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Abstract

Inverse problems in imaging such as denoising, deblur-
ring, superresolution (SR) have been addressed for many
decades. In recent years, convolutional neural networks
(CNNs) have been widely used for many inverse problem
areas. Although their indisputable success, CNNs are not
mathematically validated as to how and what they learn.
In this paper, we prove that during training, CNN elements
solve for inverse problems which are optimum solutions
stored as CNN neuron filters. We discuss the necessity of
mutual coherence between CNN layer elements in order
for a network to converge to the optimum solution. We
prove that required mutual coherence can be provided by
the usage of residual learning and skip connections. We
have set rules over training sets and depth of networks for
better convergence, i.e. performance.1

1. Introduction

In many image processing applications, an observational
system model is the initial step to a solution. An observation
g can be modeled as an output of a system K(.) when
stimulated by an input t. Finding the variable t for an
observation g and system K is named as an inverse problem.
Due to the nature of observation modelling in imaging
applications, the inversion of system K is ill-conditioned.
Small variations in the observed value causes huge swings
in estimated input value. This perturbation is caused by the
noise in the system which is denoted by n.

g = Kt+ n (1)

Many areas of research deal with inverse problems under

1This paper is a postprint of a paper submitted to and accepted for
publication in IET Signal Processing Journal and is subject to Institution
of Engineering and Technology Copyright. The copy of record is available
at the IET Digital Library

the name of denoising, deblurring, deconvolution, enhance-
ment, restoration, single image superresolution, MRI and
CT reconstruction from projections etc. These problems
can be classified as inverse problems that are defined with
convolution operations. For decades, analytical methods
have been utilized for solving these problems. A determin-
istic approach is to minimize a data fidelity term

t̂ = argmin
t
{∆(t,K, g)} (2)

The ∆(.) can be ||g − Kt||2 to obtain a Least Squares
(LS) solution . Other methods include LP norm solu-
tion, Kullback Liebler (KL) distance solution. Since this
problem is ill-conditioned a regularization term can be
added to the data fidelity term. Regularization, r(t), adds
a mismatched function to the cost function that will balance
the solution.

argmin
t
{∆(t,K, g) + r(t)} (3)

Statistical inversion methods are another approach for an
inverse problem. The observation vector g is assumed to
be drawn from a probabilistic distribution p(g). For this
approach, the cost function will become ∆(t, g) = p(g|t)
for a maximum likelihood approach. Stochastic approaches
are out of scope for this work, therefore related literature is
not included.

Analytical methods seek to successfully formulate the
system model and find the optimum solution strategy with
proper regularizations. These methods require careful
mathematical analysis and costly solutions.

Another method that has been successfully used in in-
verse problem solutions is neural network approach, specif-
ically convolutional neural networks (CNNs) for image
processing applications. CNNs are trained by a set of
images to learn a mapping from g to t. The structure of the
network; number of layers and elements in each layer, inter-
connections between layers, special layers such as pooling
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or normalization changes depending on the specific appli-
cation. However the learning process is generally based
on stochastic gradient descent type coefficient updates. In
most cases the cost function is chosen as mean square
error (MSE). In some cases, such as generative adversarial
networks and variational autoencoders, instead of end to
end mapping from g to t, some feature discrimination is
applied before calculating an MSE value together with a
cross entropy loss function.

Recent advances on technology enabled training of big-
ger networks therefore providing better results [1][2][3].
A sample of methods available in literature, which we
have included in the Background part, show that CNN
performance surpasses that of analytical methods in all
aspects. Then one could ask ”what is ahead of us?” The
answer would be understanding how a network learns and
how it uses the learned parameters. The former question is
about the training phase and the latter is about the testing
phase. The testing phase, the forward pass, can be shown to
be satisfying a set of equations for application specific cases
and setups. Unfolded iterative shrinkage thresholding (IST)
iterations [4], alternating direction method of multipliers
(ADMM) iterations are calculated by network layers [5] and
layer outputs are visualized as sparse representation vectors
[6] or higher dimension manifold projections [7]. The train-
ing phase is not addressed as often in the literature to answer
what a CNN actually solves during backpropagation.

In order to be able to analyze a complex structure such
as CNN with mathematically tractable methods, we apply
some simplifications and then generalize the results to fully
operational network.

To this end we can summarize the contributions of this
work as:

• We show that CNN elements, i.e. neuron filters, solve
for an inverse problem during training. The operator
of the inverse problem is taken as a dictionary matrix
constructed from input training data. The solution of
the problem are the neuron filter coefficients. These
coefficients are representation vectors of the target,
which act similarly as described in manifold theory
[7] where each neuron filter acts as a point in high
dimensional space to form a manifold for a solution.
Differently from the argument in the literature [1] [2]
[3] that trained networks resemble or become inverse
problem solvers, we claim that the training process is
carried out in this fashion.

• By using Representation Dictionary Duality (RDD)
we relate sparse representation and convolutional
sparse coding [8] to the evolution of CNNs and
provide a mathematical basis for skip connections [9]
and residual learning [10].

• We propose a method to separate the training set for

maximizing the efficiency of training and number of
features (filters) which is consistent with mathematical
foundations that we set. Also we suggest a method to
decide on the depth and structure of the CNN.

Rest of the paper is organized as follows: in section 2
we refer to a vast literature about CNNs used for various
inverse problems and analytical approaches for inverse
problems. In section 3 we provide mathematical proofs for
CNN training as inverse problem solutions and necessity
of skip connections. In section 4 we have demonstrated
experimental validations for key theoretical points. In
section 5 we summarize our contributions and point out to
further research areas.

2. Background

As stated before, there are different approaches to find
the solution to the inverse problem given in equation 2. In
the rest of this section we will describe in detail the methods
that address inverse problems.

