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Abstract

Many tools have been constructed using different formal methods to process var-
ious parts of a language specification (e.g., scanner generators, parser generators
and compiler generators). The automatic generation of a complete compiler was
the primary goal of such systems, but researchers recognized the possibility that
many other language-based tools could be generated from formal language specifi-
cations. Such tools can be generated automatically whenever they can be described
by a generic fixed part that traverses the appropriate data structures generated by a
specific variable part, which can be systematically derivable from the language spec-
ifications. This paper identifies generic and specific parts for various language-based
tools. Several language-based tools are presented in the paper, which are automat-
ically generated using an attribute grammar-based compiler generator called LISA.
The generated tools that are described in the paper include editors, inspectors,
debuggers and visualizers/animators. Because of their complexity of construction,
special emphasis is given to visualizers/animators, and the unique contribution of
our approach toward generating such tools.
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1 Introduction

The advantages of formal specification of programming language semantics
are well known. First, the meaning of a program is precisely and unambigu-
ously defined; second, it offers a unique possibility for automatic generation
of compilers or interpreters. Both of these factors contribute to the improve-
ment of programming language design and development. The programming
languages that have been designed with formal methods have improved syn-
tax and semantics, less exceptions and are therefore easier to learn. Moreover,
from formal language definitions many other language-based tools can be au-
tomatically generated, such as: pretty printers, syntax-directed editors, type
checkers, data flow analyzers, partial evaluators, debuggers, profilers, test case
generators, visualizers, animators, and documentation generators; for a more
complete list see [1]. In most of these cases the core language definitions have
to be augmented with tool-specific information (e.g., mapping information in
debuggers). In other cases, a fragment of formal language definitions (e.g.,
regular definitions) is enough for automatic tool generation. It is also possible
to extract implicit information from the formal language definition (e.g., de-
pendencies among attributes in semantic functions) in order to automatically
generate a tool. The are many benefits of automatically generated language-
based tools. Building language-based tools from scratch is time consuming and
error prone, which makes maintenance very costly. This is a serious problem
in building language-based tools for domain-specific languages (DSLs). In the
case of DSLs, a compiler /interpreter is usually developed without support for
other language-based tools (e.g. debuggers), which are indispensable for pro-
grammers. The lack of appropriate tools might even cause newly developed
DSLs to become obsolete.

Although previous efforts have explored the concept of automatic generation
of language-based tools [2] [3] [4] [1] [5], this paper contributes a more gen-
eral approach that identifies generic (fixed) and specific (variable) parts from
which language-based tools can be generated automatically from language
specifications. In many cases, the language specification must be extended,
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or appropriate information extracted, in order to be able to automatically
generate a language-based tool. The paper discusses several tools where the
language definition does not need to be extended, such as editors to help
in writing sentences of the language and various inspectors (e.g., automata
visualizers, syntax tree visualizers, and semantic evaluator animators) that
are helpful for a better understanding of the language analysis process. Such
example tools have all been incorporated in the compiler generator system
called LISA [6]. The paper also presents several language tools that require
extensions to a language definition in order to implement a new tool (e.g.,
debuggers, algorithm animators and program visualizers).

The main goal of the paper is to show how language-based tools can be au-
tomatically generated from an extended language definition in a systematic
manner by identifying generic and specific parts. The approach is presented
in detail for visualizers/animators. Program visualizers/animators are useful
tools for deeper and clearer understanding of algorithms, and are valuable
for both programmers and students. Algorithm animators and program vi-
sualizers are strongly language and algorithm-oriented, and usually are not
developed in a systematic or automatic way. This paper introduces the archi-
tecture and implementation of the Alma system, which represents an approach
to the automatic generation of animators from extended language definitions.
The system has a specific front-end for each language and a generic back-end,
and uses a decorated abstract syntax tree (DAST) as the intermediate repre-
sentation. In the implementation of Alma the language development system
LISA is used in two different applications. LISA generates the front-end for
each new language, and some parts of it (Java classes) are reused to build the

back-end.

The standard definitions about languages and context-free grammars that
make automatic implementation of programming languages and language-
based tools possible can be found in classical textbooks, such as [7]. To specify
the semantics of programming languages, context-free grammars need to be
extended. Attribute grammars [8] are a generalization of context-free gram-
mars in which each symbol has an associated set of attributes that carry
semantic information, and with each production a set of semantic rules with
attribute computation is associated. Attribute grammars have proved to be
very useful in specifying the semantics of programming languages, in auto-
matic construction of compilers/interpreters, and in specifying and generat-
ing interactive programming environments [9]. The approach presented in this
paper is strongly tied to the power provided by attribute grammars.

The organization of the paper is as follows. Related work is described in section
2. Language-based tools that are automatically generated by the LISA system
are described in section 3. The design and implementation of the Alma system
are described in section 4. A summary and concluding remarks are presented



in section 5.

2 Related Work

The development of the first compilers in the late fifties without adequate
tools was a very complicated and time consuming task. For instance, the im-
plementation of the compiler for the programming language FORTRAN took
about 18 human years [10]. Later on, formal methods, such as operational
semantics, attribute grammars, denotational semantics, action semantics, al-
gebraic semantics, and abstract state machines, were developed. They made
the implementation of programming languages easier and finally contributed
to the automatic generation of compilers/interpreters.

Many tools have been built in the past years, based on different formal meth-
ods to assist in processing different parts of language specification, such as:
scanner generators, parser generators and compiler generators. The automatic
generation of a complete compiler was the primary goal of such systems. How-
ever, researchers soon recognized the possibility that many other language-
based tools could be generated from formal language specifications. There-
fore, many tools not only automatically generate a compiler but also complete
language-based environments. Such automatically generated language-based
environments include editors, type checkers, debuggers, and various analyz-
ers.

