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SQUARES AND CUBES IN STURMIAN SEQUENCES

Artūras Dubickas
1

Abstract. We prove that every Sturmian word ω has infinitely many
prefixes of the form UnV 3

n , where |Un| < 2.855|Vn| and limn→∞ |Vn| =
∞. In passing, we give a very simple proof of the known fact that every
Sturmian word begins in arbitrarily long squares.

Mathematics Subject Classification. 68R15.

1. Introduction

Let A be a finite alphabet of letters and let ω be an infinite sequence of elements
from A. Using the terminology of combinatorics on words, ω is called an infinite
word over A, any string of its consecutive letters is called its factor, and any factor
of ω starting from the first letter of ω is called its prefix.

For every positive integer n, let p(ω, n) be the number of distinct factors of ω of
length n. Obviously, 1 � p(ω, n) � |A|n for each n � 1. By an old result of Morse
and Hedlund [23], for any word ω over A, the complexity function p(ω, n) is either
bounded by an absolute constant independent of n (iff the word ω is ultimately
periodic) or p(ω, n) � n+1 for each n � 1. The words ω for which p(ω, n) = n+1
for every n ∈ N exist and are called Sturmian words. Clearly, p(ω, 1) = 2 implies
that a Sturmian word ω must be an infinite word over an alphabet of two letters.
It is well-known that the Fibonacci word

f = 0100101001001010010100100101001001 . . . ,

which is the limit f = limn→∞ fn of the sequence of words f−1 = 1, f0 = 0 and
fn+1 = fnfn−1 for n � 0, is Sturmian. See a survey [9] for some extremal proper-
ties of the Fibonacci word. Sturmian sequences (also known as Beatty sequences)
appear in symbolic dynamics, ergodic theory, number theory, computer graphics,
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pattern recognition, crystallography, etc. See, for instance, [7,10,12,16,17,25,26].
For a more systematic exposition one can consult Chapter 2 in [20], Chapter 10
in [5] and also a collective book under pseudonym of Pytheas Fogg [24].

Given an infinite word ω and a finite factor w of ω, it is often important to
know the highest power of w which appears as a factor of ω. Let |w| be the length
of the word w. Then, for any fixed real number τ > 0, the τth power of a finite
word w is the word of length �τ |w|� given by wτ = w�τ�u, where u is the prefix of
w of length �(τ − �τ�)|w|�. For example, 010012.1 = 01001010010. Let τn be the
supremum taken over τ � 1 such that wτ is a factor of ω for at least one factor w
of ω satisfying |w| = n. (It is possible that τn = ∞ for some fixed n ∈ N.) Then
the quantity lim supn→∞ τn is called the index of ω. It is known that the index of
every Sturmian word is at least 3 (see [6,22,26] or Chap. 2 in [20]). On the other
hand, by Theorem 1.2 of [8], there exist Sturmian words with index equal to 3.
The index of ω is often called a critical exponent of α and sometimes is defined as
supn�1 τn. In the sense of this definition, it was shown recently that each number
α > 1 is a critical exponent of some infinite word [19] and that each number α > 2
is a critical exponent of some infinite word over an alphabet of two letters [11].

For some applications, it is important not only to know whether a word ω has
a finite or infinite index and how large this index (or critical exponent) is, but one
also needs to determine how far from the beginning of the word ω a non-trivial
power wτ with τ > 1 occurs. For example, the fact that a non-trivial power of
a longer and longer word occurs not far from the beginning of an infinite word is
crucial in [1]. It is proved there that if α is a Pisot number or a Salem number
and ω = (dk)k�1 is a bounded sequence of integers, which is stammering (see the
definition below), then the number

∑∞
k=1 dkα−k either belongs to the field Q(α)

or is transcendental. (See also [15] for earlier work and [3] for subsequent work
related to this old problem of digit distribution of an irrational algebraic number
in base b � 2.) It is remarked in [1] that if α is an arbitrary algebraic number then
for the same conclusion a somewhat stronger condition on the word ω is required.
The paper [14] related to an unsolved Mahler’s problem [21] about the powers of
3/2 modulo 1 is another example where this kind of information is necessary for
Sturmian words ω. More precisely, in [14] one needs to estimate the smallest value
of the supremum supσ�0, τ�2

τ+σ
1+σ taken over all Sturmian words ω, where ω has

infinitely many prefixes of the form uvτ , with |u| � σ|v|.
Let σ and τ be two real numbers satisfying 0 � σ < ∞ and τ > 1. Motivated

by [1] (see also [3]), we say that an infinite word (sequence) ω over an alphabet
A is a (σ, τ)-stammering word (or a (σ, τ)-stammering sequence) if there exist two
sequences of finite words (Un)n�1 and (Vn)n�1 over A such that

(i) for any n � 1 the word UnV τ
n is a prefix of ω;

(ii) |Un| � σ|Vn| for every n � 1;
(iii) |Vn| → ∞ as n → ∞.

