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ABSTRACT 
 
In this paper a system termed VIGILANT+ is outlined, which utilises situation awareness for the purposes of 

enabling distributed, autonomic, sensor management, so that savings on consumption of network resources can 

be achieved. VIGILANT+ is a novel proposition allowing deployed, unattended, wireless sensor nodes to self-

organise into dynamic groups and self-manage their transmissions efficiently, according to a current common 

mission objective. Firstly, a distributed situation assessment system named PORTENT models, detects and 

characterises potential situations occurring within an uncertain environment, using the metric, quality of 

surveillance information (QoSI). Secondly, a Bayesian Belief Network (BBN) is utilised to understand and 

analyse the significance associated with the potential situation, primarily to enable deployed sensors to self-

organise and assign themselves to mission objectives autonomously. Thirdly, a system is introduced for 

distributed autonomic transmission control, which enables the efficient management of sensor network resource 

consumption. Simulations have been undertaken to verify the integrated VIGILANT+ concepts and to 

demonstrate the effectiveness of the proposed approach in improving network efficiency, without compromising 

the presentation of mission surveillance utility. 

 
1. INTRODUCTION 

 
Continuing advances in sensor related technologies (battery and low power computation capabilities), including 

those in pervasive computing are opening opportunities for the deployment and operation of autonomous 

wireless sensor networks [1]. In addition, a highly distributed ad-hoc infrastructure can support fundamentally 

new ways of designing and implementing unattended ground sensor (UGS) networks for surveillance 

applications, in order to provide support in mission objective capabilities, such as threat presence detection, 

classification and geo-location. In this paper we focus on threat presence detection (mission objective 1) and 

geo-location (mission objective 2) capability. 

The characteristic nature of UGS surveillance operations requires however dynamic, intelligent, sensor 

management decisions regarding efficient consumption of sensor resources without compromising the 

objectives of the mission. Efficient management of resource is a necessity since the nature of UGS deployment 



 
 

can prevent devices being accessible for battery replenishment for long periods of time [2].  In this paper, a 

system named VIGILANT+ is outlined, which utilises a distributed sensor self-management approach to 

improve robustness to node failure and reduce communications load significantly over the more traditional 

centralised or task driven approaches [3].  

1.1 Related Work 
 
Clustering in ad-hoc sensor networks is an effective technique for achieving scalability and prolonged network 

lifetime [4-9]. A well-known clustering algorithm for continuous data centric application gathering sensor 

networks is the Low Energy Adaptive Clustering Hierarchy (LEACH) mechanism [5]. LEACH is a distributed 

single hop algorithm and includes inherent characteristics such as, self-configuration and localised data 

transmission control using Time Division Multiple Access (TDMA).  

In surveillance scenarios, self-organisation to perform energy efficient threat geo-localisation is equally 

important, as detailed in [6 -9]. Dynamic clustering for acoustic target tracking (DCATT) [6], proposes a simple, 

physical based localisation view, based on estimated distances derived from received signal energy levels from 

the sensing field. The locus of a potential target is dependent on the level of shared signal energy between two 

sensors, characterised by a defined single signal threshold.  

In addition, the above mentioned schemes [5-9], offer disadvantages by incorporating task driven criteria for 

sensor management. In [5], CHs are rotated according to metrics such as, battery energy level, transmission 

power or network connectivity, while in [6] CH’s with the greatest received energy are selected, according to 

the defined signal threshold. Such criteria offer drawbacks due to random rotation of cluster heads (CHs), by 

introducing considerable re-setup delay of the clusters, increasing communication overhead (energy 

consumption) and congestion (latency). This can also lead to degradation in surveillance performance by 

depleting network resources rapidly as in [5] or introducing higher target location errors, as in [6-9], in 

conditions where the sensing environment is corrupted with high levels of noise, leading to greater group 

instability.  

In addition, [5-9] do not consider the potential resource benefit savings that can be achieved through networking 

according to the derived understanding of the external operating environment, from captured sensor data. Recent 

initiatives have begun to address the problem of organising nodes according to the level of understanding about 

their environment, so that further improvements in operational and network performance can be achieved [10-

12], however this view is mostly taken towards the network and medium access control layers. 