For example, FNC-2 [11] is an attribute grammar system that generates a
scanner/parser, an incremental attribute evaluator, a pretty printer, and a
dependency graph visualizer. The CENTAUR system [3] is a generic interac-
tive environment which produces a language specific environment from for-
mal specifications written in Natural Semantics, a kind of operational seman-
tics. The generated environment includes a scanner /parser, a pretty printer, a
syntax-directed editor, a type checker, an interpreter and other graphic tools.
The SmartTools system [5], a successor of the CENTAUR system, is a devel-
opment environment generator that provides a compiler/interpreter, a struc-
tured editor and other XML related tools. The ASF4+SDF environment [12]
generates a scanner/parser, a pretty printer, a syntax-directed editor, a type
checker, an interpreter, and a debugger from algebraic specifications. In the
Gem-Mex system [4], the formal language is specified with abstract state ma-
chines. The generated environment includes a scanner/parser, a type checker,
an interpreter, and a debugger. Very similar to the Synthesizer Generator
(SGen) [2], the LRC system [13] generates, from high-order attribute gram-
mar specifications, an incremental scanner/parser and attribute evaluators,
syntax-directed editor, multiple views of the abstract semantic tree (unpars-
ing windows), and windows-based interfaces. From the above description of



various well known compiler/interpreter generators can be noticed that ed-
itors, pretty printers, and type checkers are almost standard tools in such
automatically generated environments. However, in those papers particular
language-based tools are described from the user’s point of view and not how
these tools are actually generated. No systematic treatment of language-based
tool generation has appeared in the literature. In this paper, a systematic
approach is described with specific emphasis on the automatic generation of
visualizers/animators.

To our knowledge, the only visualizer/animator to be automatically generated
from formal specifications is Jitan [14] [15], a visualization environment for
concurrent, object-oriented programming for Java. The CENTAUR system was
used to implement Jitan, where the syntax was specified by the METAL for-
malism and the semantics defined by the TYPOL formalism. The authors of
Jitan reported that only about ten semantic rules of language specifications
needed to be equipped with simple extensions. This was possible because their
two visualizer engines need to know the existence and status of available ob-
jects. In this case, the generic part of the system is enormous and the specific
part is tailored to objects and threads. Even though their approach is specific
approach to automatically generating language-based tools, the approach is
quite different from that described in this paper with respect to generic and
specific parts. The Alma system is much more general in this respect and de-
sires to have the specific part as big as possible. For example, an Alma user
has all of the power to define the appearance of the visualization (e.g., colors
and lines) through rules.

3 Tools from language definitions generated by the LISA system

LISA is a compiler-compiler, or a system that generates automatically a com-
piler /interpreter from attribute grammar based language specifications. The
syntax and semantics of LISA specifications and its special features (i.e., “tem-
plates” and “multiple attribute grammar inheritance”) are described in more
detail in [16]. The use of LISA in generating compilers for real programming
languages (e.g., PLM, AspectCOOL and COOL, SODL) is reported in [17],
(18], [19]. LISA is unique to other attribute-grammar based compiler genera-
tors because it employs the “attribute grammar=class” paradigm [9] to enable
incremental language development to a greater extent than other approaches.
LISA has been used in many projects in combination with newly developed
technologies and frameworks, such as conversion of parts of LISA specifications
to XML schema and XML schema evolution (e.g., metamodel inference [20]).

To illustrate LISA style, the specification of a simple Robot language is given



in Fig. 1. A robot can move in four directions from the initial position (0, 0).
After moving, it is stopped in an unknown location, which the user wants to
compute. Often, it is desirable to extend languages like the Robot language
with new features. For example, it may be desired to know when the robot will
reach the final position. Another example of adding a new language feature
is the possibility that the robot can move at a different speed. In that case
new syntactic constructs have to be added to the language. The new language
(RobotSpeed) is specified (Fig. 2) as an extension to the Robot language
using multiple attribute grammar inheritance. From these descriptions LISA
automatically generates an interpreter for the RobotSpeed Language.

Additionaly, LISA is capable of generating other language-based tools. In the
following subsections four families of such tools are briefly described: editors
to help the final users in the creation and maintenance of the sentences of the
specified language; inspectors that are useful to understand the behavior, or to
debug the generated language processor itself; debuggers, which are indispens-
able in the debugging process; and visualizers/animators, similar to inspectors,
which are useful in understanding the meaning of the source program that is
being processed.

It is important to notice that automatic generation is possible whenever a
tool can be built from a generic (fixed) part and a specific (variable) part. An
additional requirement is that the specific part, which is language dependent,
has to be systematically derivable from the language specifications. That part
has a well-defined internal representation that can be traversed by the algo-
rithms of the generic part. For example, a lexical analyzer uses an algorithm
that interprets an action table [21]. This algorithm is generic and the same
for different languages. However, the action table represents the specific part,
and is changed whenever a language specification is modified. Table 1 sum-
marizes some of the language-based tools generated by the LISA system. It is
not the aim of this paper to describe all of the algorithms (many of them are
described in [21]). The algorithms for program visualization and animation
are described in detail in section 4.

However, to show the differences in generic and specific parts and the differ-

ences in exploiting language definitions, other language-based tools are briefly
introduced.