By the definition given in [1], a word ω is called a stammering word if it is a
(σ, τ)-stammering word for some fixed pair (σ, τ), where 0 � σ < ∞ and τ > 1.
We remark that in terms of our definition it is proved in [1] that if for a word ω
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there is an integer t � 2 such that p(ω, n) � tn for infinitely many n ∈ N then ω
is a (4t, 1 + 1/t)-stammering word.

Theorem 1. Every Sturmian word is a (0, 2)-stammering word.

Theorem 1 is known. See, e.g., [4] or [13] for two different proofs. In general,
the constant 2 cannot be replaced by 2 + ε with ε > 0 (see Thm. 1.1 in [8]). We
give the proof of Theorem 1 in just few lines (after some preliminaries in Sect. 2).

The main result of this paper is the following:

Theorem 2. Every Sturmian word is a (2.855, 3)-stammering word.

In the proof of Theorem 2 we do not use the concepts of the slope α, where α
in an irrational number satisfying 0 < α < 1, and the intercept � of the Sturmian
word ω, whose nth symbol over the alphabet {0, 1} is given as the difference
�α(n+1)+��−�αn+�� (see [23] or Chap. 2 in [20]). Since we need some information
on the prefix of a Sturmian word ω before a factor that is a cube occurs, the
problem cannot be reduced to the study of characteristic Sturmian word (i.e.,
� = 0) with the same slope and then observing that the word ω has the same
factors as the corresponding characteristic word (as is usually done).

The proof of Theorem 2 is completely self-contained. The only simple fact
we use in the preliminary Section 2 is that the word ω over an alphabet {a, b} is
Sturmian if and only if ω is aperiodic and for every finite (possibly empty) factor w
of ω at most one of the words awa and bwb is the factor of ω (see, e.g., Prop. 2.1.3
and Thm. 2.1.5 in [20]).

2. Sturmian words

Lemma 3. Let ω be a Sturmian word over {a, b} that starts with the letter a. Then
there is a unique integer k � 0 such that ω is composed of the blocks A = abk+1

and B = abk only. The word ω′ obtained from ω by replacing abk+1 with A and
abk with B is a Sturmian word over {A, B}.
Proof. The word ω can be expressed in the form abk1abk2abk3 . . . with some integer
k1, k2, k3, . . . � 0. Let k = min{k1, k2, k3, . . .}. Note that bk+2 cannot be a factor
of ω, because then both abka and bk+2 would be factors of ω, a contradiction. So
ω is composed of the blocks B = abk and A = abk+1 only.

Consider the word ω′ over {A, B} obtained from ω. Clearly, ω′ is aperiodic. If
it is not Sturmian then there exists a word X over {A, B} such that AXA and
BXB are factors of ω′. Thus either BXBB or BXBA is a factor of ω′. In both
cases, for some word Y over {a, b} obtained from X by replacing A by abk+1 and
B by abk, the words bk+1Y abk+1 = bbkY abkb and abkY abka are factors of ω, a
contradiction. �
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We say that ω′ is the block-word of the Sturmian word ω. Lemma 3 also follows
from a more general result of Justin and Vuillon [18] (see also [27]).

Theorem 4. Let ω = ω0 be a Sturmian word over {A0, B0} and let (ωk)k�1 be
a sequence of words such that each ωk is the block-word of ωk−1. Then there is a
unique sequence of integers s1, s2, s3, . . . � 0 such that ωk is a Sturmian word over
the alphabet {Ak, Bk}, where

Ak = Uk−1V
sk+1
k−1 , Bk = Uk−1V

sk

k−1 with {Uk−1, Vk−1} = {Ak−1, Bk−1}

for each k � 1. In particular, Bk is a prefix of Ak for every k � 1, so |Ak| >
|Bk|, where |Ak| and |Bk| denote the lengths of the words Ak, Bk in the alphabet
{A0, B0}. Moreover, for infinitely many k ∈ N, we have |Ak| < 2|Bk|. Finally,
|Ak|, |Bk| → ∞ as k → ∞.