2.1. Data Driven Approaches and CNNs

Before discussing the analytical methods that approach
inverse problems with aid of mathematical modelling and
iterative solutions we discuss the literature on Data Driven
Approaches (DDA). Instead of approaching the inverse
problem to directly invert an observation model, DDA learn
mappings from input and target training images. Methods
either learn a compact dictionary [11][12][13][14] or train
a model that fits the problem and learn parameters for the
model [15][16].

Dictionary based DDA jointly solve for a compact dic-
tionary and a representation vector. Sparse representa-
tion has been applied to the dictionary learning based
SR problem where an input image is sparsely represented
by a dictionary. The representation vector is applied to
another library for reconstruction of output image. These
algorithms both solve for creating dictionary and solve for
a representation vector for any input.

The K-SVD algorithm [17] is one of the keystones of
dictionary learning for the purpose of sparse representation.
Aharon et. al. have proposed the usage of a compact
dictionary D, from which a set of atoms (columns or
dictionary elements) are to be selected via a vector f and
the combination of these atoms is constrained to be similar
to an observation patch (or image) g via ||g − Df ||p ≤ ε.
If the dimension of g is less than that of columns of matrix
D and if D is full-rank matrix then there are infinitely many
solutions to the problem therefore a sparsity constraint is
introduced.

min
f
||f ||0 s.t. ||g −Df ||2 ≤ ε (4)



The L0 norm gives the number of entries in f that are non-
zero.

The usage of compact dictionaries for SR problem is
introduced in [11]. The authors have used the approach of
K-SVD to learn representation vectors and dictionaries. In-
stead of using an L0 normed regularization and L1 normed
regularization is used which still guaranties sparsity for the
formulated problem. Such a problem is formulated using
Lagrange multipliers.

min
f

λ||f ||1 +
1

2
||g −Df ||22 (5)

During learning phase the library D is initialized by
random gaussian noise and an iterative algorithm between
a batch representation matrix Z and dictionary D refines
the dictionary while maintaining sparsity for representation
vectors of training set. The estimation of sparse repre-
sentation vectors are done by using basis pursuit methods.
[11] uses two dictionaries, one for low resolution (LR)
representation, one for high resolution (HR) reconstruction.

Timofte et. al. [13] have proposed the usage of L2 norm
instead of L1 norm for even faster computations. Although
usage of L2 norm eliminated the sparsity constraint from
the equation, it will play a role in understanding how CNNs
work in later sections.

Trainable models are also used for inverse problems.
A method, trainable nonlinear reaction diffusion (TNRD)
[16], uses a training set to learn a set of filters and non-
linearities that are applied in a cascaded fashion to the
input image. The resulting algorithm uses stochastic gra-
dient descent type of learning. The minimized objective
function uses a suitable proximal mapping function among
previously inspected functions [18]. In [16], input image
is filtered by a number of trained filters. Filtered images
are then applied to a non-linear proximal function and then
the output of non-linearities are further filtered by the same
number of filters. The result is obtained by summing all
the result. The approach of TNRD is quite similar to
how a CNN operates although the model is not weaved in
a network fashion since it lacks the hidden layers which
give CNNs its power to learn highly nonlinear surfaces
(manifolds).

Another trainable model type method is proposed by
Romano et. al. rapid and accurate image super resolution
(RAISR) [15]. The algorithm learns a set of filters for
training patches that are composed of differently oriented
edges with various strength and coherencies. Separation of
different content patches is carried out according to gradient
information of input images. Even though RAISR uses a set
of filters in a convolutional structure, the algorithm does not
constitute a network structure.

In the last decade the usage of CNNs for inverse prob-
lems have dramatically increased, mainly due to advancing

technology.
One of the first applications of inverse problems on

CNNs was proposed by Gregor & LeCun [4] as learned
iterative shrinkage thresholding algorithm (LISTA). The
method deals with sparse coding problem that is formulated
by 5. Each layer of neural network type model of LISTA
represents an unfolded iteration of IST type of solver that
was inspected by Combettes et. al. as iterative soft-
thresholding [18]. The forward pass of the algorithm
approximates iterations of an IST algorithm. Training of
LISTA is carried out in gradient descent type learning. Later
Bronstein et. al. [19] have addressed the same algorithm
and showed that the resulting layers of LISTA are not mere
approximations to an IST algorithm but fully functional
sparse encoders in their own right.

In [7] authors have described representation learning as
a manifold learning for which a higher dimensional data
is represented compactly in a lower dimensional manifold.
They have discussed that the variations in the input space
is captured by the representations and each element of a
network represents a higher dimensional coordinate point
of the manifold. In the same paper authors have discussed
the challenge of training deep networks; learning dynamics,
convergence to good minimas of the cost function. The
training of neural networks is not mathematically under-
stood in current literature [7].

Schuler et. al. [20] have proposed to unroll the recovery
steps required for a deblurring operations with a neural
network.

Mao et. al. [9] have proposed the usage of sym-
metric convolutional-deconvolutional layers, hoping that
the convolutional layers will encode the important features
of the image while rejecting defects and deconvolutional
layers will reconstruct the image without the defects. Their
experiments have shown that proposed architecture yields
better results compared to sole convolutional architectures.
The authors have also used skip connections between con-
volutional and deconvolutional layers, expecting that it will
cope with gradient vanishing problem for deeper networks.

Zhang et. al. [21] have proposed a denoising network by
exploiting the similarities of execution of denoising CNNs
to TNRD equations.

Yang et. al. [5] have proposed a network called ADMM-
Net for optimizing a compressive sensing reconstruction
problem, taking on from the iterative steps of ADMM
algorithm [22]. Each step of the network is weaved
accoring to split augmented lagrangian solver approach.
This approach separates the method from many methods in
literature where a CNN structure is used for various inverse
problem solutions without mathematical reasoning.