3.1 Editors

Two different LISA generated language oriented editors (i.e., editors that are
sensitive to the language lexicon/syntax) are briefly described in this section.



language Robot {
lexicon {
Commands left | right | up | down
ReservedWord begin | end
ignore [\0xOD\OxOA\ ] // skip whitespaces
}
attributes int *.inx; int *.iny;
int *.outx; int *.outy;
rule start {

START ::= begin COMMANDS end compute {
START.outx = COMMANDS.outx;

START.outy = COMMANDS.outy;
// robot position in the beginning
COMMANDS .inx = 0;
COMMANDS.iny = 0;};
}
rule moves {

COMMANDS ::= COMMAND COMMANDS compute {
COMMANDS .outx = COMMANDS[1].outx; // propagation of position
COMMANDS.outy = COMMANDS[1].outy; // to sub-commands
COMMAND. inx = COMMANDS.inx;

COMMAND. iny = COMMANDS.iny;

COMMANDS[1] .inx = COMMAND.outx;

COMMANDS[1] .iny = COMMAND.outy;
}

| epsilon compute {

COMMANDS . outx COMMANDS . inx;
COMMANDS.outy = COMMANDS.iny; J;
}
rule move {
// each COMMAND changes one coordinate
COMMAND ::= left compute {
COMMAND. outx COMMAND. inx-1;
COMMAND.outy = COMMAND.iny; };
COMMAND ::= right compute {
COMMAND. outx COMMAND. inx+1;
COMMAND.outy = COMMAND.iny; };
// COMMAND ::= up, COMMAND ::= down are omitted
}
}

Fig. 1. Robot Language

3.1.1 Language Knowledgeable Editors

LISA generates a language knowledgeable editor, which is a compromise be-
tween text editors and syntax-directed editors, from formal language specifica-
tions. In this case, a language definition does not need to be extended because



language RobotSpeed extends Robot {
lexicon {
extends Commands speed
Number [0-9]+
}
attributes int *.inspeed, *.outspeed;
rule extends start {
compute {
// initial position is inherited
START.time = COMMANDS.time;
COMMANDS .inspeed = 1; // beginning speed
START.outspeed = COMMANDS.outspeed; }

}
rule extends moves {
COMMANDS ::= COMMAND COMMANDS compute {
// total time is sum of times spent in sub-commands
COMMANDS [0] .time = COMMAND.time + COMMANDS[1].time;
COMMAND. inspeed = COMMANDS[O] .inspeed; // speed propagation
COMMANDS[1] . inspeed = COMMAND.outspeed; // to sub-commands
COMMANDS [0] . outspeed = COMMANDS[1].outspeed; }
| epsilon compute {
COMMANDS.time = O;
COMMANDS . outspeed = COMMANDS.inspeed; 1};
}

rule extends move {
// these commands do not change speed
COMMAND ::= left compute {
COMMAND.time = 1.0/COMMAND.inspeed;
COMMAND. outspeed = COMMAND.inspeed; J;
COMMAND ::= right compute {
COMMAND.time = 1.0/COMMAND.inspeed;
COMMAND . outspeed = COMMAND.inspeed; I};

// COMMAND ::= up, COMMAND ::= down are omitted
}
rule speed {

COMMAND ::= speed #Number compute {

COMMAND.time = 0; // no time is spent for this command
COMMAND. outspeed = Integer.valueOf (#Number.value()).intValue();
// this command does not change the position

COMMAND.outp = COMMAND.inp; I;

Fig. 2. RobotSpeed Language
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Table 1

Generic and specific parts of LISA generated language-based tools

the matching algorithm (i.e., the generic part) only needs information about
regular definitions in the language.

The LISA generated language knowledgeable editor is aware of the regular
definitions of the language lexicon (see table 1). Therefore, it can color the
different parts of a program (comments, operators, and reserved words) to en-
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Fig. 3. Language knowledgeable editor

hance understandability and readability of programs. Improved understand-
ability is important for programs written in DSLs where end-users are typically
not programmers but application engineers. Developing such editors for every
different DSL is time consuming and costly. The benefits of automatically
generated editors are obvious.

In Figure 3 the reserved words, commands and integers in a RobotSpeed
program are recognized by distinguishing each feature with a different color
(e.g., in figure 3 the reserved words are in red).

3.1.2  Syntaz-directed Editors

Syntax-directed editors help users to write syntactically correct programs be-
fore they are actually compiled, exhibiting the language structure by inserting
directly the keywords at the correct places (the user only has to fulfill the
variable parts of their text). Syntax-directed editors are aware of the language
syntax of edited programs and can be automatically generated from a syntax
language definition. LISA currently generates a structured editor from formal
language specifications. A Structure Editor is a kind of syntax-directed edi-
tor, where the syntax structure of written programs are explicitly seen while
editing the program (see Figures 4 and 5 where the selected text is a set of
COMMANDS in the RobotSpeed language). The language definition is not
extended because the incremental parsing algorithm (i.e., the generic part)
only needs the information about syntax definitions in the language.
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Fig. 5. Syntax tree view

3.2 Inspectors for Language Processors

Inspectors are useful in better understanding how an automatically generated
language compiler /interpreter works. LISA generates the following inspectors:
finite state automaton visualizer (useful for better understanding how the
lexical analyzer work), syntax tree visualizer (useful for better understanding
how the syntax analyzer work), dependency graph visualizer and semantic tree
visualizer. The last two inspectors are briefly introduced in this subsection.

3.2.1 Dependency Graph Visualization

As attribute grammars are specified on the declarative level, the order of
attribute evaluation is determined by the compiler construction tool. That
sequence is also important for the language designer to understand the actual
evaluation order. LISA generates this inspector from information extracted
from language specifications, which is where the augmented dependency graph
(i.e., the specific part) is computed. The augmented dependency graph is used
in an algorithm (i.e., the generic part) for dependency graph layout.