Proof. The sequence of Sturmian block-words (ωk)k�1 exists, by Lemma 3. If the
first letter of ωk−1 is Ak−1 then, by Lemma 3, Ak = Ak−1B

sk+1
k−1 , Bk = Ak−1B

sk

k−1,
where sk � 0. Therefore,

|Ak|
|Bk| =

|Ak−1| + (sk + 1)|Bk−1|
|Ak−1| + sk|Bk−1| < 2.

Suppose the first letter of ωk−1 is Bk−1 for all sufficiently large k. Then Ak =
Bk−1A

sk+1
k−1 , Bk = Bk−1A

sk

k−1. If sk � 1 for infinitely many k ∈ N then, for those
k, we have

|Ak|
|Bk| =

|Bk−1| + (sk + 1)|Ak−1|
|Bk−1| + sk|Ak−1| < 2.

Hence, in both cases, |Ak| < 2|Bk| for infinitely many k ∈ N.
Alternatively, there exists a positive integer t such that, firstly, the first letter

of ωk−1 is Bk−1 and, secondly, Ak = Bk−1Ak−1, Bk = Bk−1 for every k � t. We
will show that this is impossible. Indeed, let l � 1 be an integer such that ωt−1

has a prefix Bl
t−1At−1. Then the words ωk, where k = t − 1, . . . , t + l − 2, begin

with Bk (all equal to Bt−1). The word ωt+l−2 begins with Bt+l−2At+l−2. By
our assumption, ωt+l−1 begins with Bt+l−1, hence Bt+l−1 = Bt+l−2A

st+l−1
t+l−2 and

At+l−1 = Bt+l−2A
st+l−1+1
t+l−2 with some st+l−1 � 1, a contradiction.

Finally, it is clear that |Ak| → ∞ as k → ∞. Furthermore, |Bk| → ∞ as
k → ∞, because the sequence (|Bk|)k�0 is non-decreasing and, as we just proved,
|Bk| > |Ak|/2 for infinitely many k ∈ N. �

3. Proofs of Theorems 1 and 2

Proof of Theorem 1: Let k be a sufficiently large integer. If the word ωk begins
with the letter Bk then B2

k is a prefix of ωk, because Bk is a prefix of Ak. Suppose
that ωk begins with Ak. Then, by Lemma 3, the word ωk consists of the blocks
AkBs+1

k and AkBs
k only, where s = sk+1 � 0. Clearly, (AkBs

k)2 is a prefix of
ωk, unless ωk begins with the block AkBs+1

k . However, if it begins with AkBs+1
k
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then, independent on whether the second block is AkBs+1
k or AkBs

k, the word
ωk begins with (AkBs+1

k )2, because Bk is a prefix of Ak. Since, by Theorem 4,
|Ak|, |Bk| → ∞ as k → ∞, this proves that every Sturmian word ω begins in
arbitrarily long squares. �

Proof of Theorem 2: Let k be any of those (infinitely many) k’s for which |Bk| <
|Ak| < 2|Bk|. For brevity, let us write A and B for Ak and Bk, respectively, so
that |B| < |A| < 2|B|. Below, without further notice, we shall use the fact that B
is a prefix of A.

By Lemma 3, the word ω = ωk consists either of the blocks ABs+1 and ABs

only or of the blocks BAs+1 and BAs only, where s = sk+1 � 0. Suppose first
that we have the blocks ABs+1 and ABs, where s � 2. Then AB3 is a prefix of
this word, because B is a prefix of A. Also, |A| < 2|B|. So if there are infinitely
many such cases then, by Theorem 4 claiming that |Bk| → ∞ as k → ∞, ω is a
(2, 3)-stammering word, which is more than required. Another simple case is when
we have the blocks BAs+1 and BAs, where s � 3, only. Then BA3 is a prefix of
this word and |B| < |A|. So if there are infinitely many such cases then ω is a
(1, 3)-stammering word, which is more than required.

