can be modeled as the sum of L delayed multipath

components,

r(t) =
L
∑

i=1

aiδ(t− τi) (13)

where ai ∼ CN (0, σ2
ai
) is the i-th multipath amplitude at the receiver, τi is the i-th multipath

delay dependent on the environment’s scatter geometry and
∑L

i=1 σ
2
ai

= 1. Evaluating the N-

points discrete Fourier transform (DFT) of r(t), we obtain the channel coefficient of the n-th

OFDM subchannel as

Rn =
L
∑

i=1

aie
−j2πfnτi, n = 1, . . . , N (14)

where fn is the n-th subchannel central frequency.

Evaluating the correlation coefficient ρn,m between the n-th and m-th OFDM subchannels

considering orthogonal multipaths, i.e. E[aia
∗
l ] = 0, ∀i 6= l,

ρn,m =E[RnR
∗
m] = E

[

L
∑

i=1

L
∑

l=1

aia
∗
l e

j2π(fmτl−fnτi)

]

ρn,m =
L
∑

i=1

σ2
ai
ej2πτi(fm−fn) (15)

Remark 3. From (15) one can conclude that the correlation between the subchannels depends on

their frequency separation (|fm−fn|), as well as the channel’s power delay profile, which defines
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the τi values. Hence, the subcarrier grouping mechanism can be applied aiming at obtaining

implementable low-complexity power allocation procedures for OFDM and OFDMA systems.

Considering specific system conditions, the subcarrier grouping procedure in OFDMA allows

the approximation of the subchannel gains to a fixed value, with a small error due to the high

correlation associated with the adjacent subcarriers. These conditions are related to the frequency

gap between the subcarriers and the channel coherence bandwidth, which depends on the delay

spread associated with the system channel impulse response. Channels with small delay spread

presents more correlated subcarriers, when the opposite can be verified on channels with high

delay spread. Hence, the performance of the subcarrier grouping process depends on the delay

spread profile of the OFDMA channel.

Algorithm 2 Subcarriers Grouping Algorithm

1: Initiate: GT

2: c = 1
3: d = 1
4: for i = 2, ..., N do

5: if gi ∈ [gc −GT; gc +GT] then

6: Allocate the subchannel i into the group d
7: else

8: d = d+ 1
9: Allocate the subchannel i into the group d

10: c = i

11: end if

12: end for

13: for i = 1, ..., d do

14: Define the gain of the group i as the minimum of its subcarriers

15: end for

16: Terminate

The adopted subcarriers grouping algorithm is stated on the pseudo-code in the Algorithm

2. The algorithm initiates defining the parameter GT, called gain threshold, in dB. After the

definition of GT, the first subchannel is declared as the leader of the first set. Thereafter, the

adjacent subcarriers are scanned testing if their gain values belongs to the interval [gc−GT; gc+

GT], where gc is the gain of the leader subchannel of the current set. If the current channel

has the gain value inside the interval, the subcarrier is allocated into the same set of the leader

subcarrier with index c. Otherwise, the current channel is allocated into a new group, and is

defined as the leader of this group; the sequential grouping process of the OFDMA subcarriers

is repeated until all the OFDM subcarriers are distributed into the groups. Subsequently the
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sequential grouping of the OFDMA subcarriers, the channel gain of each set is defined as the

least between its elements.

D. Computational complexity analysis

The complexity analysis has the objective of identifying the resources number consumed by

the algorithm, as hardware, memory and mainly running time, tracing a relationship between

them and the obtained results at the end of the task. In general, the running time of an algorithm

depends on its input length; it is common to describe the running time as a function of the input

length. This analysis can be done counting step-by-step the operations executed on each line

code of the pseudo-code [25].

The basic arithmetic operations are implemented in hardware with fixed computational cost,

not influenced by the input length. Although more complex algorithms like sort operations have

a running time proportional to the input length. So we need to identify these types of operations

and consider their particular running time.

To obtain a general complexity analysis of the algorithm we need to count the executed

operations on its worst case execution. After counting, the obtained expression of the running

time dependent on the input length is a superior bound for the running time.