 



 
 

1.2 VIGILANT+ Distributed Autonomic Surveillance Networking 
 

In this paper, VIGILANT+, outlines a new approach towards self-organisation and management of network 

resource consumption for surveillance missions. This is achieved by taking a “situation awareness” perspective 

of the surveillance environment, which mainly addresses the drawbacks of existing systems highlighted in the 

previous section, by minimising on the task driven criteria required for sensor management. Situation awareness 

(SA) is an application-orientated approach, offering a different perspective to [10-12] and can be neatly 

described through expanding Endsley’s “tripartite” model [13]:  

• Level 1-Perception-involves the correct identification of entity elements (e.g. type of threat) as well as 

their combined detection characteristics (e.g. accuracy, identity, certainty and timeliness), representing 

a measure of the detection information captured, by the distributed surveillance network [14]. 

• Level 2-Comprehension-involves derivation of the significance associated with uncertain sensor data, 

enabling relevant decision making and confidence in mission objective understanding (“context”). 

• Level 3- Projection-the ability to project future “context” of the mission objective environment based 

on potential association of the fragmented sensor data, within a temporal frame.  

Through integrating levels 1 and 2, VIGILANT+ minimises random rotation of CHs, as currently with [5-9], by 

ensuring CHs are only self-nominated according to the neighbourhood sensor, which registers the highest 

change in monitored threat dynamics, further detailed in section 2. In addition, VIGILANT+ also caters against 

the effects of the noisy and false alarm surveillance environment, primarily through level 1 and 2 operations, 

which can compromise on mission objective utility and is something not actively considered in [5-9]. In this 

paper, we also improve on [6-9] by not considering a signal energy threshold mechanism for target localisation, 

but rather self-organise by considering  locally derived threat awareness using Bayesian techniques and include 

an evaluation of the  relative positions of deployed sensors to the current monitored threat, in terms of geometric 

dilution of precision (GDOP), for improved geo-location performance. 

By also considering the confidence in mission objective “context” in level 2, VIGILANT+ can allow deployed 

UGS networks to conserve and self-manage their lower layer operational resources efficiently, such as 

communication energy (longevity) and bandwidth (latency) consumption, by minimising on the need for 

continuous updates, as currently done in [4-6]. In addition to our previous work [15], this paper also highlights 

the network resource efficiency benefits that can be achieved, by incorporating a distributed, mission objective, 

autonomic approach, as shown below, rather than the more traditional centralised approaches detailed in [5-9]: 



 
 

• Derivation of confidence through expansion of level 2 “context”, allowing deployed sensors to assign 

themselves to a particular mission objective autonomously. 

• A partial and fully observable Markov Decision Process enabling autonomic transmission control, so 

that further benefits can be achieved in conserving on network resource consumption. 

As with current LEACH operation [5], utilising TDMA in periods of low surveillance activity, can introduce 

bandwidth inefficiencies by non-utilisation of time slots for packet transmission. Also the medium access 

control strategies used in [6-9] are primarily pure contention access protocols, which can result in packets being 

dropped during high surveillance activity. In this paper, we manage this dual scenario by proposing a 

contention-schedule channel access mechanism, through our autonomic transmission control methodology, 

detailed in section 3. This allows a duty-cycle approach towards localised sensor channel contention access, 

where access periods are defined according to the evaluated urgency concerning the monitored threat, to 

improve on bandwidth utilisation, but without compromising on mission objective surveillance utility. Access 

periods defined in this way become sensor unique and can assist to balance the surveillance reporting load 

appropriately across the deployed network. Figure 1, illustrates and summarises the novelty of our proposed 

method for improving on operational resource efficiencies, through adaptive networking according to the SA of 

the surveillance environment. 

The remainder of this paper is structured as follows: Section 2 details VIGILANT+ self-organisation. Section 3 

details the autonomic transmission control methodology, by utilising the underlying mission objective 

“context”. Section 4 details VIGILANT+ system performance and Section 5 concludes the paper. 

2. VIGILANT+  SELF-ORGANISATION 
 

VIGILANT+ self-organisation is primarily focused on sensors establishing their localised “context” of the 

present situation (e.g. awareness to a threat) in order to allow sensor self-assignment to a particular mission 

objective.  Self-organisation based on a common “context” can facilitate operational effectiveness by: 

• Providing robustness in the probability of detection to common perceived events of interest, which 

consequently increases surveillance provision utility, as detailed in section 2.1 and 2.2.  