We claim that in the remaining cases, listed in the table below, we have either
a cube occurring as a prefix of ω (in which case ω is a (0, 3)-stammering word) or
ω has one of the prefixes listed in the third column of the table. Note that each
prefix there has the form UV 3, where U and V are some words over the alphabet
{A, B}. The maximal value of the quotient |U |/|V | is given in the last column of
the table. For each UV 3, the upper bound for the constant |U |/|V | is calculated
using the inequality |B| < |A| < 2|B|.

1 AB2, AB AB3, A(BAB)3, (AB)2(BA)3, (AB)2BA(BAB)3 9/4
2a AB, A A(AB)3, A2BA(AB)3, ABA3, ABA(AB)3, or case 1 7/3
2b AB, A A2BA3 3
3 BA3, BA2 BA3, B(A2BA)3, BA2BA(A2B)3 5/3
4 BA2, BA B(ABA)3, (BA)2(AB)3, BA(AB)3, BA2BA(AB)3 8/3

5a BA, B BA(BAB)3, (BA)2B(BA)3, (BA)2BBA(BAB)3 5/2
5b BA, B BAB3 3

We begin with case 1, when ω consists of the blocks AB2 and AB. If the first
block is AB2 then AB3 is a prefix of ω. It is one of the values listed in the third
column of the first row. Suppose that AB is the first block. If the next block
is AB again then ω begins with (AB)3, which is a cube. Alternatively, the next
block is AB2, so ω has one of the two prefixes ABAB2AB or ABAB2AB2. In the
latter case, independent of the third block, A(BAB)3 a prefix of ω (which is in
the table). Suppose that the prefix is ABAB2AB. If the next block is AB then
(AB)2(BA)3 is a prefix of ω. Let AB2 be the next block. Then two possibilities are
ABAB2ABAB2AB and ABAB2ABAB2AB2. The first possibility gives the prefix
(ABAB2)3 which is a cube, whereas the second possibility gives (AB)2BA(BAB)3.
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From |B| < |A| < 2|B|, we find that the quotients

|A|
|B| ,

|A|
|A| + 2|B| ,

2|A| + 2|B|
|A| + |B| ,

3|A| + 3|B|
|A| + 2|B| ,

are all smaller than 9/4.
Consider case 2 when ω consists of the blocks AB and A. If the word ω begins

with AA then it begins with a cube A3. Similarly, if ω begins with ABAB then a
cube (AB)3 is a prefix of ω. So there are two possibilities AAB or ABA. As above
it is easy to see that AABAB gives A(AB)3, which is one of the prefixes in the
corresponding row. Otherwise, AABA splits into AABAA (which gives the prefix
A2BA3) and AABAAB. Here, the next block A leads to (A2B)3. Assume that the
next block is AB. Then the prefix AABAABAB leads to the prefix A2BA(AB)3.
The second possibility ABA gives ABA3 if the next block is A. Otherwise, we have
the following two cases ABAABAB (which leads to ABA(AB)3) and ABAABA.
In the latter case, the next AB leads to the cube (ABA)3, whereas the next A gives
ABAABAA. Although this leads to ABAABA3, we do not stop here, because the
prefix ABAAB before the cube A3 occurs is too large. Instead, since ωk begins
with (AB)A(AB)A2 = (AkBk)Ak(AkBk)A2

k, we observe that, by Theorem 4, the
word ωk+1 consists of the blocks Ak+1 = AB and Bk+1 = A only. Its prefix in the
alphabet {Ak+1, Bk+1} is Ak+1Bk+1Ak+1B

2
k+1. Here,

|Ak+1|/|Bk+1| = (|A| + |B|)/|A| ∈ (3/2, 2) ⊂ (1, 2),

so |Bk+1| < |Ak+1| < 2|Bk+1| and we are back to the case 1 for the word ωk+1

instead of ωk. Now, since |B| < |A| < 2|B|, the quotients

|A|
|A| + |B| ,

3|A| + |B|
|A| + |B| ,

|A| + |B|
|A| ,

2|A| + |B|
|A| + |B|

(calculated for A(AB)3, A2BA(AB)3, ABA3, ABA(AB)3, respectively) are all
smaller than 7/3. For the prefix A2BA3 the quotient (2|A| + |B|)/|A| is at most
3. This is greater than 2.855, so we split case 2 into two subcases 2a and 2b. The
subcase 2b will be analyzed later.