The running time of the HH algorithm can be calculated summing the execution time of

each instruction performed by it. Therefore, we have to identify and count the number of basic

arithmetic operations and more complex operations, such as sort and search, on the algorithm

code. It is important to identify the operations which are executed repeatedly inside the loops,

because their running time depends on the length of the input data, being the more significant

instructions on the total algorithm running time. After the counting, the time contributions of

each instruction are summed, obtaining the total running time expression.

First, we counted the basic arithmetic operations: addition, subtraction, multiplication, division,

exponents and logarithms. During counting, we divided the operations into two groups: a) group 1

for the operations processed once on the algorithm; b) group 2 of operations processed repeatedly

with the algorithm iterations.

The Tab. I presents the number of basic arithmetic operations classified into the group 1 and

the group 2. After the counting, we determined the complex operations. We identified one sort

inside the algorithm’s loop. According to [25], this operation can be implemented with algorithms

that have the execution time upper bounded by the function u(N) = N log(N).
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An numerical analysis of the iterations number of the HH algorithm as a function of the

system’s subcarriers number N indicates a linear dependence. Therefore, assuming that the

iterations number is a function v(N) which depends on the subcarriers number N , for the

algorithm HH we have vHH(N) = N .

Hence, summing the contributions of all the HH algorithm operations, we obtain the following

expression for its running time:

THH(N) = N2 logN + 2N2 + 5N (16)

Expressing the calculated THH(N) in the notation of the asymptotic superior bound O{.}, we

have that the HH algorithm complexity is bounded by:

T asym
HH

(N) = O{THH(N)} = N2 logN. (17)

V. NUMERICAL RESULTS

With the objective of compare the computational complexity reduction and the capacity

degradation verified with the adoption of the bit-loading simplified mechanisms, we implemented

Monte-Carlo simulations with the allocation algorithm HH, and its versions using the initial

allocation bit vector calculated by the WF algorithm (HH-WF), updating multiple subcarriers

per iteration (HH-K), and with a subcarriers grouping algorithm (HH-GRP). Further the discrete

allocation algorithms, we executed in the simulations the WF optimal solution and the uniform

power allocation criteria (EQ), in order to compare the efficient but sub-optimal solutions with

their respectively superior and inferior bounds for the capacity reached by efficient bit-loading

algorithms.

TABLE I

NUMBER OF OPERATIONS EXECUTED IN THE ALGORITHM HH ONCE (GROUP 1) AND REPEATDLY INSIDE THE LOOP (GROUP

2).

Operation Group 1 Group 2

Addition 0 2N + 1

Subtraction 0 0

Multiplication N 1

Division 0 0

Exponent N 1

Logarithm 0 0
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The proposed simulations scenario consists on the downlink (DL) into an urban macro-cell

with radius r = 1 km and 8 users whose the positions are uniformly distributed into the cell.

We considered a situation without line of sight (NLOS), where the received amplitudes in the

receptor follow a Rayleigh statistical distribution. The subcarriers number was set from 128 to

4096 doubling the initial value; the total subchannels number was divided equally between the

users. The Tab. II summarizes the values for the general system parameters and the employed

channel.

In the proposed scenario we did 104 Monte-Carlo realizations performing the power allocation

process with the algorithms HH, HH-WF, HH-K with the κ values equal to 2, 4, 8 and 16, and

the HH-GRP with the GT values equal to 0.25 dB, 0.5 dB, 1 dB and 5 dB, WF and EQ. During

each iteration we sorted 10 taps of the channel impulse response and the users’ positions into

the cell, evaluating the channel coefficients.

The Fig. 1 presents the average capacity reached by the algorithms HH, HH-WF, HH-GRP,

WF and EQ as a function of the subcarriers number. As the expected, the HH, HH-WF and

HH-GRP algorithms reached average capacity values lower than the optimal solution WF, once

the adoption of a discrete solution implies on lose of optimally. Among the discrete solutions,

the HH-WF algorithm reached the highest capacity, overcoming the HH algorithm results. The

HH-GRP algorithm results has shown average capacity values lower than the reached by the

HH algorithm, with the degradation increasing with the grouping threshold GT. This behavior is

due to the reduction of the groups granularity increasing GT, allowing the grouping algorithm

TABLE II

PARAMETERS OF THE PROPOSED SIMULATIONS SCENARIO.