The mapping between the high resolution (HR) and low
resoultion (LR) images can also be found by convolutional
networks for SR problem ([6], [10]).



The activation function plays an important role in neural
network training. In many state-of-the-art algorithms major
functions such as tanh and softmax have been replaced by
rectified linear units [23] that are linear approximations of
mathematically complex and computationally heavy func-
tions. Glorot et. al. [24] have empirically shown that
by using rectified activations, the network can learn sparse
representations easier. For a given input, only a subset
of hidden neurons are activated, leading to better gradient
backpropagation for learning and better representations
during forward pass. Especially sparse representation has
been shown to be useful [24]. Sparsity constraint provides
information disentagling which allows the representation
vectors to be robust against small changes in input data.

Dong et. al. [6] have provided the earliest relation of
CNNs to Sparse Representation. In their view outputs of the
first layer of neurons constitute a representation vector for a
patch around each pixel in LR image, second layer maps
LR representations to HR representation vectors and the
last layer reconstructs HR image using 5x5 sized filters (or
atoms if we have used the jargon of sparse representations).
Although this idea qualitatively maps CNNs as a solution
method for sparse representation problem, in section 3 we
will show a more complete understanding with mathemati-
cal background.

Bruna et. al. [25] have used CNN for extraction
of LR representation which would be used to reconstruct
a proper HR image that is picked according to a gibbs
distribution. Kim et. al. [10] have proposed usage of
deep networks for SR problem and their unique approach of
using residual learning helped the large network to converge
in a reasonable time.

In many SR applications LR image that is fed into
the network is bicubically upsampled which reduces the
SR problem into deconvolution (deblurring) problem. Shi
et. al. [26] have proposed the usage of CNN itself to
learn upsample filters together with enhancement filters,
therefore it was the first time an SR problem is completely
addressed by CNN based algorithm.

In a recent paper, Papyan et. al. [8] have discussed the
connection of convolutional sparse coding and CNNs. By
inspecting the activation of each layer of a trained network,
it is proven that CNN layers become sparse representation
dictionaries. In section 3 we will use core ideas from [8] to
prove necessity of skip connections.

The literature on inverse problem related CNNs is vast.
But many methods lack the proper mathematical explana-
tion for their success. Before moving onto mathematical
analysis of CNNs we will look into the analytical ap-
proaches for inverse problems in literature.

2.2. Analytical Approach to Solution

The analytical approach for solving the inverse problem
involves minimizing a non-smooth convex cost function
with additional regularizations that are impinged on the
optimization to statistically tie the solution to the obser-
vations. Mathematically, most imaging problems such as
debluring, denoising, SR are most appropriately formulated
with variational equations. The objective of these equa-
tions is to incorporate a priori information and enforces
coherency with the observations. Equation 3 is an example
of a variational equation where r(t) term is continuous and
differentiable function.

The choice of r(t), the regularizer, depends on multiple
parameters, such as the objective of the problem, the
probability distribution of noise etc. For the case when the
noise probability distribution is Gaussian L2 norm is used
as r(t) = ||t||2. The minimizer for equation 3 is given by the
so called Landweber equation

t̂ = (KTK + λI)−1KT g (6)

where I is identity matrix and λ is the regularization
parameter that is chosen according to the application. Al-
though derivation of quadratic functions is easier especially
for gradient descent type solvers, they are known to stuck
to local minima occasionally which is a major problem
for imaging applications where the cost function is almost
always multimodal.

One of well known methods that address the solution
of variational equations is alternating direction method of
multipliers (ADMM) [22] . The method uses augmented
lagrangian to split the optimization problem into two parts
that are optimized in alternating steps. Later Combettes &
Wajs [18] have analyzed the convex optimization problems
and their solutions by proximal forward-backward splitting.
They have inspected various proximity mapping functions
for solutions of inverse problems with projection onto
convex sets. Linear inverse problem solution uses iterations
which result in so called Iterative Shrinkage/Thresholding
(IST) [18]. For linear inverse problems the solution to
the inversion of equation 1 can be obtained by the help of
Moreau proximity operator [18] as

tn = proxb||.||(t
n−1 + b.KT (g −Ktn−1)) (7)

where a class of proximity operators are defined, and
n stands for iteration count. The special function for the
case of L1 regularization is soft thresholding function also
known as shrinkage operator. Soft thresholding function
for scalar input is defined in equation 8 where b is the bias
value. For vector inputs the same operation is applied to
each element separately.



proxb||.||t = sign(t).max(|t| − b, 0)
.
= Sb(t) (8)

The funcion Sb is symmetric soft thresholding, as we
shall see later; and it has an inherent connection to non-
negative soft thresholding used in neural networks. Notice
thatKT (g−Ktn−1) is the negative gradient of data fidelity
term in the original formulation. Using IST iterations,
the solution for the inverse problem is obtained iteratively.
Each iteration uses an update term that uses gradient values
thresholded by Moreau proximity mapping. This method is
also named as Proximal Landweber Iterations [27].

Daubechies et. al. [27] have proposed the usage of non-
quadratic regularization constraints that promote sparsity by
the help of an orthonormal (or overcomplete) basis ϕl of a
Hilbert space. For the problem defined in equation 3 it is
proposed to use regularization function r(t) as

r(t) =
∑
∀l

bl|〈t, ϕl〉|p (9)

where bl are coefficients. Usage of this regularization
instead of L1 norm provides a better representation for
information that has space-varying smoothness property,
such as real life images. For the case when p = 1, a
straightforward variational equation can be obtained in an
iterative way for equation 3.

