Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Distributed passive radar sensor networks with near-space vehicle-borne receivers

Distributed passive radar sensor networks with near-space vehicle-borne receivers

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, we propose a distributed passive radar sensor network with near-space vehicle-borne receivers for regional remote sensing surveillance. Note that near-space is referred to the altitude range between 20 and 100 km is too high for airplanes, but too low for satellites. Near-space vehicles can offer a wide coverage like satellite and a fast maneuverability like airplane. The distributed passive radar sensor networks system operation mode, imaging coverage and imaging resolution are analysed. As there is a big speed difference between the transmit and receive platforms, we propose a multi-beamforming and scan-on-receive combined approach to extend the limited imaging coverage. Since the conventional motion compensation technique may be not reachable for the system due to its limited load capability, an overlapped subaperture-based motion compensation algorithm is proposed. The effectiveness of the approaches is validated by numerical simulation results.

References

    1. 1)
      • Wang, W.Q., Cai, J.Y., Peng, Q.C.: `Near-space SAR: a revolutionizing remote sensing mission', Proc. Asia-Pacific Synthetic Aperture Radar Conf., November 2007, Huangshan, China, p. 127–131.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • Gebhardt, U., Loffeld, O., Nies, H., Natroshvili, M., Knedlik, S.: `Bistatic spaceborne/airborne experiment: geometrical modeling and simulation', Proc. IEEE Int. Geosci. Remote Sens. Symp., July 2006, Denver, p. 1832–1835.
    6. 6)
      • Marcel, M.J., Baker, J.: `Interdisciplinary design of a near-space vehicle', Proc. IEEE Southeast Conf., March 2007, Richmond, USA, p. 421–426.
    7. 7)
    8. 8)
      • E.H. Allen . The case for near-space. Aerosp. Am. , 1 , 31 - 34
    9. 9)
      • Schuerger, J., Garmatyuk, D.: `Decteption jamming modeling in radar sensor networks', Proc. IEEE Military Communications Conf., November 2008, San Diego, CA, p. 1–7.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • Liang, Q.: `Radar sensor networks for automatic target recognition with delay-Doppler uncertainty', Proc. IEEE Military Commun. Conf., June 2006, Washington, DC, p. 1–7.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • Hume, A.L., Baker, C.J.: `Netted radar sensing', Proc. IEEE Radar Conf., May 2001, Atlanta, GA, p. 23–26.
    18. 18)
      • Guan, M.X., Guo, Q., Li, L.: `A novel access protocol for communication system in near-space', Proc. Wireless Communication Network Mobile Computation Conf., September 2007, Shanghai, China, p. 1849–1852.
    19. 19)
      • J.C. Curlander , R.N. McDonough . (1991) Synthetic aperture radar: systems and signal processing.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • Suess, M., Grafmeller, R., Zahn, R.: `A novel high resolution, wide swath SAR system', Proc. IEEE Int. Geosci. Remote Sens. Symp., June 2001, p. 1013–1015.
    24. 24)
      • E.B. Tomme . Balloons in today's military: an introduction to near-space concept. Airspace J. , 1 , 39 - 50
    25. 25)
      • Walterscheid, I., Klare, J., Brenner, A.R., Ender, J.H.G., Loffeld, O.: `Challenges of a bistatic spaceborne/airborne SAR experiment', Proc. European Synthetic Aperture Radar Symp., May 2006, Dresden, Germany.
    26. 26)
      • P. Zhou , Y.M. Pi . A technique for beam synchronization in non-cooperative hybrid bistatic SAR. J. Electron. Inf. Tech. , 5 , 1122 - 1126
    27. 27)
      • Chiani, M., Giorgetti, A., Mazzotti, M., Minutolo, R., Paolini, E.: `Target detection metrics and tracking for UWB radar sensor networks', Proc. IEEE Int. Ultra-Wideband Conf., September 2009, Vancouver, Canada, p. 469–474.
    28. 28)
      • Bielefeld, D., Mathar, R., Hirsch, O., Thoma, R.S.: `Power-aware distributed target detection in wireless sensor networks with UWB-radar nodes', Proc. IEEE Radar Conf., May 2010, Arlington, VA, p. 842–847.
    29. 29)
    30. 30)
      • Bartoletti, S., Conti, A., Giorgetti, A.: `Analysis of UWB Radar Sensor Networks', Proc. IEEE Int. Communication Conf., May 2010, Cape Town, South Africa, p. 1–6.
    31. 31)
    32. 32)
    33. 33)
      • G. Rome , G. Frulla . HELIPLAT: high altitude very-long endurance solar powered UAV for telecommunication and earth observation applications. Aeronaut. J. , 4 , 277 - 293
    34. 34)
      • W.Q. Wang . (2011) Near-space remote sensing: potential and challenges.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • N.J. Willis . (1991) Bistatic radar.
    39. 39)
      • Galletti, M., Krieger, G., Thomas, B., Marquart, M., Johannes, S.S.: `Concept design of a near-space radar for tsunami detection', Proc. IEEE Geosci. Remote Sens. Symp., June 2007, Barcelona, p. 34–37.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2011.0178
Loading

Related content

content/journals/10.1049/iet-wss.2011.0178
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address