Parameter Value

Cellular system OFDMA

Macro-cell r = 1000 m

Users number 8

Subcarriers number N = 128 to 4096

Total bandwidth B = 2 MHz

Path-loss exponent ξ = 4

NLOS channel fading Rayleigh

Gain threshold in the HH-GRP GT ∈ { 1

4
, 1

2
, 1; 5} dB

Subcarriers number of the HH-K κ ∈ {2, 4, 8, 16}
Power constraint Pmax = 10 W

Maximum bit error rate BER= 10−12

Maximum delay spread τmax = 2.5 µs
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to underestimate the subchannels, grouping them with other subchannels with lower gain.

Subchannels number
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z)
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HH-WF

HH-GRP (G
T
=0.25dB)

HH-GRP (G
T
=0.5dB)

HH-GRP (G
T
=1dB)

HH-GRP (G
T
=5dB)

WF
EQ

Fig. 1. Average capacity as a function of the subcarriers number for the algorithms HH, HH-WF, HH-GRP, WF and EQ

bit-loading algorithms with different gain thresholds.

Fig. 2.a) depicts the average capacity curves for the HH, HH-K, WF and EQ algorithms as a

function of the subcarriers number. As the case of the HH-GRP algorithm, the capacity values

reached by the HH-K one was lower than the calculated with the original HH. The growing of the

κ factor has reflected on the degradation increase in the capacity of the HH algorithm, as one can

see on the zoom in the Fig. 2.b). The behavior is due to the fact of updating only one bit on the

κ more favorable subchannels during each iteration doesn’t guarantee the minimal incremental

cost at each algorithm step. Despite the degradation, one can see a marginal reduction of the

capacity with the increase of the κ factor when it is compared with the increase of the threshold

GT in the HH-GRP algorithm shown in Fig. 1.

The Fig. 3 depicts the curves of the average iterations number of the algorithms HH, HH-WF

and HH-GRP increasing the subcarriers number. The WF and EQ algorithms were suppressed on

this analysis because they need a few iterations for convergence. As the expected, we noted that

increasing the gain threshold GT decreases the iterations number required for convergence. This

occurs because increasing GT reduces the number of groups, allowing the HH-GRP algorithm

to operate with a search set whose the number of elements is less than the subcarriers value

N . The algorithm HH-WF demands an iterations number higher (about two and four growing

orders) than the other analyzed algorithms for convergence. Hence, the capacity gain, provided
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Subchannels number
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a) HH, HH-K, WF and EQ
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Fig. 2. Average capacity versus the number of subcarriers for the HH, HH-K, WF and EQ bit-loading algorithms

by the initial allocation bit vector calculate by the WF solution, compared to the original HH

algorithm has a substantial complexity cost, according to the iterations number.

To analyze the variation of the average iterations number of the algorithms HH-K and HH as

a function of the subcarriers number, we trace the curves of the Fig. 4. The approach of update

multiple subcarriers per iteration (parameter κ > 1) produced reduction in the iterations number

required for convergence of the HH algorithm. We observed too that increasing the κ number

of updated subcarriers is proportional to the reduction in the average iterations number.
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Fig. 3. Average number of iterations required for convergence versus the subcarriers number for the algorithms HH, HH-WF

and HH-GRP.
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Fig. 4. Average number of iterations required for convergence as a function of the subcarriers number for the algorithms HH

and HH-K

Comparing the solutions HH-K and HH-GRP, we note that the first offers as main advantage

capacity values near to the reached by the HH algorithm, while the last one provides a faster

convergence but with the capacity results more degraded. The initial allocation bit vector calcu-

lated by the HH-WF solution has shown the best capacity performance, overcoming the results

of the HH algorithm and getting closer to the optimal results of the WF solution. However,

the HH-WF algorithm is the one which required the highest iterations number for convergence,
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needing more computational resource to be executed.