〈tn, ϕl〉 = Sb(〈tn−1, ϕl〉+ 〈KT (g −Ktn−1), ϕl〉) (10)

Iterations over the set of basis functions can be carried
out in one formula

tn = Zb(t
n−1 +KT (g −Ktn−1)) (11)

where
Zb(x)

.
=
∑
l∈Γ

Sb(〈x, ϕl〉)ϕl (12)

which can be seen as a method to file the elements of x in
the direction of ϕl. Daubechies et. al. have proven that the
solution obtained by iterating t reaches the global minimum
of the solution space and solution method is stable. The
solution will reach to an optimum point if K is a bounded
operator satisfying ||Kt|| ≤ C||t|| for any vector t and some
constant C.

Although more research has been put into regularization
methods later starting with Combettes & Wajs [18], the
method of Daubechies et. al. is suitable for us to explain
training of CNNs later.

3. Mathematical Analysis of CNNs

It is as important to know how a CNN learns as much
as what a trained CNN represents or resembles. The

Figure 1: Operators: a) W(.) operator for lexicographical
dictionary creation from a patch, b) X(.) operator for
equivalent operation for an order swapping of cascaded
convolutions

latter is discussed in literature for many different areas of
application, the former is lacking proper explanation and
mathematical proving. The main reason is that a math-
ematical model for a CNN cannot be obtained explicitly,
the fastest method to analyze how a CNN learns is to let
it learn. For this reason we start from the very beginning
and formulate CNN operations for simplified cases. We
show the optimality of CNN elements and conditions for
optimality.

3.1. Training (Learning) Phase

For the training phase of CNNs, input images are fed
into the network for forward pass. The resulting image from
the network is compared against a ground truth (GT) image
and the error is backpropagated. Since the input image is
convolved by the neuron filter, its size should be larger than
the size of the output to prevent boundary conditions. It is
reported that boundary conditions do not cause a trouble in
a residual learning environment [10].

Before moving on to explaining CNN operations we
have to define a few operators. These operators will be
useful in describing convolutional operations with algebraic
equations. Take a filter, f, of size axa; an input patch, xk−1,
of size cxc. The valid part of the output, xk, of convolution
of f and xk−1 will have a size of (c− a+ 1)x(c− a+ 1).

xk = xk−1 ∗ f

where ∗ is convolution operation. To show these op-
erations algebraically we define a new operator Wc,a(.)
which takes smaller patches (subpatches) from a larger
patch (superpatch), orders them in lexicographical order
then concatenates all vectors into a matrix. This operator is
depicted in Figure 1 a. Subscripts indicate the sizes of xk−1

and f respectively as cxc and axa. The resulting matrix
from Wc,a(.) operator will have a size of (c− a+ 1)2 x a2.

xk−1 ∗ f = Wc,a(xk−1).f (13)

We denote lexicographically vectorized 2-D patches
with bold characters. Notice in this case result of
convolution xk−1 ∗ f is also vectorized. We also define
an Xe,a(.) operator to denote an order swapping between



Figure 2: a) One neuron filter b) Two cascaded neuron
filters

two cascaded convolutions as shown in Figure 1 b. The
index a indicates the size of the filter, axa, that is given
as input to the operator. The index e indicates the size of
the image patch, exe, with which the input filter is going
to be convolved. Take an input xk−2 as in Figure 2 b, with
size exe, and two filters f k−2 and f k−1 with sizes axa the
resulting operations will be as follows

xk−2 ∗ fk−2 ∗ fk−1 = xk−2 ∗ fk−1 ∗ fk−2 (14)
= Xe,a(fk−1).We,a(xk−2).fk−2

To start analyzing a CNN we are going to take one
CNN element, a neuron filter into consideration depicted
in Figure 2 a.

xk = softb(xk−1 ∗ f) (15)

where softb, nonnegative soft threshdoling, is defined
for each scalar input as in equation 16. For vector inputs
same operations are applied to each element in the vector.
The output of a neuron filter is outcome of nonnegative soft
thresholding applied to the convolution result.

softb(x)
.
= max(x− b, 0) (16)

During training a target image, t, is used to calculate an
error. The mean square error is used for gradient calculation
and parameter updates. We define a dictionary for learning
(training) phase as

DL,k−1
.
= Wc,a(xk−1) (17)

xk = softb(DL,k−1f) (18)
error = t− softb(DL,k−1f) (19)

mse =
1

2
||t− softb(DL,k−1f)||2 (20)

∂mse

∂f
= −(DT

L,k−1(t− softb(DL,k−1f))) (21)

Moving forward with CNN learning operations, param-
eter updates are carried out by adding negative gradient on
top of old value.

fn = fn−1 − ∂mse

∂fn−1
(22)

= fn−1 +DT
L,k−1(t− softb(DL,k−1f

n−1)) (23)

where n is the iteration number. In Daubechies et. al. [27]
(Remark 2.4) the learning rate was introduced with a matrix,
G, that is diagonal in ϕl basis as Gϕl = ηlϕl. The term ηl
modifies equation 23 as

fn = fn−1+
1

ηl
DT
L,k−1(t−softb(DL,k−1f

n−1)) (24)

Daubechies et. al. have commented that the solution
can be followed by this equation but they have omitted it
for simplicity of equations. It will affect the convergence
speed in general but it was proven that the solution reaches
to optimum point either way. Since we show that CNN
gradient descent based learning yields the same solution
as Daubechies’ solution we also omit this term and use
equation 23.