• Activating only those sensors currently providing a relevant sensing coverage to a security-sensitive 

area, thus propagating increased relevance in surveillance provision, as detailed in section 2.3. Non-

active sensors therefore participate less in group communication, providing further network resource 

consumption efficiencies. 



 
 

• Reducing the influence of sensors which share low common mission objective “context” (outliers) 

which can decrease surveillance provision utility, as detailed in section 2.3.  

2.1 VIGILANT+ Level 1 – Perception 

False alarms have a distinct impact on perception and mission performance since they relate to threat detection. 

A low false alarm rate, which is needed to avoid unnecessary responses, involves a larger sample set being 

collected for threat verification, implying greater sampling energy consumption and reduced timeliness. A 

system that has self-adjustable sensitivity to accommodate sensing environment uncertainties is therefore 

beneficial. Our evaluated situation assessment system, named PORTENT, comprises level 1 perception, 

accommodating the adjustable sensitivity requirement [16]. 

As shown in figure 2, PORTENT comprises a combined “fast” but less accurate and “slow” but more accurate 

validation system. “Fast” response is based on single sensory observations modelled using standard signal 

detection theory [17]. “Slow” response is modelled by integrating sensory samples over time, using the 

sequential probability ratio test (SPRT), in terms of the Neyman-Pearson (NP) lemma [18]. The SPRT tests two 

alternative hypotheses, representing the presence and absence of threat while updating the relative likelihood 

ratio of each as new sensory samples arrive. A decision in favour of a hypothesis is made by comparing the 

updated ratio against the NP detection sensitivity, which is designed to self-adjust in order to maximise the 

detection probability subject to the current false alarm. This assists in minimising on both false alarm detection 

and the need for extensive sampling.  

For threat presence characterisation, PORTENT specifically uses detection accuracy (q1), detection certainty 

(q2) and timeliness (q3) quality factors. A linear weighted fusion strategy is used by assigning normalized 

weights (Wb), to capture localised quality of surveillance information (QoSI), as shown in (1). 

∑
=

=
T

1b
bb q*WQoSI                                                                                                                                                   (1) 

where T = Number of Quality Factors Used. 

The PORTENT system provides strategies for efficiently combining both “fast” and “slow” response systems, 

to provide increased detection accuracy, certainty and timely situation assessment performance. The results of 

our evaluation studies indicate that incorporating PORTENT option 2 increases overall QoSI [16]. 

  



 
 

2.2 VIGILANT+ Level 2 – Mission Objective Surveillance Comprehension and Analysis 

Situations occurring in an uncertain environment require a level of cognition to derive “context” of those 

situations. Level 2 utilises an action orientated design approach [19], in the form of a Bayesian Belief Network 

(BBN), as shown in figure 3. A BBN is a directed acyclic graph, using a collection of nodes denoting the 

random variables representing the situation domain. Corresponding links between nodes define the casual 

relationships between them, with conditional probability tables (CPTs) encoding the quantitative influence. 

Where no link exists between nodes, quantitative influence is given by marginal probabilities. Table 1 

summarises the relevant probability derivations from figure 3, for making “context” based decisions at local 

sensors, concerning the current single threat situation for each mission objective. 

2.3 VIGILANT+ “Context” Querying for Sensor Mission Objective Self-Assignment 

Ad-hoc group self-organisation of single hop sensors can be enhanced through assigning sensors that share 

common “context” to a mission objective. Using “context” for self-organisation involves procedures which must 

support the following considerations: 

• Dynamics: Groups must provide adaptability, depending on changes to “context”, allowing sensors to 

leave and join at any time, during a mission. 

• Group Initiator re-election: Dynamic re-election of new CHs is imperative to maintaining relevant 

surveillance report aggregation, while minimising communication overhead. 

Bearing in mind these considerations, mission self-assignment can be restricted to querying about certainty in 

“context”, where communication efficiency relies on mission objective specific “context” instead of traditional 

IP-style addressing. “Context” centricity enforces uncoupled coordination, where distributed sensors are 

modelled as a set of components interacting with each other through the sensor analysing and reacting to their 

“context” independently. This supports flexibility within dynamic UGS surveillance network scenarios.  