Consider case 3 when ω consists of the blocks BA3 and BA2. The first block
BA3 is the first prefix of the third row. If BA2 is followed by BA2 then ω
starts with (BA2)3. So the first two blocks are BA2 and BA3, giving BA2BA3.
If the next block is BA3 then ω begins with B(A2BA)3. The alternative case
leads to BA2BA3BA2. Independent of the fourth block, this leads to the prefix
BA2BA(A2B)3. This time,

max
( |B|
|A| ,

|B|
3|A| + |B| ,

3|A| + 2|B|
2|A| + |B|

)
<

5
3
·

In case 4 we have the blocks BA2 and BA. If the first two blocks are BA and BA
then ω begins with a cube (BA)3. Suppose ω begins with BABA2. The next block
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BA2 leads to the prefix B(ABA)3, whereas the next block BA gives BABA2BA,
which leads to (BA)2(AB)3. Next, let us consider the beginning BA2BA. Inde-
pendent of the next block, this leads to the prefix (BA)(AB)3. The remaining case
is BA2BA2. If ω does not begin with a cube, the next block must be BA. The
beginning BA2BA2BA leads to the prefix BA2BA(AB)3. We have

max
( |B|

2|A| + |B| ,
2|A| + 2|B|
|A| + |B| ,

|A| + |B|
|A| + |B| ,

3|A| + 2|B|
|A| + |B|

)
<

8
3
·

Finally, in case 5, we have the blocks BA and B. Both BB and BBA lead to
the prefix B3. The beginning BAB leads to the prefix BAB3. Let the first two
blocks be BA and BA. If ωk does not start in a cube the next block must be B.
Since, by Theorem 4, the sequence ωk+1 is Sturmian, the fourth block must be
BA, i.e., we have BABABBA. By the same argument, if the next block is B, it
must be followed by BA. The prefix BABABBABBA leads to BA(BAB)3. Now
suppose that the fifth block is BA, i.e., we have (BA)2B(BA)2. In case the sixth
block is BA, we obtain (BA)2B(BA)3. Otherwise, if the sixth block is B, we get
(BA)2B(BA)2B. Seventh block must be BA again. If the eight block is BA then
ω begins in a cube, so suppose that the eighth block is B. Then by the above
argument it must be followed by BA, giving (BA)2B(BA)2BBABBA. This leads
to the prefix (BA)2BBA(BAB)3. Now, from |B| < |A| < 2|B|, we obtain

max
( |A| + |B|
|A| + 2|B| ,

2|A| + 3|B|
|A| + |B| ,

3|A| + 4|B|
|A| + 2|B|

)
<

5
2
·

For the prefix BAB3 the quotient (|A|+ |B|)/|A| is at most 3. Since this is greater
than 2.855, we split case 5 into two subcases 5a and 5b.

This would finish the proof of the theorem with even better constant 8/3, un-
less for each sufficiently large k in the word ωk with |Bk| < |Ak| < 2|Bk| we
have either case 2b or case 5b. Indeed, then the cases 1, 2a, 3, 4, 5a show that the
word ω has infinitely many prefixes of the form UnV 3

n with |Un| < 8|Vn|/3 and
limn→∞ |Vn| = ∞.

To complete the proof assume that there is a k0 such that for each k � k0

satisfying 1 < qk := |Ak|/|Bk| < 2 the word A2
kBkA3

k is a prefix of the word
ωk consisting of the blocks AkBk and Ak (case 2b) or BkAkB3

k is a prefix of ωk

consisting of the blocks BkAk and Bk (case 5b).
Let δ = (3

√
5 − 5)/10 = 0.17082 . . . be the root of

δ2 + δ = 1/5.

If there are infinitely many k’s for which we have case 2b and qk � 1 + δ, then the
proof is completed, because A2

kBkA3
k is a prefix of ωk and

(2|Ak| + |Bk|)/|Ak| = 2 + 1/qk � 2 + 1/(1 + δ) = 2 + 5δ < 2.855

for each such k. Similarly, if there are infinitely many k’s for which we have case
5b and qk � 1 + 5δ < 1.855, then the proof is also completed, because BkAkB3

k is
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a prefix of ωk and

(|Ak| + |Bk|)/|Bk| = 1 + qk � 2 + 5δ < 2.855

for each such k. So we can assume that qk < 1 + δ in case 2b and qk > 1 + 5δ in
case 5b. In particular, no k � k0 exists for which

1 + δ � qk � 1 + 5δ.