The fn can be defined piece-wise as

fn =


fn−1 +DT

L,k−1(t−DL,k−1f
n−1 + b)

if DL,k−1f
n−1 > b

fn−1 +DT
L,k−1t

if DL,k−1f
n−1 ≤ b

(25)
We want to collect the iterations inside the soft thresholding
to modify equations towards Daubechies’ solution.

fn = softb′(f
n−1 +DT

L,k−1(t−DL,k−1f
n−1)) (26)

To have to fn definitions to be equal then we would have
to describe b’ as

b′ =

{
−DT

L,k−1b DL,k−1f
n−1 > b

−DT
L,k−1DL,k−1f

n−1 DL,k−1f
n−1 ≤ b

(27)

Although this split seems to describe four zoned thresh-
olding function, this is not the case. Since we are dealing
with natural images DL,k−1 and t have positive values.
This reduces the thresolding function to two zones again.
Another remark is that we did not use bold letters for f,t
and b, which indicates that we assumed scalar f,t and b.
This is a simplification to avoid using indexes in an already
complicated formula. Also it is important to emphasize
that we are not proposing new functions for the training
of a neuron. We are changing the equations to make them
tractable.

For simplicity define

en
.
= fn−1 +DT

L,k−1(t−DL,k−1f
n−1) (28)

Introduce {ϕl} a CON basis vector set of Hilbert space.

〈fn, ϕl〉 = 〈softb′(en), ϕl〉 (29)



Now define

hn
.
= softbl(〈en, ϕl〉) (30)

Explicitly

〈fn, ϕl〉 = fn[1]ϕl[1] + ...+ fn[M ]ϕl[M ] (31)

hn = en[1]ϕl[1] + ...+ en[M ]ϕl[M ]− bl (32)

where M is the length of vector f. Since we actively
control b′ values for each computation, we know that softb′

is active all times, only b′ will change. Thus fn[i] =
en[i] − b′[i] at all times. Therefore to have hn equal to
〈fn, ϕl〉 we should have bl = 〈b′, ϕl〉.

fn =
∑
∀l

〈fn, ϕl〉ϕl =
∑
∀l

softbl(〈en, ϕl〉)ϕl

=
∑
∀l

Sbl(〈fn−1 +DT
L,k−1(t−DL,k−1f

n−1), ϕl〉)ϕl

(33)

where Sbl is defined in equation 8. Since the basis vec-
tors can be chosen with two different directions without loss
of generality we can choose ϕl such that the innerproduct
(or projection) always yields a nonnegative result. By doing
so we can use symmetric soft thresholding (Sb) instead of
nonnegative soft thresholding (softb). This enables CNN
equations to become exact inverse problem solutions. We
will replace operator K in equation 11 with DL,k−1 in
equation 33. From previous discussion we know that the
operator needs to be bounded for the solution to exist for
equation 11. In this case DL,k−1 matrix which is composed
of image patches is bounded. Therefore equation 33
shows that a neuron filter solves an inverse problem
during training and that it is optimal and stable solution.

A neuron filter solves a system as in equation 34

t = DLf + n′ (34)

where t is the target image as before,DL is the dictionary
matrix constructed from input data and f is the neuron filter
to be learned, n’ is noise. The solution of such a system
is given by equation 33. Notice that the training step is
an intermediary step of using a CNN for the actual inverse
problem of equation 1. As we will discuss in section 3.2,
learned filters will change roles during testing.

The generalization of a single CNN element (neuron
filter) to the entire network is mathematically cumbersome.
We can make analysis on a subset of a network and then use
generalized methods and theorems to understand what and
how CNN learns. For that we analyze two neuron filters
cascaded and show that how they learn is similar to a single
unit. Two units are depicted in Figure 2. We use S(.) for soft

thresholding in following equations for simplicity without
denoting biases. Take a patch xk−2 with size exe; xk−1

with size cxc; fk−2 and fk−1, with size axa.

xk−1 = S1(xk−2 ∗ fk−2)

xk = S1(xk−1 ∗ fk−1) = S(S(xk−2 ∗ fk−2) ∗ fk−1)
(35)

Update of fk−1 follows the same steps as discussed before.
The update of fk−2 requires derivation of mse w.r.t. fk−2

where we will utilize the Xe,a operator.

mse =
1

2
||t− S1(DL,k−1fk−1)||2 (36)

=
1

2
||t− S1(Xe,a(fk−1)S2(DL,k−2fk−2))||2

(37)

To calculate gradient, define a modified dictionary

P
.
= Xe,a(fk−1)DL,k−2 (38)

Then we can calculate gradient of MSE. For readability
issues we will stop using bold letters for vectors.

∂mse

∂fk−2
= −(PT t−PTS1(Xe,a(fk−1)S2(DL,k−2fk−2))) =


−(PT (t− Pfk−2 +Xe,a(fk−1)bk−2 + bk−1))

if DL,k−2fk−2 > bk−2

and if Xe,a(fk−1)(DL,k−2fk−2 − bk−2) > bk−1

−(PT t) o.w.
(39)

Then we calculate

fnewk−2 = fk−2 −
∂mse

∂fk−2
=


fk−2 + PT (t− Pfk−2 +Xe,a(fk−1)bk−2 + bk−1)

if DL,k−2fk−2 > bk−2

and if Xe,a(fk−1)(DL,k−2fk−2 − bk−2) > bk−1

fk−2 + PT t o.w.
(40)

We can also define a new equivalent function as in previous
case, by choosing bias value as given in equation 42.

fnewk−2
.
= Sb′(fk−2 + PT (t− Pfk−2)) (41)

b′ =


−Xe,a(fk−1)bk−2 − bk−1

if DL,k−2fk−2 > bk−2

and if Xe,a(fk−1)(DL,k−2fk−2 − bk−2) > bk−1

= −Pfk−2 o.w.
(42)

Equation 41 leads to the same equation as we have



Figure 3: Illustating the Equivalent Filter fE

reached before in equation 26. From this point we can
generalize that a CNN can solve for an inverse problem
during training by an IST algorithm. The aim of a neuron
filter, or the entire network, is to match its output to a target
image to minimize error in equation 19. The estimation
of neuron filters in this way is analogous to basis pursuit
of K-SVD algorithm for sparse representation estimation.
Therefore the vector f is a representation vector in equation
19. The dictionary, DL, upon which representation of
target, t, is found is constructed out of subpatches from low
resolution image (superpatch). This seems only convenient
because during testing (forward pass) the only information,
from which the inverse problem is solved, is the input image
itself.