The certainty factor (CF) model [20] can establish the degree of certainty which sensors have regarding a 

specific “context” of the mission objective. CF operates according to proportional measures in belief (MB) and 

measures in disbelief (MD) towards a certain hypothesis. The hypothesis stems from whether a distributed 

sensor should assign themselves to a specific mission objective, according to its current “context”, as shown in 

(2), using table 2, derived from figure 3.   

)MD,MBmin(1
)MDMB("Sensor"CF −

−=                                                                                                                              (2)         



 
 

Sensor self-assignment is initiated by the group initiator (GI) publish request, represented by the current sensor 

which perceives the highest current threat (Threat-“High”), calculated as detailed in table 1, entry 4 and shown 

in (3). 

))"High"Threat(p1()"High"Threat(p −−>−                                                                                                             (3) 

A combined CF “Mission Objective” evaluation, as shown in (4), quantifies the degree of certainty that a GI 

and a sensor should form a partnership due to their respective current “context” in a mission objective. CF “GI” 

is calculated in the same way as (2).  

Figure 4, illustrates the overall publish-subscribe “context” centric operation, for GI mission objective led 

sensor self-assignment and group self-organisation.  
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2.4 VIGILANT+ Group Initiator Re-Election 

GI re-election is dynamically conducted in the process of a mission. Assigned sensors rely on the current GI 

mission objective “context” centric address (GImocca) sent in the initial publish request, to re-evaluate whether to 

initiate “new” GI status, as shown in (5).  

StatusquestReObjectiveMissionGI"New"Publish,Then

)GI()"context"objectivemissioncurrentinConfidence(if mocca≥

                                                                    (5)               

Upon the condition in (5) being satisfied, the new GI re-evaluates the distributed mission objective “context” 

certainty, as shown in figure 4.The resulting new self-organised group further facilitates maintaining relevant 

on-going aggregation in surveillance information utility. 

3. VIGILANT+ AUTONOMIC NETWORK CONTROL 

Autonomic network control is orientated towards the management of network resources at infrastructure level, 

through applying feedback upon temporal environmental dynamics. Being efficient to network resource 

consumption implies a methodology, which provides projection capabilities (level 3) concerning the “context” 

to a current specific mission objective. This can be formalised using a random discrete time state representation, 

through either a Markov Decision Process (MDP) or Partially Observable MDP (POMDP) [21], detailed in 



 
 

sections 3.1 and 3.2. Being in a particular state signifies an evaluation of the current shared “context” to a 

specific mission objective at that point in time, detailed in sections 3.3 and 3.4. This enables us to make 

necessary transmission control decisions (selection, scheduling and prioritisation), detailed in sections 3.5 to 3.7.  

3.1 MDP Formulation for Transmission Control 

A MDP representation stipulates that a belief probability towards the current state environment is conditionally 

independent of all previous states and actions taken due to the Markov property exhibiting memory-less 

operation [21]. This property implies current actions regarding transmission decision making are dependent only 

on the current state, as shown in figures 5(a) and (b). Evaluating a current belief state (BSk+i) to facilitate 

transition to the next state (STATEk+i), where i=0 at initialisation, is based only on the conditional joint 

probability of current observation zk+i (A1) and current action taken ak+i (A3), as shown in (6). 

),|( 31 AASTATEpBS ikik ++ =                                                                                                                               (6) 

From figure 5(a), further GI updates are utilised, to deduce the current observable shared state environment. A 

consequence of utilising further GI updates is consumption of more network communication energy and 

bandwidth. We seek to explore this, with a view to considering the increase in surveillance information utility if 

any, due to an informed perspective about the current shared state environment, at the expense of more network 

resource consumption.  