Figure 6 presents an augmented dependency graph that is drawn by the
LISA generated tool for the 1st RobotSpeed production. Direct dependen-

11
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cies (e.g., COMMANDS.time — START.time) and indirect dependencies (e.g.,
COMMANDS . inx — COMMANDS. outx) are shown in different colors. With the aid
of this inspector it is easier to discover why a particular attribute grammar
is not absolutely non-circular. Circular attribute grammars are not supported
by LISA and circularity is detected in Fig. 7.

3.2.2 Semantic Evaluator Animation

In attribute grammars a set of attributes carrying semantic information is
associated with each nonterminal. For example, attributes time and outx
are associated with nonterminal COMMANDS in the RobotSpeed language spec-
ifications. In the evaluation process the value of these attributes has to be
computed. The semantic analysis is better understood by animating the visits
to the nodes of the semantic tree, and the evaluation of attributes in these
nodes. LISA generates this inspector from semantic functions associated to
syntax rules. The semantic tree layout algorithm (i.e., the generic part) uses
a decorated syntax tree and semantic functions, which constitutes the specific
parts.

Figure 8 shows a snap-shot of the animation process. The animation of the
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Fig. 8. Semantic Evaluation view

evaluation process is also very helpful in debugging language specifications.
Users can also control the execution by single-stepping and setting the break-
points.

Notice the way scalability is addressed: as the tree grows it is impossible to
show all of the picture in the main window. Therefore, a subtree is displayed
in the main window and a general picture is shown below (see Fig. 8).

3.8 Debugging Support for DSLs Defined in LISA

Debuggers provide software engineers with an essential tool toward discovering
the location of program errors. However, development can be difficult when it
comes to the issue of debugging a program written in a DSL, which often re-
quires both programming language development expertise and domain knowl-
edge. This is due to the fact that a DSL is often translated into some other
general purpose language (GPL) and then compiled using the tools available
for the GPL. Even if the domain expert has knowledge about the underlying
GPL, one line of DSL code may be translated into dozens of lines of GPL
code, which requires knowledge of the code generator in order to understand
the correspondence between the DSL and GPL. As an example, consider the
challenges in debugging parsers generated by tools such as Yacc. In such a
case, the benefits provided by the domain idioms are lost because the domain
expert is forced to debug their intention at the GPL level, not at the higher
abstraction level provided by the DSL. This sub-section describes the abil-

13



ity to generate debuggers for DSLs defined in LISA. From a DSL grammar,
LISA can generate the mapping transformations needed by the DSL Debugger
Framework (DDF) [22], which provides debugging support for DSLs in Eclipse.
This allows an end-user or domain expert to debug their DSL program at the
proper level of abstraction.

3.3.1 DSL Debugger Generation Processes Overview

An illustrative overview of the DSL debugger generation process is shown in
Figure 9. The front-end of the process begins with the generation of a lexer
and parser for the DSL. LISA automatically generates the lexer and parser
from a DSL grammar definition, such as the Robot language grammar defi-
nition (shown in Figure 10 of the next section). In addition to the lexer and
parser, a mapping generator is needed to link the DSL code to the gener-
ated GPL code. The mapping generator is specified as additional semantic
actions in the DSL grammar definition. The lexer, parser, and mapping gen-
erator form the building blocks for the front-end of the DDF. The back-end
of the DDF consists of the stand-alone command line GPL debugger and the
Eclipse debugger perspective [23]. The Eclipse debugger perspective provides
the graphical interface that is commonly expected in integrated development
environments (IDE). Note that the choice of the GPL debugger depends on
the kind of GPL code generated from the DSL. In the Robot language ex-
ample, the generated GPL code is Java, which influenced the choice to use
the Java command line debugger (jdb) [24]. Although this specific example
represents a DSL that is translated to Java, the Eclipse debugger platform
is independent of the GPL. Thus, LISA and the DDF can be used with any
generated GPL provided a debugger exists for the GPL.

The semantic actions associated with the debugger use syntax-directed trans-
lation and additional semantic functions in the grammar specification to gen-
erate the mapping information. In Figure 9, with the mapping generator em-
bedded inside the grammar, the lexer and parser generated by LISA (step 1)
takes the Robot DSL as input (step 2). LISA not only translates the Robot
DSL into the corresponding Robot.java, but also generates the Mapping.java
file (step 3). The mapping file represents a data structure that records all of
the mapping information about which line of the Robot DSL code is mapped
to the corresponding segment of Robot.java code. It indicates the location of
the Robot.java code segment. Interestingly, the mapping information cross-
cuts the grammar in such a way that an aspect emerges within the grammar
definition [25]. The mapping component interacts and bridges the differences
between the Eclipse debugger platform and the jdb (step 4). There are two
round-trip mapping processes involved (step 5 and step 6) between the Robot
DSL debugging perspective in Eclipse and jdb. A user issues debugging com-
mands from the Eclipse that are interpreted into a series of jdb commands

14
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Fig. 9. Debugger Generation Overview

against the Robot.java code. Based on the pre-defined debugging mapping
knowledge, the mapping component determines the sequence of debugging
commands that need to be issued to the jdb at the GPL level. The center
piece of the DDF is the mapping component that bridges the generated code
from the front-end to the execution engines of the back-end (e.g., the GPL
command-line debugger and the Eclipse debugger perspective). The mapping
component acts as an interpreter that knows two different languages (i.e., the
DSL source and the generated GPL code). The DDF translates the user’s
debugging intentions from the Eclipse debugger perspective to the GPL de-
bugger; it also translates the debugging outputs from the GPL debugger back
to the user through the Eclipse debugger perspective at the DSL level.