To further understand how a CNN learns and works we
can inspect cases where mathematical proving is easier. Let
us now recall the Landweber equation applied for CNN
fE = (DT

LDL + λI)−1DT
L t. This is illustrated in Figure

3 In order to be able to use insights from this equation
assume that all neurons in the network are activated for
the inputs. For that unrealistic case, the network filters
can be convolved among themselves to produce an end
point filter, fE . This is feasible because when all neurons
are activated, their linear unit outputs are going to be the
convolution results minus a bias that can be added up at
the end, simply enabling the convolution of all filters to
be applied in a single instant. A similar work is done by
Mallat et. al. [28] to analyze linearization, projection and
separability properties of sparse representations for deep
neural networks.

The vector fE is going to be a normalized projection
of t onto input image domain. Considering the rows of
DTL matrix, each row is a vectorized subpatch, thus each
multiplication result from DTLt is going to be 〈subpatch, t〉
meaning the projection of target patch onto an input sub-
patch. DTLDL matrix have elements of inner products of
subpatches such as 〈subpatchi, subpatchj〉. The diagonals

of DTLDL matrix, therefore, are normed square of each
subpatch. The inverted matrix is going to be mostly
composed of diagonals that are inverted normed square
values of subpatches. This means that the entire equation
calculates the projection of target patch, t, onto the input
image domain. In other words, the result, fE , consists
of scores which measure how similar t vector is to each
subpatch from the entire superpatch. If the target image has
content that cannot be recovered by using certain region of
input image, the reconstructed image is going to be inferior.
This is due to the fact that the inverse problem operates
solely on an input image. Selection of a larger area for
the reconstruction of certain target patches proves useful
because of increased information included into the system.

This insight provides a method for determining how deep
a network should be for certain features. For example when
the superpatch and corresponding target region contains
only irregular texture, which can be modeled as gaussian
noise, the DL matrix becomes linearly independent, mean-
ing easily invertible. Consequently when the training set
consists solely of textured images, shallow networks will
perform as good as deep networks.

In general the training set contains various features with
different variances. Therefore the generalization of the new
concepts that are introduced here are difficult. Training with
different structures enables the constant evolution of neuron
filters during training. However to have an activating branch
for each feature either the network should have increased
number of filters or the network will not converge which can
be explained by the manifold hypothesis, as representations
not covering the high dimensional input space [7].

We propose separating a CNN into two separate net-
works that will be trained with different data. The data
separation can be carried out in multiple ways, one of
which is a method that is utilized by Romano et. al.
[15] for a very similar purpose: learning different filters
for SR and deblurring. The method uses gradients in x
and y directions and calculates what we term as ”spatial
coherency” to distinguish from Papyan’s dictionary mutual
coherence. Gradient estimates for x and y directions are
vectorized into two vectors. Two vectors are concatenated
under a matrix G that has the size 2 by M. An Eigen
analysis is carried out over the matrix GTG. Since this is
a 2x2 matrix eigenvalues and eigenvectors can be obtained
easily. The normalized difference of larger eigenvalue

√
λ1

and smaller eigenvalue
√
λ2 can be seen as the spread of

the local gradients which reveals information about spatial
coherency. The spatial coherency value can be calculated
as:

µk =

√
λ1 −

√
λ2√

λ1 +
√
λ2

(43)

Using µk, structured patches and irregular patterns can



Figure 4: Formation of Reconstruction Dictionary (DR)

be separated. Two distinct features in two training sets
enables the specialization of CNN for the solution of an in-
verse problem. For high spatial coherency data, we can use
a deeper network to increase receptive field, consequently
to increase included information for the inversion of the
observation model. For low spatial coherency images we
can use more shallow networks since information content is
already higher despite its complexity.

3.2. Testing (Reconstruction) Phase

For the testing phase, a new representation - dictionary
duality (RDD) concept is proposed. RDD concept states
that the representation vectors learned during the training
phase can be used as atoms of a dictionary for the testing
phase. The cost function that is minimized by CNN training
(learning) yields a representation vector as the neuron filter.
During testing (scoring, reconstruction) phase, resulting
representation vectors (filters) from a layer of neurons turn
into a dictionary (later named as DR) upon which the
reconstruction of output image is carried out. We propose
the idea that dictionaries and representations swap roles
during training and testing. Also during training, inputs to
each layer is perceived as a dictionary for the next layer.
Following the idea of RDD, the neuron filter can be viewed
as an atom of a dictionary consisting of many other neuron
filters among the network layer. During testing period, the
neuron filters are vectorized and concatenated to form the
reconstruction dictionary matrix DR = [f1;f2;f3...]. A
layer’s output will be the representation vector of input
image in terms of the dictionary atoms, i.e. the neuron
filters. This is illustrated in Figure 4

To explain the representation problem analogy better we
use ideas from two papers by Papyan et. al. [8][29]. The
authors have described a convolutional sparse coding prob-
lem where an observation is represented by a dictionary and
its representation vector is further represented by another
dictionary for a number of layers. They have proven, in
Theorem 1, that layered representations can be estimated
by a CNN based forward pass where mentioned layered
dictionaries are filters of each layer of CNN. (Theorem 10
in original text [8])

Theorem 1 Suppose g = y + n where n is noise whose
the power of noise is bounded by ε0 and y is a noiseless
signal. Considering a convolutional sparse coding (CSC)

structure where DR,l is the dictionary, constructed from lth

layer filters
y = DR,1x1

x1 = DR,2x2

.