3.2 POMDP Formulation for Transmission Control 

A POMDP implementation models the decision making process in which it is assumed that the system 

dynamics are determined by an MDP, but the decision maker (UGS) has an incomplete perspective regarding 

the shared state environment. Operating within a partial observable state environment requires feedback control 

of previous actions and observations [21]. The essential task for POMDP transmission feedback-control 

implementation is belief state estimation (BSE), as shown in figure 6(a) and (b). BSE represents the most 

probable view of the current shared state, given past experiences. Evaluating a current BSE (BSEk+i) , to 

facilitate transition to the next state (STATEk+i), where i=1 at initialisation, is based on the conditional joint 

probability of the current observation zk+i (A1), previous action ak-i (A3) and previous BSEk-i (A4), given in (7). 

),,|( 431 AAASTATEpBSE ikik ++ =                                                                                                                       (7) 

From figure 6(a), we represent partial observable operation, through not relying on further GI updates, to 

substantiate whether this will provide improved network longevity and bandwidth efficiency savings at the 

expense of any degradation in reported surveillance information utility.  



 
 

3.3 Determination of Shared Mission Objective 1 “Context” 

For mission objective 1 the joint probability for shared non-common threat awareness “context” between the GI 

and its corresponding group member  is a random variable, U, with probability density function (PDF1) and 

cumulative distribution function (CDF1), U~ N(µ , σ2
 ). Additionally the joint probability in shared common 

threat awareness “context” is a random variable, T, with a PDF2 and CDF2 , T~ N(µ , σ2).  

Determining the level of common “context” is based on the threshold S, chosen as the intersection point of the 

two respective PDF’s, as to minimise the sum of probabilities for incorrect determination of common “context” 

being made. The probability of correct detection in common threat awareness “context” (P1) forms the basis for 

eventual BSk+i or BSEk+i evaluation, given in (8). 

),|( 31 APSTATEpBS ikik ++ = And ),,|( 431 AAPSTATEpBSE ikik ++ =                                                                  (8) 

where, P1 = 1 – CDF2 (S)      

3.4 Determination of Shared Mission Objective 2 “Context” 

We assume sensors have the ability to obtain current threat position (xThreat, yThreat) using techniques such as time 

difference of arrival, to calculate current geometric dilution of precision (GDOPk), with respect to the GI. 

GDOPk measures accuracy in shared geo-location “context”, quantifying the mapping of measurement errors 

into position errors, magnified by the geometric relation of sensors to threat geometry [22]. The geometry 

matrix HT H, at each time instant, for N active sensors, is expressed in (9). In all cases we assume, GI (xGI, yGI) 

and active sensor (xi, yi) positions are known.  
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Since the matrix (HT H) is symmetric and positive definite, all eigenvalues λ1, λ2 are real and positive. The trace 

of the matrix (HT H) is then equal to the sum of the eigenvalues given in (10). 
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GDOPk is therefore given as shown in (11). 

1)( −= HHtraceGDOP T
k                                                                                                                                (11)  

Utilising the GDOPk measure to serve as an approximation of the current threat location (CTL) , in terms of 

circular error probable (CEP) [23], we can obtain a likelihood measure for common “context” (Q1), forming the 

basis for eventual BSk+i or BSEk+i evaluation, given in (12). 
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3.5 Mission Objective Transmission Control: Selection 

Selection for transmission, at each decision epoch, can be formulated in terms of state information gain using 

information discrimination techniques such as Rényi divergence, also known as α-divergence [24]. Utilising a 

state information gain approach forms a direct measure on the quality for sensor transmission selection, this 

being either to select transmission or not, with an expected utility calculated for each. The calculation of 

information gain between two probability densities p1 and p0 using Rényi divergence denoted by, (p1 || p0), is 

given in (13), where the α parameter is used to adjust how heavily one emphasises the tail of the two 

distributions p1 and p0. 
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In the limiting case of α → 1 the Rényi divergence becomes the commonly used Kullback-Leibler (KL) 

discrimination, given in (14). 
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If probability state representations are taken from a normal distribution, p1 ~ N (µ1, σ1
2) and p0 ~ N (µ0, σ0

2) the 

KL discrimination (DKL) is shown in (15).   
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For mission objective 1 (M1) operation, the requirement is to have as much divergence between p1 (non-

common threat awareness) and p0 (common threat awareness) to increase information gain. Expected Utility 

(EU) in (16) illustrates how risk attitudes are managed according to current uncertainty towards high threat 

presence awareness.  
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                                                  (16)                                                     

For mission objective 2 (M2) operation, the requirement is to have as much convergence between p1 

(GDOPMAX) and p0 (GDOPk) to increase information gain. Risk attitudes are modelled by (17) on GDOPk, this 

being a direct approximation on the current CEP, a measure for geo-location accuracy. 
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Transmission is selected by ensuring that the current expected utility for “yes” transmission is greater than or 

equal to the expected utility of selecting “no” transmission, as given in (16) and (17) but with complementary 

weighting. 