The generic part in this case is a mapping algorithm that uses syntax-directed
translation and additional semantic functions in the grammar specification to
generate the mapping component, which constitute the specific part.

3.3.2  Robot DSL Debugger

Figure 10 represents a fragment of the Robot DSL grammar in LISA. Line 11
indicates the start of the grammar production to process a ”right” command,
with lines 12 through 18 providing the semantic actions needed to execute
the intention of "right” in Java. Lines 12, 14, 16, and 17 represent the debug
mapping information that contains the line number of the "right” command
(attribute dslline in line 12) in the Robot DSL. The mapping contains the
following information:

15



(1) the DSL line number (line 17),

(2) the translated Java file name (line 18),

(3) the line number of the first line of the corresponding code segment in
Robot.java (attribute gplbegline on line 18),

(4) the line number of the last line of the corresponding code segment in
Robot.java (atribute gplendline on line 18).

10 rule move {

11  COMMAND := right compute {

12 COMMAND.dslline = COMMAND.indslline + 1;

13 COMMAND.codel =” x=x+1;// move right”;

14 COMMANDD.gplbegline = COMMAND.ingplbegline;

15 COMMAND.code = COMMAND.codel + 7 time=time+1;”;

16 COMMAND.gplendline = COMMAND.gplbegline + 2;

17 COMMAND.mapcode = "mapping.add(newMap(” + COMMAND.dslline +

18 ” \”Robot.java\”,”+ COMMAND.gplbegline + ”,” + COMMAND.gplendline + ”));”; };
19 COMMAND ::= left compute {

20 COMMAND.dslline = COMMAND.indslline + 1;

21 COMMAND.codel =7 x=x-1;// move left”;

22 COMMANDD.gplbegline = COMMAND.ingplbegline;

23 COMMAND.code = COMMAND.codel + 7 time=time+1;”;

24 COMMAND .gplendline = COMMAND.gplbegline + 2;

25 COMMAND.mapcode = "mapping.add(newMap(” + COMMAND.dslline +

26 ” \”Robot.java\”,”+ COMMAND.gplbegline + ”,” + COMMAND.gplendline + ”));”; };

Fig. 10. Robot DSL Grammar in LISA Notation

The jdb responds to the debugger commands sent from the mapping compo-
nent. The results from the jdb are sent back to a reverse-mapping component.
Because the messages from the jdb are command line outputs, which know
nothing of the Robot language and the Eclipse debug platform, it is neces-
sary to remap the results back into the Eclipse debugging perspective. The
Robot DSL’s variable Position is displayed in the variables view (see upper
right corner of Figure 11). The mapping component translates the messages
back to the Robot DSL through the wrapper interface. The domain expert
only interacts directly with the DSL editor and debugger view at the Robot
language level (see left side of Figure 11).

This section demonstrated LISA’s ability to generate programming language
tools inside of the LISA programming environment. Additionally, integration
with external Integrated Development Environments (IDEs), such as Eclipse,
is also possible due to the power of language-based generation.
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Fig. 11. Robot DSL Debugger Perspective in Eclipse

3.4 Program Visualization and Animation

Another instance of tools that can be derived from formal language specifi-
cations are program visualizers/animators. The purpose of such a family of
tools is to help the programmer to inspect the data and control flow of a
source program—static view of the algorithms realized by the program (visu-
alization) —and to understand its behavior—dynamic view of the algorithms’
execution (animation). In this section the Alma system is briefly introduced.
The front-end’s that are used by Alma can be constructed using any compiler
generator tool, but in this discussion it will be used as a LISA addon.

For automatic generation of a program visualizer /animator, a language spec-
ification needs to be extended with additional information that defines how
the input sentence is converted into the animator’s internal representation
(DAST), as shown in Figure 14. Below is an example of such an extension for
the Robot language, where additional steps are added to each command.

language AlmaRobot extends Robot, AlmaBase {
rule start {
START ::= begin COMMANDS end compute {
START.dast = new Alma.CRoot (COMMANDS.tree); };
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}
rule moves {
COMMANDS ::= COMMAND COMMANDS compute {
COMMANDS [0] .tree= new Alma.CStmtsNode (COMMAND.tree,
COMMANDS[1] .tree); }
| epsilon compute {
COMMANDS [0] .tree = NULL; };

}
rule move {
COMMAND ::= left #Number compute {
COMMAND.tree = new Alma.CLstNode(new Alma.CConstNode("left"),
new Alma.CConstNode (#Number)); };
| COMMAND ::= right #Number compute {
COMMAND.tree = new Alma.CLstNode(new Alma.CConstNode("right"),
new Alma.CConstNode (#Number)); 7;
+

The extension shown above illustrates the use of multiple attribute grammar
inheritance, which is a standard LISA feature [16]. It is used to specify the at-
tribute evaluation related to the DAST construction. From this specification,
a parser and a translator are generated that converts each input text into an
abstract representation used by the animator, common to all different source
languages. That processor, which is the animator’s front-end, is the language
dependent component of the tool. In this case, its generic part is more complex
(described in detail in section 4) than in the cases studied in previous subsec-
tions 3.1 and 3.2: it is not just a standard algorithm (we use three language
independent algorithms), but it requires also two standard data structures (a
visual rule base, and a rewriting rule base). Notice that the DAST is language
paradigm dependent. Each node of the DAST is related to concepts defined in
the source program. The visualization of these concepts will assist in under-
standing the program.

Consider the following source program in the Robot language:

DOWN 3
RIGHT 7
UP 2

LEFT 4

The animation algorithms can generate a visualization like the one that can be

seen in Figure 12. The final layout can be modified by the Alma designer. Drawing
procedures called by the visualizing rules can be changed easily.
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XI

Another possible visualization is shown in figure 13.