.
xN−1 = DR,NxN
Let x̂i be a set of solutions obtained by running a convo-
lutional neural network, or layered soft thresholding algo-
rithm with biases bi as x̂i = softi{DT

R,ix̂i−1}where x̂0 =

g. Denote |xmaxi | and |xmini | as absolute maximum and
minimum entries of xi. Then assuming for ∀1 ≤ i ≤ N
||xi||0 < 1

2 (1 + 1
µ(DR,i)

|xmin
i |
|xmax

i | )−
1

µ(DR,i)
εi−1

|xmax
i |

where µ(DR,i) is the mutual coherence of the dictionary
then

1. The support of the solution x̂i is equal to the support
of xi

2. ||xi − x̂i||2 ≤ εi
where εi =

√
||xi||0(εi−1 +µ(DR,i)(||xi||0−1)|xmaxi |+

bi)

The mutual coherence µ(DR,i) is defined as
min
n 6=m
|dTR,i,ndR,i,m| where dR,i,n is nth column of DR,i [8].

Although as stated by the Papyan et. al. there are tighter
conditions for mutual coherence calculation. Later in this
section we are going to analyze a different approach to the
proving condition of this theorem.

Using Theorem 1, we can relate sparse representation
problem with CNN forward pass. Elaborating further on
separate networks in this context we can analyze CNNs
better. Although image spatial coherency and dictionary
(neuron filters’) mutual coherence are two distinct measures
they are correlated. We know that a high spatial coherency
training set will yield learned filters of similar informa-
tion content. This means that the neuron filters will be
composed of mostly flat and singular orientation features
thus filters already have higher mutual coherence. For low
spatial coherency networks, the learned filters will exhibit
textured features reducing the mutual coherence (reducing
similarity) in the process. Theorem 1 is used to show the
stability of CNNs for data representation. There are two
different stability concepts that are proven by this theorem,
one is having bounded response for small perturbations in
the input data which is trivial in context of CNNs, the other
more important concept of stability is the accuracy of the
results given an input data. The theorem is valid, depending
on mutual coherence of dictionary elements. The condition
is given as

||xi||0 <
1

2
+

1

µ(DR,i)

1

2|xmaxi |
(|xmini | − 2εi−1) (44)

In this condition, at first glance it looks as µ(DR,i) is



required to be as low as possible and |xmin
i |
|xmax

i | as close to
1 as possible. But further analysis reveals that µ(DR,i)
and xmini , xmaxi values are interdependent, therefore a
straightforward upper bound may not be defined. If mu-
tual coherence decreases, min

i 6=j
|dTR,i,ndR,i,m| decreases. It

means the eigenvalue spread of DT
R,iDR,i increases. Given

enough number of elements in a dictionary this means
maximum and minimum values of x̂i are also pushed apart.
Assuming a stable solution exists, this means an increase
in |xmaxi | and a decrease in |xmini |, since difference of
estimation and true value is bounded by the power of noise.
The existence of a solution for noisy case CSC (Theorem 1)
is not proven in Papyan et. al. [8]. Therefore we have to
look for conditions that would contradict with the existence
of a non-trivial solution. For equation 44 to be valid for non-
trivial solution, 1

µ(DR,i)
1

2|xmax
i | (|x

min
i | − 2εi−1) should be

greater than 1
2 . Or if we define a looser but easier bound:

|xmini | > 2εi−1 (45)

If we assume the existence of a stable solution we would
have ||xi − x̂i||2 ≤ εi where x̂i = softi{DT

R,ix̂i−1} then

|xmini | = min
n
|xi[n]| ≤ min

n
|x̂i[n]|+

√
εi (46)

≤ min
n
|dTR,i,nx̂i−1|+

√
εi (47)

≤ min
n
|dTR,i,nxi−1|+

√
εi +

√
εi−1 (48)

= min
n
|dTR,i,nDR,ixi|+

√
εi +

√
εi−1 (49)

≤ min
n 6=m
|dTR,i,ndR,i,m|.||x1||2 +

√
εi +

√
εi−1 (50)

= µ(DR,i)||x1||2 +
√
εi +

√
εi−1 (51)

To satisfy equation 45

µ(DR,i) >
2εi−1 −

√
εi−1 −

√
εi

||xi||2
(52)

If mutual coherence is not above a certain value (equa-
tion 52) then the theorem does not hold. When conditions
are not satisfied, ||xi − x̂i||2 < εi statement is no longer
valid. Starting from x̂0 = g, The estimate x̂1 will be
perturbed beyond the power of noise of the input. Re-
call that we have defined the noiseless signal y as y =
DR,1DR,2..DR,NxN where N is the number of layers, or
stages. As the estimate of each stage drifts further from the
original representation values, in MSE sense, the end result
of N layered CNN becomes an inaccurate representation of
the original data.

ŷ = DR,1DR,2..DR,N x̂N (53)

Although estimating y, in forward problem that is de-

fined as g=y+n, is a denoising problem, which is an example
of an inverse problem nonetheless, the stability discussion
can be applied to generalized inverse problem for imaging
as g = Kt + n. Then the equation in the theorem changes
as Kt = DR,1DR,2..DR,NxN and as CNN learns to invert
the observation system K, xN = t.