3.6 Mission Objective Transmission Control: Scheduling 

Scheduling can be made according to BSk+i or BSEk+i which represents a belief transition probability from the 

current to future state environments. Figures 5(b) and 6(b), illustrate the decision for selecting transmission 

scheduling, with both conditions derived to provide group stability, for situations where no state “contextual” 

discrepancy occurs. In mission objective 1 this constitutes non-scheduling as long as the BSk+i or BSEk+i adds to 

an increasing level in shared threat awareness “context” as evaluated in (8). In mission objective 2 this 

constitutes scheduling as long as the BSk+i or BSEk+i increases the level in shared geo-location “context” 

representing improved GDOPk from the previous state, which is a direct approximation of the current 

improvement in CEP, as shown in (12). 

3.7 Mission Objective Transmission Control: Prioritisation 

In order to ensure reliable surveillance report delivery and promote network longevity and bandwidth efficiency, 

sensors which are scheduled for transmission determine a service priority time, based on BSk+i or BSEk+i. The 

service priority time (M) is evaluated in terms of a shared state environment which continues for a total H time 

steps (seconds), as shown in (18).  
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Derived M is dependent on the degrees of shared “context” present, with respect to the current GI. A higher 

belief state transition probability implies a higher M (lower urgency) since the uncertainty in the shared state 

environment is low. This allows unique sensor provisioning, through individual schedule channel access 

periods, promoting bandwidth efficiency and minimal congestion for group surveillance reporting. Figure 7, 

details the service priority time algorithm. Figure 8 illustrates the integrated process for VIGILANT+ distributed 

sensor management, for the purposes of self-assignment and self-managed transmission control.                                                                                                                                                                 

4. VIGILANT+ SYSTEM PERFORMANCE 
System performance is evaluated using the OMNeT++ simulation platform [25]. We deploy a static grid 

network within a 1000 × 1000 m2 region, using a total of 9 sensors. We assume an intruder will be approaching 

the region in the near future and subsequently sensing operations are active [26]. Surveillance monitoring 

concerns a mobile target moving with constant velocity, v m/s, in a diagonal trajectory. Simulations are based on 

a sampling rate of 100 samples/sec, sensing range of 1000m, no packet loss and 500m transmission range, with 

the IEEE 802.11, distributed coordination function in basic access mode, for medium access control. 

Surveillance performance is measured either against level-1 threat detection certainty (TDC), through varying 

the mean separation in yes threat, no threat probability occurrence distributions or velocity of the mobile target, 

v m/s.  

For energy consumption performance the model of [5] is used, with an arbitrary packet size of 500 bits. From 

figure 5(a), updates are only sent when the GI confirms a positive PORTENT detection, (section 2.1, fig.2), 

named, MDP-Option 1 or when the GI condition for confidence in current threat, as shown in table 1, entry 6, is 

less than the previous confidence named, MDP-Option 2. Geo-location accuracy is measured in terms of CEP-

50%, defined as the radius of the circle that has its centre at the true position, containing half the realisation 

uncertainties of the random vector. Figures 9-12, give performance results for a realistic joint mission objective 

surveillance operation.  

4.1 Surveillance Utility Performance 

The results of figures 9 and 10 (a) and (b) show that surveillance utility for threat presence detection (QoSI) and 

geo-location (CEP-50%) is jointly improved by incorporating a joint threat presence and geo-location “context” 

methodology, as highlighted in section 2. Figure 9 shows that continuous updates utilising all one hop 



 
 

neighbours (LEACH), without consideration of shared threat presence detection “context” decreases QoSI, 

especially within low certainty surveillance environments, by approximately 13%. Figure 9, also highlights that 

reduction in influence of outliers within the network, using the operation outlined in figure 4, increases 

robustness in QoSI utility. Figures 10 (a) and (b) indicate distributed geo-location performance (VIGILANT+) is 

comparable to a centralised operation utilising all one hop neighbours (LEACH), with only approximately a 7% 

loss in accuracy. As expected, geo-location operation can never be truly distributed, as shown through the 

LEACH results and should be kept central to the GI for improved performance. Figures 10 (a) and (b) also 

illustrate non-integration of geo-location “context” [15] in terms of GDOP, or reliance on received energy 

corrupted with noise from the  sensing environment (DACTT), can result in geo-location performance shortfalls. 