:
33

Fig. 13. Robot Animation

The figure above is more abstract and shows the effect produced by the program
in the robot. For this kind of visualization, variable values are not shown like in
the first visualization. Instead, the robot coordinates are used to evaluate each new
position of the robot. The program variables are mapped to robot attributes in an
interesting manner. In this case, it is clear that each x and y of the program will be
the coordinates used to draw the robot. This is not as simple in other cases.

The approach allows the visualization of data structures and can handle procedures
and objects. In these cases, the animation can be achieved with adequate visual-
ization rules and drawing procedures. The implementation of the system, which is
discussed in the next section, has a front-end specific for each language and a generic
back-end. The implementation uses a decorated abstract syntax tree (DAST) for the
intermediate representation between the front and back ends.
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4 Alma Implementation

The Alma system was designed to become a new generic tool for program visual-
ization and animation based on the internal representation of the input program in
order to avoid any kind of annotation of the source code (with visual types or state-
ments). The system was also designed to be able to handle different programming
languages.

Alma was conceived as a tool to shield an end-user (a programming beginner, a
student, a teacher) from the concerns of formal specification of the programming
language. Visualization and Rewriting rules, which form the core of Alma, depend
only on generic abstract concepts. The mapping of the concrete programming lan-
guage constructs into abstract concepts is entirely embedded in the front-end, which
is specific for each language and built just once by a compiler specialist. The front-
end performs the translation task, from the concrete program to Alma’s internal
representation, and hides all details from the end-user.

4.1 Alma Architecture

To comply with the requirements above, we conceived the architecture shown in
Figure 14. Alma also uses DAST as an internal representation for the meaning of the
program that is to be visualized. All of the source language dependencies are isolated
in the front-end, and the generic animation engine is in the back-end. The DAST
is specified by an abstract grammar independent of the concrete source language.
In some sense, it can be said that the abstract grammar models a virtual machine.
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The DAST is intended to represent the program state in each moment, and not
to reflect directly the source language syntax. In this way we rewrite the DAST to
describe different program states, simulating its execution; notice that we deal with
a semantic transformation process, not only a syntactic rewrite.

A Tree Walk Visualizer traverses the tree, creates a visual representation of nodes,
and glues figures in order to get the program image at a specific moment. The
DAST is rewritten (to obtain the next internal state) and redrawn to generate a set
of images that will constitute the animation of the program. Different visualizations
can be generated from the same DAST depending on the visualization rules.

4.1.1  Visualization in Alma

The visualization is achieved by applying visualization rules (VR) to DAST subtrees.
The rules define a mapping between trees and figures and constitutes the specific
part. When the partial figures corresponding to the nodes of a given tree are assem-
bled together, a visual representation is obtained for the respective program.

Visualizing Rules

The VRB (Visualizing Rule Base) is a mapping that associates with each attributed
tree, defined by a grammar rule (or production), a set of pairs

VRB: DAST ~ set (cond x dp)

where each pair has a matching condition (cond) and a procedure (dp), which
defines the tree visual representation. Each cond is a predicate, over attribute values
associated with tree nodes, which constrains the use of the drawing procedure (dp);
i.e., cond restricts the applicability of the visualizing rule.

The written form of each visualizing rule is as follows:

vis_rule(ProdId)= <tree-pattern>,
(condition),
{drawing procedure}

<tree-pattern> = <root, child_1, ..., child_n>

In this template, condition is a boolean expression (by default, evaluates to true)
and drawing procedure is a sequence of one or more calls to elementary drawing
procedures.

A visualization rule can be applied to all the trees that are instances of the pro-
duction ProdId. A tree-pattern is specified using variables to represent each node.
Each node has the attributes value, name and type that will be used on the rule
specification, either to formulate the condition, or to pass to the drawing procedures
as parameters.
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Although each VRB associates to a production a set of pairs, for the sake of sim-
plicity its written form only describes one pair. It is possible to have more than one
rule for the same production. To illustrate the idea suppose that in Alma’s abstract
grammar a relational operation, rel oper, is defined by the 13th production:

pl3: rel_oper : exp exp
where exp is defined as:

plé: exp : CONST

pl5: exp : VAR

pl6: exp : oper

A visual representation for that relational operation is shown in figure 15.

a.value c.value ]
opr.name

a.name C.name

Fig. 15. Visualization of a relational operation

The visualization rules to specify that mapping are written below.

vis_rule(pl3) =
<opr,a,c>,
((a.type=exp) AND (c.type=exp)),
{drawRect (a.name,a.value) ,drawRect (c.name,c.value),
put (opr.name) ,put(°?’)}

This visualization rule is applied to a three-node tree, which consists of an operator
and two operands. Each operand can be a CONST, VAR or oper (another operation).
For each operand, a rectangle is constructed with its value inside and its name as
a label of the rectangle. A visual representation of the operation is drawn and the
image is finished with a ? character to identify a relational expression.

Visualization rules are similar to pretty-printers or unparsing facilities in many
compiler generators (e.g., PPML in Centaur [26]). Although unparsing produces
text (in many case the text before parsing), visualization rules in Alma are also
able to produce figures.