Clearly, in case 2b the word ωk is composed of the blocks Ak+1 = AkBk and
Bk+1 = Ak, so for the next word ωk+1 using 1 < qk < 1 + δ we obtain

qk+1 = |Ak+1|/|Bk+1| = 1 + |Bk|/|Ak| = 1 + 1/qk ∈ (1 + 5δ, 2).

Consequently, the word ωk+1 satisfies the condition 5b, namely, ωk+1 consists of
the blocks Ak+2 = Bk+1Ak+1 and Bk+2 = Bk+1 and one of its prefixes must be
Bk+1Ak+1B

3
k+1. By Lemma 3, the next block-word consists of the blocks

Ak+3 = Bk+1Ak+1B
s+1
k+1 and Bk+3 = Bk+1Ak+1B

s
k+1

for some integer s � 2. If s � 4, then Bk+1Ak+1(B2
k+1)

3 is a prefix of ω. So the
bound

|Ak+1| + |Bk+1|
2|Bk+1| =

1
2

+
qk+1

2
<

3
2

= 1.5 < 2.855

gives the required estimate. Otherwise, let 2 � s � 3. Then using qk+1 = 1 +
1/qk > 1 + 1/(1 + δ) = 1 + 5δ we obtain

qk+3 =
|Ak+1| + (s + 2)|Bk+1|
|Ak+1| + (s + 1)|Bk+1| =

qk+1 + s + 2
qk+1 + s + 1

� qk+1 + 5
qk+1 + 4

>
6 + 5δ

5 + 5δ
= 1 + δ

and

qk+3 =
qk+1 + s + 2
qk+1 + s + 1

= 1 +
1

qk+1 + s + 1
< 1.25.

It follows that for some k � k0 we have qk ∈ [1 + δ, 1.25] ⊂ [1 + δ, 1 + 5δ], a
contradiction. This completes the proof of the theorem. �

In fact, we proved Theorem 2 with the constant

2 + 5δ =
3
√

5 − 1
2

= 2.8541 . . .

which is slightly smaller than 2.855.
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4. Concluding remarks

We already observed in Section 1 that the constant 3 of Theorem 2 is optimal.
More precisely, for every ε > 0, there exists a Sturmian word which is not a
(σ, 3+ε)-stammering word for every σ � 0. The constant 2.855 in Theorem 2 is not
optimal! By some further analysis of different prefixes that can occur as prefixes
of a Sturmian word ω before a cube this constant can be reduced. We do not know
the best possible constant. However, one can show that the Fibonacci word is a
((
√

5+1)/2, 3)-stammering word but is not a ((
√

5+1)/2−ε, 3)-stammering word
for every positive number ε.

Given any τ � 3, let σ(τ) be the infimum over all σ � 0 such that every Sturmian
word is a (σ, τ)-stammering word. By Theorem 1, σ(τ) = 0 for τ � 2. Theorem 2
combined with the above observation implies that 1.618 < σ(3) < 2.855.

Problem 1. Evaluate σ(τ) for each τ ∈ (2, 3].
One can also consider a similar problem if τ is not fixed. Following [2], we say

that an infinite word (sequence) ω over an alphabet A satisfies Condition (∗)�

if there exist two sequences of finite words (Un)n�1 and (Vn)n�1 over A and a
sequence of positive real numbers (τn)n�1 such that

(i) for any n � 1 the word UnV τn
n is a prefix of ω;

(ii) |UnV τn
n | � �|UnVn| for every n � 1;

(iii) |V τn
n | → ∞ as n → ∞.

Then the Diophantine exponent of ω, Dio(ω), is defined as the supremum of the
real numbers � for which ω satisfies Condition (∗)�.

Problem 2. Evaluate D(S) := infω−Sturmian Dio(ω).
Obviously, if some word is a (σ, τ)-stammering word for a fixed pair (σ, τ) then

it satisfies Condition (∗)� for � = (σ + τ)/(σ + 1). Hence

D(S) � sup
τ∈[2,3]

σ(τ) + τ

σ(τ) + 1
·

Selecting τ = 2 we obtain D(S) � 2. We do not know whether D(S) = 2 or
D(S) > 2. The inequality D(S) > 2 (if proved) has some applications to Mahler’s
problem: one can use the same method as in [14].
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