As shown in figures 9 and 10, utilising derived mission objective “context”, primarily through level 2 Bayesian 

Belief Network operation, can assist in filtering uncertainty towards a current threat situation, in order to 

improve on surveillance utility performance. 

4.2 Communication Energy Consumption Performance  

Figures 11 (a) and (b) show managing transmissions according to mission objective “context” can minimise on 

non-essential communication, which ultimately improves network longevity and prevents surveillance utility 

performance degradation, as shown in figures 9 and 10. Network communication energy consumption for 

operational longevity is improved through distributed self-managed transmission control, as highlighted in 

section 3, by making self-adaptive transmission control decisions according to shared “context” in a specific 

mission objective. A Centralised approach for surveillance updating as in our previous work [15], or continuous 

updating as in LEACH, do not promote this and as a result increase energy consumption. Being able to make 

self-adaptive transmission control decisions is imperative since, sensor nodes are typically restricted in their 

energy resources, therefore non –essential communication and overhead should be kept to a minimum, in order 

to prolong network lifetime, which VIGILANT+ operation clearly promotes. 

4.3 Bandwidth Efficiency Performance 

Results in figure 12 (a) and (b) indicate that utilising a surveillance service priority scheduling algorithm, figure 

7, coupled with a POMDP methodology, allows a duty cycle benefit approach for individual sensor channel 

contention access, to improve on bandwidth efficiency. Figures 12 (a) and (b) show that a contention-schedule 

medium access control, where access periods vary according to shared mission objective “context” , offers 

better efficiency as compared to purely schedule based (LEACH) operation, through TDMA control, which was 



 
 

found in our simulation studies to have an average 250 msec latency delay. In addition, bandwidth efficiency is 

increased, without degradation in mission objective surveillance utility, as shown in figures 9 and 10. 

5. CONCLUSION 
Efficient UGS surveillance operations require systems that can manage mission objective priorities 

autonomically in a distributed manner, within environmental (false alarm) and network resource consumption 

constraints. VIGILANT+ adopts a distributed “situation aware” design approach for sensor network self-

management, in order to provide an improvement in operational effectiveness. Such an approach firstly allows 

for autonomic organisation of sensor groups to meet the needs of a specific mission objective, within 

environmental constraints. Secondly, we utilise a MDP or POMDP methodology for autonomic network 

control, in order to enable efficient management of network resource consumption, without compromising on 

mission objective surveillance utility. Results indicate that VIGILANT+ can improve on network resource 

consumption by adapting according to the “situation awareness” perspective of the surveillance environment, 

primarily through level 3 operation, as illustrated in figures 1 and 8.  

We also conclude that a POMDP implementation offers improved overall network efficiency performance, 

compared with a fully observable MDP approach, primarily due to a reduction in use of further GI observation 

updates, with only a small decrease in geo-location utility performance resulting.  Further work is required 

however to extend the POMDP operation for adapting decision epochs, figure 6(b), matched to the 

characteristics of the surveillance threat and experimentation for VIGILANT+ performance within an unreliable 

channel communication environment. 
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Probability Expression Probability Derivation from figure 3 using CPT Analysis 
1. p( Yes Intruder Present – “True” (C) ) P(C | Threat Presence True) * P(r) + P(C| Threat Presence False)* (1 – 

P(r)) 
 

2. p( No Intruder Present – “True” (D) ) P(D | Threat Presence True) * P(r) + P(D | Threat Presence False)* (1 
– P(r)) 
 