Skip connections relay information from previous layers
to deeper layers. One must consider both training and
testing to understand the effect of skip connections on
mutual coherence of layer elements and the stability of
CNN overall. During forward pass (testing), information
from previous layers are added on deeper layers’ outputs.
As prior layers’ information is more similar to the original
data compared to deeper layers’ information, Because of
less perturbation caused by equation 53. Skip connections
help preserving the accuracy of the end result. During
backpropagation (training), the total error is carried, via
skip connections, to deeper layers. Bypassing the chain
rule of gradient calculation enables the true gradient to in-
fluence deeper filter coefficients. The initialization of CNN
coefficients are done via Gaussian noise. Initial coefficients
has the lowest mutual coherence possible. Backpropagating
an error that is calculated from difference of target data
and input data that is lost within initial coefficients (as in
modified dictionary in equation 38), without losing fidelity
becomes almost impossible for deeper networks. This
is the reason why the middle layers always have lowest
mutual coherence (see Tables 1 and 2 in section 4). Skip
connections bypasses effect of many layers on the true
gradient therefore skip connections help updating deeper
layers with more accurate gradients. Consider the modified
dictionary in equation 38. With skip connections the
gradient descent will use direct input information DL,k−2

instead of Xe,a(fk−1)DL,k−2 that is dictionary modified
with potentially unreliable fk−1 at the initial stages of train-
ing. (To be more precise, with skip connection, gradient
descent will use a mixture of DL,k−2 and P ). Thus with
skip connections filter coefficients become more accurate
in representing noiseless input data Kt, then output of CNN
becomes more accurate in representing the target data t.
Therefore we have mathematically shown the benefit
of skip connections between hidden layers or input-
output layers as in residual learning [10] which provide
the network with necessary mutual coherence. Mao
et. al. [9] have proposed the usage of skip connections
between convolution and deconvolution layers to prevent
input information to be lost inside the encoder-decoder
structure. Our reasoning for the usage of skip connections
is to keep mutual coherence of filter coefficients high. This
will provide the trained network to produce accurate results
according to the error criterion used. During training,
each layer’s output is used as a dictionary for the next
layer. The mathematical analysis of the learning process



Table 1: Comparison of Mutual Coherence of Two Net-
works

Layer # 1 2 3 4 5
Skip MC 0,0034 26e-5 0,0031 0,0034 99e-6
NoSkip MC 0,0016 18e-5 0,0026 0,0031 89e-6

Table 2: Comparison of Mutual Coherence of Two Net-
works

Layer # 6 7 8 9
Skip MC 18e-4 0,0026 0,0098 0,0038
NoSkip MC 99e-5 0,0013 0,0027 0,0030

revealed in equation 39 that initial filters are updated with
modified dictionaries P that carry information of all the
layers beyond it. Skip connections will reduce the variance
of filters in different layers by carrying information across
the network during forward and backward passes of training
process. Although we have shown that CNNs benefit
from skip connections exact structure is still subject to
experimental refinement depending on the application.

4. Experimental Validations
We have validated our assertions with experiments to so-

lidify our results. We have used a superresolution example
to test our findings. The training set was 291 images that
Kim et. al. [10] have used. The test set was also from the
same paper, which was Set5 and Set14 also BSD100. We
separated the training set into two using spatial coherency
value. The experimental findings are summarized as

• Skip connections increase mutual coherence of middle
layers, as well as other layers.

• Skip connections increase PSNR performance of the
network

• Measured increase in values are subjected to T test and
they are found statistically significant.

• Networks that are trained with lower spatial coherency
data saturate in performance for shallower networks,
while high spatial coherency data requires deeper net-
work before converging in performance.

Tables 1 and 2 show that usage of Skip connection in a
10 layered network helped increasing mutual coherence.

We have used 100,000 patches to test the PSNR of the
results. The PSNR of the network without skip connections
was averaged on 30.77 dB while bicubic result had 29.2 dB
PSNR. The skip connections helped the PSNR to increase
to 30.88 dB. We have used the so called T test to measure

Figure 5: High Spatial Coherency Network Number of
Layers Required for Performance Convergence

Figure 6: High Spatial Coherency Network Number of
Layers Required for Performance Convergence

the significance of this result. T test is formulated as in
equation

T =
meanset1 −meanset2√

varset1
#set1

+ varset2
#set2

(54)

where set1 contains the results of network with skip
connection and set2 contains results from network without
skip connection. T value is calculated to be 7.07 which
points that the improvement is quite significant.

We have trained multiple networks for high spatial co-
herency and low spatial coherency data sets. As we have
pointed out with our discussion in late section 3, High
spatial coherency network required deeper networks before
converging in performance, while low spatial coherency
networks converged on shallower networks. This is illus-
trated in Figures 5 and 6.

5. Conclusion and Future Work
Starting from the simplest element of a CNN we have

brought mathematical clarification as to how CNN learning



process works. We have proven that a neuron filter solves
for an inverse problem during training. Then we have
generalized the findings for convolutional networks. The
result of training becomes a representation for the input
image. We have discussed that after training process,these
representation vectors, i.e. neuron filters, become feature
selectors and dictionaries for reconstruction until the last
layer. The CNN needs to satisfy conditions on mutual
coherence between filters in each layer. These conditions
ensure that the filters will be the true representations of
their inputs during training. We have shown that to satisfy
these conditions skip connections were necessary. We have
discussed separation of a single network framework into
two or more networks via spatial coherency information.
This lead us to suggest different architectures for training
with different content data. Low spatial coherency data
inherently needs for more skip connections but also requires
smaller receptive field thus less number of layers to con-
verge to a solution.

Analyzing deep learning procedure is a complex prob-
lem. We have discussed simpler cases and proven key
mathematical concepts on CNNs for inverse problems. In
the future we will inspect effects of training with mini
batches to the convergence of a network. Also we plan on
analyzing optimizer with varying learning ratios and their
effects on convergence.
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