Visualization Algorithm

The visualization algorithm (i.e., the generic part) traverses the tree and applies the
visualization rules to the sub-trees rooted in each node according to a bottom-up
approach (post-fix traversal). Using the production identifier of the root node, it
obtains the set of possible representations. A drawing procedure is selected depend-
ing on the first constraint condition that is true. The algorithm is presented below.
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visualize(tree){
If not(empty(tree))
then forall t in children(tree) do visualize(t);
rules <- VRB[prodId(tree)]; found <- false;
While (not(empty(rules)) and not(found))
do r <- choice(rules);
rules <- rules - r;
found <- match(tree,r)
If (found) then draw(tree,r); }

A program animation is not the same as code visualization because it depends on
the granularity of the visualization rules. The DAST is an abstract representation
of the source code, which assists in applying a visualization rule to each node of the
tree (getting a more detailed visualization, usually an operational view like a de-
bugger). It is also possible to apply a visualization rule to a set of nodes, or even to
the root. In this last case, the animation is more abstract from a debugger output.
We assume that Alma suffers the same problems as other systems that use visual
languages. Scalability is indeed a problem and care must be taken such that the
drawings used in a visualization help program understanding.

4.1.2  Animation in Alma

Each rewriting rule (RR) specifies a state transition in the process of program
execution and constitutes the specific part. The result of applying the rule is a
new DAST obtained by a semantic (may be also a syntactic) change of a sub-tree.
This systematic rewriting of the original DAST is interleaved with a sequence of
visualizations producing an animation. A main function synchronizes the rewriting
process with the visualization in a parameterized way, allowing for different views
of the same source program.

Rewriting Rules

The RRB (Rewriting Rule Base) is a mapping that associates a set of tuples with
each tree

RRB: DAST + set(cond x newtree x atribsEval)

where each tuple has a matching condition (cond), a tree (newtree, which defines
syntactic transformations), and an attribute evaluation procedure (atribsEval,
which defines the changes in the attribute values).

The written form of each rewriting rule is as follows:

rule(ProdId)= <tree-pattern>,
(condition),
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<NewProdId: newtree>,
{attribute evaluation}

<tree-pattern> = <root, child_1, ..., child_n>
<newtree> = <root, child_1, ..., child_n>

In this template, condition is a boolean expression (by default, evaluates to true)
and attribute evaluation is a set of statements that defines the new attribute
values (by default, evaluates to skip).

A rewriting rule can be applied to all the trees that are instances of the production
ProdId. A tree-pattern associates variables to nodes in order to be used in the
other fields of the rule specification (i.e., the matching condition, the new tree and
the attribute evaluation). When a variable appears in both the tree-pattern (the
left side of the RR) and the newtree (the right side of the RR), it means that all the
information contained in that node, including its attributes, will not be modified
(i.e., the node is kept in the transformation unchanged).

Although each RRB associates to a production a set of tuples, its written form,
introduced above, only describes one tuple. It is possible to have more than one rule
for the same production. For instance, consider the following productions, belonging
to Alma’s abstract grammar, to define a conditional statement:

p8: IF : cond actions actions
po: | cond actions

The DAST will be modified using the following rules:

rule(p8) = <if,op,a,b>,
(op.value=true),
<p9:if,op,a>,
{3

rule(p8) = <if,op,a,b>,

(op.value=false),
<p9:if,op,b>,
{1}

Rewriting Algorithm

The rewriting algorithm (i.e., the generic part) is also a tree-walker that traverses
the tree until a rewriting rule can be applied, or no more rules match the tree nodes
(in that case, the transformation process stops). For each node, the algorithm deter-
mines the set of possible RR using its production identifier (ProdId) and evaluates
the contextual condition associated with those rules. The DAST will be modified
removing the node that matches the left side of the selected RR and replacing it by
the new tree defined by the right side of that RR. This transformation can be just a
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semantic modification (only attribute values change), but it can also be a syntactic
modification (some nodes disappear or are replaced).
The rewriting algorithm follows:

rewrite(tree)q{
If not(empty(tree)) then rules <- RRB[prodId(tree)];
found <- false;
While (not(empty(rules)) and not(found))
do r <- choice(rules);
rules <- rules - r;
found <- match(tree,r)
If (found)
then tree <- change(tree,r)
else a <- nextchild(tree)
While (not(empty(a)) and not(rewritten(a)))
do a <- nextchild(tree)
If not(empty(a)) then tree <- rebuild(tree,a,rewrite(a))
return(tree) }

Animation Algorithm

The main function defines the animation process, calling the visualization and the
rewriting processes repeatedly. The simplest way consists in redrawing the tree after
each rewriting, but the sequence of images obtained can be very long and may not
be the most interesting. The granularity of the tree redrawing is controlled by a
function, called shownow(), which after each tree’s syntactic-semantic transforma-
tion decides if it is necessary to visualize again. The decision is made taking into
account the internal state of the animator (that reflects the state of program exe-
cution) and the value of user-defined parameters.

The animation algorithm, which is the core of Alma’s generic back-end, is as follows:

animate(tree)q{
visualize(tree);
Do rewrite(tree);
If shownow() then visualize(tree);
until (tree==rewrite(tree)) }

When no more rules can be applied, the output and input of the rewrite function
are the same.

4.2 Alma animation example

In this section, an Alma animation example is presented on a toy imperative language
that consists of assignment, conditional, repetitive and I/O statements.
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Fig. 16. Example source program

4.2.1 An example

The example presented in figure 16 has an assignment, a repetitive statement, a
reading and a writing statement. Figures 17 and 18 show visualizations belonging
to an Alma animation. The first one represents the initial state of the program and
the second one shows the first iteration of the cycle. Notice that symbol ——-> rep-
resents an assignment or an operation (if an arithmetic symbol is under the arrow);
the symbol # represents a conditional statement; the symbol @ represents a repeti-
tive statement; the symbol =7=>> represents a write and <<="= a read statement.

We have adopted the original LISA approach to cope with the size of the tree to be
drawn (as noticed in subsection 3.2.2). The approach displays the picture condensed
in a small window below the main window with the circle part magnified.