3. p(Current Threat Level – “High” (F) ) [P(F| C,D) * P(C) * P(D)]  +  [P(F | ~C,D) * P(~C) * P(D)]  +  
[P(F|C,~D) * P(C) * P(~D)]  +  [P(F | ~C,~D) * P(~C) * P(~D)] 

4.Group Formation 
  p(Threat-High) 

P(Yes-“Form”| F)* P(F)  + P(Yes-“Form”| ~F)*P(~F) 
 

5.p(Local Awareness to Current Threat – “High” (L) ) [P(L | C,F) * P(C) * P(F)] + [P(L | ~C,F) * P(~C) * P(F)] +             
[P(L | C,~F) * P(C) * P(~F)] + [P( L | ~C,~D) * P(~C) * P(~F)] 

6. Mission Objective 1 
  p(Confidence in Current Threat – “High” (Q) )  

P(Q | L) * P(L) + P(Q| ~L)* P(~L) 
 

7. p(L and Position Observation Estimate (POE) – “High” (E) ) [P(E | L,POE) * P(L) * P(POE)] + [P(E | ~L,POE) * P(~L) * P(POE)] 
+ [P(E | L,~POE) * P(L) * P(~POE)] + [P( E | ~L,~POE) * P(~L) * 
P(~POE)] 

8. Mission Objective 2 
  p(Confidence in Geo-Location – “High” (S) ) 

P (S | E) * P(E) + P(S | ~E)* P(~E) 
 

 
Table1. Probability derivations for the purposes of initiating group formation and making “context” informed 

decisions regarding a specific mission objective 
 

 

Table2. MB and MD expressions for local UGS mission objective CF evaluation, using table 1 

Figure Captions: 

Figure 1. VIGILANT+ approach to SA informed autonomic networking 

Figure 2. PORTENT situation assessment architecture 

Figure 3. VIGILANT+ BBN for localised single threat mission objective situation analysis 

Figure 4. “Context” centric publish-subscribe querying for mission objective self-assignment. Feedback is used 

for non- subscribers to re-evaluate their position if “contextual” changes occur 

Figure 5. (a) MDP representation of the underlying shared state environment, (b) Projection of the decision 

chain to future states is driven by BSk. Temporal decision epoch frequencies for scheduling, depends on the 

variation of received GI updates  

 Mission Objective 1 – Threat Presence Mission Objective 2 – Threat Geo-Location 
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Increased Disbelief 
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Figure 6. (a) POMDP representation of the underlying shared state environment, (b) Projection of the decision 

chain to future states is driven by BSEk+i. Temporal decision epoch frequencies for scheduling, depends on the 

variation in localised sensor observations 

Figure 7. Service priority time algorithm governed by the complementary BSk+i or BSEk+i transition probability 

Figure 8. VIGILANT+ distributed autonomic sensor management 

Figure 9. Mission objective 1 performance, QoSI with level-1 TDC, v = 5m/s 

Figure 10. Mission objective 2 performance CEP-50% with v (m/s) (a) TDC = 0.01 (b) TDC = 0.9 

Figure 11. Communication energy consumption performance (a) TDC = 0.01 (b) TDC = 0.9 

Figure 12. Surveillance report update quality of service (latency) (a) TDC = 0.01 (b) TDC = 0.9 
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Figure 7 
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Figure 10(b) 
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Figure 12(a) 

 

 
 

 

 

 

 

 

 

 

 

5 10 15 20 25 30

50

100

150

200

250

300

350

400

Velocity (v) m/s

Av
er

ag
e 

Ne
tw

or
k 

Co
m

m
un

ic
at

io
n 

En
er

gy
 C

on
su

m
pt

io
n 

(J
ou

le
s)

 

 

VIGILANT+ (MDP-OPTION 1)
VIGILANT+ (MDP-OPTION 2)
VIGILANT+ (POMDP)
Previous Work [15]
LEACH

5 10 15 20 25 30

0.8

1

1.2

1.4

1.6

1.8

2

Velocity (v) m/s

Su
rv

ei
lla

nc
e 

Re
po

rt 
Up

da
te

 L
at

en
cy

 (m
se

c)

 

 

VIGILANT+ (MDP-OPTION 1)
VIGILANT+ (MDP-OPTION 2)
VIGILANT+ (POMDP)
Previous Work [15]



 
 

Figure 12(b) 
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