To analyze the performance of the grouping algorithm HH-GRP with the change of the

threshold gain GT and the subcarriers number of the system, we trace the curves of the average

number of obtained groups by the subcarriers number, presented on the Fig. 5. The results

confirm the reduction on the grouping granularity increasing GT, implying on the reduction of

the groups number. This is the major advantage of the technique, which reduce the elements

number of the search set of the greedy algorithm, reducing the complexity for computation.

Analyzing the behavior of the average groups number increasing the subcarriers number, we see

an asymptotic behavior like roofs. This fact is due to the use of a channel model assuming a

fixed maximum delay spread of the channel impulse response, in this case, τmax = 2.5 µs.

Subchannels number
500 1000 1500 2000 2500 3000 3500 4000

A
ve

ra
ge

 g
ro

up
s 

nu
m

be
r

50

100

150

200

250

300

350

400

450

500

HH-GRP (G
T
=0.25dB)

HH-GRP (G
T
=0.5dB)

HH-GRP (G
T
=1dB)

HH-GRP (G
T
=5dB)

Fig. 5. Groups number obtained by the grouping algorithm of the HH-GRP solution; τmax = 2.5 µs.

A. Subcarriers Grouping Performance

In this section, we analyze the impact of the number of subcarrier groups on the HH-

GRP performance under different channel conditions, including channel delay spread τmax and

OFDMA subchannels correlation. Fig. 6 depicts the curves of the average number of groups

versus the maximum delay spread, considering N = 1024 subcarriers and different values for

grouping threshold GT. The increase of τmax conveys in more uncorrelated channels, increasing

the number of groups, even for large SNR threshold values. This result supports the development
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of (15), taking into account that the similarity between the channel’s gain is the key role in the

grouping algorithm.
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Fig. 6. Average number of groups under different grouping thresholds for the HH-GRP algorithm solution as a function of the

channel’s maximum delay spread; N = 1024 subchannels.

The normalized correlations between the different subcarrier groups formed by the HH-GRP

grouping algorithm and varying the channel’s maximum delay spread, are depicted in Fig. 7. Such

curves evidence that the average correlation coefficient of the subcarrier groups decreases very

quickly when the delay spread increases in the range [1; 25]µs. We can see that, besides more

uncorrelated subcarriers, the increase of τmax produces more uncorrelated groups. Moreover, the

subcarrier groups correlation steadily decreases with the increment of SNR threshold granularity

(small GT).

Finally, the average capacity and the number of iterations required to perform the HH-GRP

bit allocation have been determined by numerical simulations assuming different conditions of

channel’s maximum delay spread and varying the gain threshold GT , aiming to establish if

there exists a GT value that maximizes the algorithm performance depending on the channel

conditions. To compute the tradeoff between the capacity enhancement and the reduction of the

number of iterations we have defined the tradeoff factor ζ ∈ [0; 1] as follows

ζ =
1

2

(

1 +
C − Cmin

Cmax − Cmin
−

I − Imin

Imax − Imin

)

(18)

where ζ = 1 indicate the best balance, C and I are, respectively, the average capacity and the

average number of iterations, both calculated by numerical simulations, for each {τmax, GT}-pair;
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Fig. 7. Average subcarrier-grouping correlation obtained by the grouping algorithm of the HH-GRP solution as a function of

the channel’s maximum delay spread; N = 1024 subchannels.

TABLE III

SUMMARY OF THE NUMERICAL RESULTS FOR N = 1024 SUBCHANNELS.

Algorithm Avg. C⋆ Avg. I⋆ Avg. number of groups

[bits/s/Hz] τmax = 2.5 µs τmax = 12.0 µs τmax = 25.0 µs

WF 8.57 - - - -

EQ 3.14 - - - -

HH 6.26 7.23 - - -

HH-WF 7.63 1019 - - -

HH-K

κ = 2 6.23 4.12 - - -

κ = 4 6.17 2.54 - - -

κ = 8 6.08 1.76 - - -

κ = 16 5.93 1.37 - - -

HH-GRP

GT = 0.25 dB 5.97 2.73 376 773 860

GT = 0.5 dB 5.78 1.93 222 595 748

GT = 1 dB 5.36 1.47 123 389 579

GT = 5 dB 3.73 1.08 25 83 149
⋆Values calculated with τmax = 2.5 µs

moreover, the ratios Cmin

Cmax
and Imin

Imax
are, respectively, the min-max capacity ratio and min-max

number of iterations ratio calculated among all the scenarios evaluated. This equation guarantees

that the tradeoff factor value represents equally the gain or loss of capacity and iterations number.