The generality of the system can be a handicap to achieve output effects. The system
would be more useful if it allows the addition of new rules to support new concepts
or generate different outputs. Alma has a generic part (visualization/animation algo-
rithms; tree, nodes, identifier table and rules structure; and rule base interpretation)
and a specific part (visualization and rewriting rules, nodes). We conclude that the
generic part gives generality and the specific part makes it possible to obtain more
adequate visualizations.
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4.8  Other Alma features

Alma can also cope with different languages, different levels of animation detail,
different types of visualizations and different types of paradigms.
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Different Languages

If we want to apply the system to a different source language, we only have to
construct a new front-end that defines the concrete syntax of the new language and
maps its main concepts to Alma nodes. This front-end can be generated using LISA.

Different level of animation detail

It is also possible to modify the sampling frequency (number of state transforma-
tions before a visualization), or choose the set of nodes we want to visualize, in
order to get a different level of animation detail. An animation can have more or
less visualizations depending on the desired detail level. The most detailed anima-
tion implies the visualization of the tree after each rewriting. The synchronization
between these processes depends on a function called shownow. This function counts
the rewritings and returns 0 or 1 depending on the desired frequency.

The visualization is obtained by traversing a DAST that has the associated draw-
ings. If we decide to show only some nodes we will get less detail in the visual
representation. There are nodes that are more important than others and their vi-
sualization can explain all the functionality of the program. It is also possible to
access an interface to choose the desired nodes and watch the results.

It is important to distinguish the animation detail level from the visualization de-
tail level. For animation detail, the drawings do not have to change (it is concerned
with process synchronization and the number of visualizations). In visualization de-
tail, it is necessary to redefine the visualization rules in order to get different results.

Different types of visualizations

Alma has two bases of rules that can be improved with new semantics or new draw-
ings. It may be desired to get different visualizations for the same language used
before. Alternatively, it may be desired to animate a very different language, which
would require the definition of new visualizations. There are several possibilities to
change visualizations: varying the level of visualization detail using a different map-
ping between nodes and drawings; choosing different drawings; or both, in order to
get a different abstraction level.

The generated visualizations are based on rules that map nodes to drawings. If we
want to change the drawings in order to get a different visualization, we can mod-
ify rules or specify new ones. The same concepts can be represented with different
drawings.

If we want to change the visualization detail, we must associate the drawings to
another level of nodes. In some cases, the same drawings can be used, but when
the concepts concerned at this level are different, it is necessary to define another
drawing. By changing drawings and associated nodes, it is possible to modify the
abstraction level of the visual results. The idea is to create new visualization rules
in order to associate more abstract drawings to higher level nodes.

Different type of paradigms
If there is a very different source language from a different programming paradigm,
it is necessary to verify which concepts are common and which are not. For the last
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ones, new visualization rules must be defined, new DAST nodes must be created,
and new semantics must be specified with rewriting rules. This section will briefly
show an example in Prolog.

Consider the following input program:

mother (julie,susan).

mother (susan, john) .

father(peter,paul).

father(peter,susan) .

parents(M,P,E) : -mother (M,E) ,father (P,E) .

A front-end is needed to map the Prolog concepts to Alma nodes. An extended
LISA grammar associates facts and rules to a PROCDEF node, because this node
represents the definition of a code block that can be invoked from any place
of the program. For each query an execution tree is created.

The animation of the execution tree (simulation of the proof process) uses the
visualization rules already defined for other languages. In a similar way, the
same rewriting rules are used to simulate procedure calls.

For example, consider the following query:

? - parents(M,P,susan).

The output can be seen in figure 19, which presents the less detailed version
of the generated animation (the minimal number of steps are shown).

Figure 20 shows another kind of visualization for the same program. This vi-
sualization is obtained by using other visualization rules.

This example illustrates the possibility of reusing the visualization and rewrit-
ing rules, already defined in Alma for imperative languages, to animate declar-
ative programs (proof processes).

These examples assume that Alma will be mainly used in small programs, or
with DSLs for which there are no debugging tools or visualizers. Alma pro-
duces graphical representations that usually have problems of scalability and
it’s also very difficult to chose the appropriate drawings for better understand-
ing. This discussion did not include details on output quality or the system
performance. The focus of this section was the approach to visualize automat-
ically different concepts and different languages using the same DAST-based
approach.

5 Conclusion

Many applications today are written in well-understood domains. One trend
in programming is to provide software tools designed specifically to handle the
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Fig. 20. Another Alma generated animation

development of domain-specific applications in order to greatly simplify their
construction. These tools take a high-level description of the specific task and
generate a complete application.
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One such well established domain is compiler construction, because there is
a long tradition of producing compilers by hand using an underlying theory
that is well understood (supporting all the analysis phases, and even code gen-
eration and optimization processes). At present, there exist many generators
that automatically produce language-based tools from programming language
specifications. Although particular automatic generation of language-based
tools was discussed before, in this paper a more general approach is taken
by identifying generic and specific parts from which language-based tools can
be generated automatically from language specifications. Previous generators
varied widely in what constituted the generic and specific parts. Such classifi-
cation can also be a base for comparing systems that automatically generate
language-based tools. In order to generate automatically language-base tools,
it is often the case that a language specifications needs to be extended or ap-
propriate information needs to be extracted. Concrete examples of both types,
produced by the generator system LISA, were introduced and discussed in the

paper.

The benefits of automatically generated language-based tools should not be
ignored. Building language-based tools from scratch (especially for DSLs) is
time consuming and error prone, which makes tool maintenance very costly.
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