Notice that in (18), the capacity C and the number of iterations I are normalized, representing

the same weight (50–50%) on the tradeoff factor calculation.

Fig. 8 depicts the tradeoff factor ζ for each pair of channel’s maximum delay spread τmax

and gain threshold GT . The first consideration is that for all values of τmax, choosing small or
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large values of GT results in low ζ factor values due to increasing the iterations number acts in

favor of the capacity increasing (small GT values); alternatively, the capacity degradation works

in favor of the decreasing complexity in terms of the number of iterations (large GT values),

respectively.

Furthermore, for each value of channel’s maximum delay spread, there exists a GT which

offers the best tradeoff between the capacity enhancement and the reduction of the number

of iterations required for convergence. This fact can be explained recalling the discussion of

Section IV-C, which shows that the correlation between adjacent subcarriers depends on the

channel’s delay spreading properties. Therefore, from the perspective of the wireless channel

characteristics, the parameter GT can be adjusted in such a way that the HH-GRP algorithm is

able to produce the best tradeoff between complexity and average capacity degradation.

Table III summarizes the numerical results of this section for capacity, average number of

iterations and average number of groups for the HH-GRP algorithm, considering N = 1024

subchannels and different values for τmax and the parameters of the HH-K and HH-GRP al-

gorithms. As it was discussed earlier, the HH-K algorithm with κ = 16 is the most efficient

bit-loading solution, offering a remarkable reduction on the number of iterations when compared

to the original HH algorithm, while resulting in a marginal degradation on the average capacity.

Moreover, observing the average number of groups column, one can notice its dependence on

the channel delay spreading and the grouping threshold parameters, whose reflects directly on

the HH-GRP algorithm’s performance.

VI. CONCLUSION

The greedy Hughes-Hartogs algorithm for power allocation problem in OFDM systems was

systematically characterized and compared with low-complexity sub-optimal approaches. Three

mechanisms to reduce the algorithm computational complexity have been considered: a) the

adoption of initial bit-vector allocation different from null bits profile; b) update multiple sub-

carriers per iteration; c) subcarriers grouping technique.

The numerical simulations results evidenced the performance-complexity tradeoff of the an-

alyzed bit-loading algorithms. The HH-GRP and HH-K solutions reached an average capacity

lower than that attained by the original HH, needing a smaller iterations number for convergence.

Comparing the HH-GRP and HH-K algorithms, one could observe that the HH-GRP results

a higher reduction on the iterations number with more capacity degradation, being the two
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Fig. 8. Tradeoff factor ζ calculated using the achieved capacity and the number of iterations for the HH-GRP algorithm under

different conditions of the gain threshold GT and channel delay spread τmax.

characteristics proportional to the gain threshold GT, while the last one results in a much smaller

capacity degradation, with the iterations number reduced proportionally to the factor κ. The HH-

WF solution has shown the best average capacity results, overcoming the reached by the HH

algorithm and getting closer to the calculated by the optimal solution WF. However, the HH-

WF solution demands the highest iterations number for convergence, presenting the greatest

computational cost.

So, one could conclude that both mechanisms of updating multiple subchannels per iteration

and the subcarriers grouping allow the convergence of the greedy algorithm HH with less
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iterations, at cost of some degradation on the average capacity. The algorithm with the best

tradeoff on the performance versus complexity is the HH-K, which has demonstrated a low

capacity degradation even with a high κ value.

Finally, the initial bit-vector allocation defined by the WF solution was adopted as an alter-

native to obtaining an average capacity higher than the reached by the HH algorithm and its

variants. As a consequence, a closer solution to the true WF one has been obtained, although this

capacity gain comes with a computational complexity increasing, represented by the iterations

number required for convergence.
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