
RAIRO-Theor. Inf. Appl. 44 (2010) 19–36 Available online at:

DOI: 10.1051/ita/2010003 www.rairo-ita.org

RADIX ENUMERATION OF RATIONAL LANGUAGES

Pierre-Yves Angrand
1

and Jacques Sakarovitch
2

Abstract. We prove that the function that maps a word of a rational
language onto its successor for the radix order in this language is a finite
union of co-sequential functions.

Mathematics Subject Classification. 68Q45, 68Q70.

1. Introduction

The purpose of this paper is to prove the following property of rational languages
(and of the radix order):

Theorem 1.1. The radix enumeration of a rational language is a finite union of
co-sequential functions.

The radix order (whose formal definition will be recalled below, along with
the one of every notion involved in this statement) is a well-order on A∗ and the
elements of any subset L of A∗ may thus be ordered:

L = {f0 < f1 < f2 < . . .}

the word f0 being the smallest of L, f1 the smallest of L \ {f0}, f2 the smallest
of L \ {f0, f1}, etc. The (radix) enumeration of L is the function SuccL of A∗ into
itself whose domain is L and which maps each fi to fi+1.

The motivation for establishing Theorem 1.1 comes from the study of numer-
ation systems, more precisely from the study of the concrete complexity of the
successor function in non standard numeration systems. If L is the set of repre-
sentations of the integers in a numeration system, then the radix enumeration is

Keywords and phrases. Finite automata, rational functions of words, sequential transducers.

1 LTCI (UMR 5141), Telecom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13, France;
angrand@enst.fr
2 LTCI (UMR 5141), CNRS / Telecom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13,
France; sakarovitch@enst.fr

Article published by EDP Sciences c© EDP Sciences 2010

http://dx.doi.org/10.1051/ita/2010003
http://www.rairo-ita.org
http://www.edpsciences.org

20 P.-Y. ANGRAND AND J. SAKAROVITCH

the successor function lifted at the level of representations (hence the notation).
Conversely, any language L ordered by the radix order can ipso facto be considered
as a set of representations of the integers: fi being the representation of the inte-
ger i; L is then called an abstract number system, that is, a set of representations
of the integers without any reference to a method for computing them (cf. [8]).
By concrete complexity, we mean the number of operations necessary to compute
the function under scrutiny, here the successor function. The evaluation of this
quantity supposes that a precise computational model has been chosen. In [3,4]
it is shown that a reasonable such model is, roughly speaking, that of a cascade
of sequential (right) transducers, that is, a first transducer reads the input and
produces an output which is then taken as the input of second transducer which
depends on the final state in the computation of the first one, and so on.

It turns out – as we show in [1] – that the functions realized by cascades of se-
quential (right) transducers are exactly those that are a finite union of (co-)sequen-
tial functions – which we propose to call piecewise (co-)sequential functions. These
functions were already considered (long ago!) by Choffrut and Schützenberger,
who called them “plurisubsequential” (cf. [6])1. This family of functions, in par-
ticular its decidability within the family of rational functions – already established
in [6] – is further investigated in [1].

The proof of Theorem 1.1, brings into play a number of properties of, and
constructions on, finite automata. We first reduce the problem of the successor
function to the one of uniform-length successor function ULSuccL, that is, the
restriction of the successor function g = SuccL(f) to the case where |f | = |g|
(and is not defined otherwise). Then, the function ULSuccL applied to a word f
is so to speak split into two parts: a first part κ, which acts on a prefix h of f
and which is the identity, and a second part τ , which acts on the corresponding
suffix k, f = hk, and which relates k to another word k′. These k and k′ – both
of same length – are taken from rational sets which contain at most one word per
length. From the special form of the automata which recognize that sort of rational
languages, one builds a transducer which maps k to k′ and which is a sequential
right transducer provided an adequate shift is performed on the output. The last
part of the proof consists then in establishing that it is possible to put together,
that is, to concatenate, the first part κ with the second parts τi and to perform
adequate transformations in such way that we get a finite union of sequential right
transducers.

2. Preliminaries

We basically follow the definitions and notations of [7] (in particular for the
post-fixed notation of functions and relations), and of [2] (and also of [12]). In the
sequel, A is a finite alphabet, A∗ the free monoid generated by A, 1A∗ the empty
word, identity of A∗. For a word u in A∗, |u| is the length of u.

1 Since we changed anyway the terminology from “subsequential” to “sequential” (see [12] for
the explanation on this change of the terminology), we shall neither use “plurisubsequential”.

RADIX ENUMERATION OF RATIONAL LANGUAGES 21

Figure 1. The tree representation of L1.

Let A be an alphabet totally ordered by <. The radix order ≺ on A∗ is defined
by: u ≺ v if either |u| < |v| or |u| = |v| and there exist w, u′, v′ words and a < b
letters such that u = wau′ and v = wbv′. The radix order is a well-order, that
is, every non empty subset of A∗ has a smallest element for ≺.

For every language L of A∗, the successor function of L, denoted by SuccL, is
the function that maps every word u in L onto the word v which is the smallest
of all words of L greater than u. Radix enumeration is another name, easily
understandable, for the successor function. The successor function of a rational
language can be easily understood on the tree representing the language: words
are ordered from top to bottom and left to right.

Example 2.1. In our running examples, we restrain ourself to the alphabet A
with two letters A = {a, b}. Let us consider the language L1 of words with an
even number of occurrences of b: L1 = {u ∈ A∗ | |u|b ≡ 0 [2]}. Figure 1 shows the
tree representing L1 and it can be seen that: SuccL1(aa) = bb, SuccL1(abb) = bab
and SuccL1(bb) = aaa.

For the general definitions of automata, rational relations and finite transducers,
the reader is referred to the references quoted above. In this paper, we shall content
ourselves with a restricted type of transducers, realtime transducers. First, and
in order to simplify definitions and notation, all word functions or relations map
words of A∗ into A∗. Since we are never interested in the functions or relations
being total or surjective, this is indeed not a restrictive hypothesis.

Definition 2.1. Let us call transducer (from A∗ into itself) an automaton τ =
〈Q, A, A∗, E, I, T 〉 where:

• Q is a finite set of states;
• I is a partial function, the initial function, from Q into A∗; we rather

write Iq for the value I(q), and q is said to be initial if Iq is defined;
• T is a partial function, the final function, from Q into A∗; we rather

write Tq for the value T (q), and q is said to be final if Tq is defined;
• E is a finite set of transitions whose labels are in A×A∗.

A transducer is letter-to-letter if the label of transitions are all in A × A.

The way a relation ϕ from A∗ into itself is associated with a transducer τ – we
say that τ realizes ϕ – is classical. A functional relation is rational (i.e. its graph

22 P.-Y. ANGRAND AND J. SAKAROVITCH

Figure 2. Left and right transducers realizing the same co-
sequential function.

is a rational subset of A∗×A∗) if, and only if, it is realized by a transducer (our
definition implies that transducers are finite).

The underlying input automaton of a transducer τ = 〈Q, A, A∗, E, I, T 〉 is the
finite automaton obtained from τ by keeping the first component of the label of
every transition and by replacing the initial and final functions by their domains.

Definition 2.2. A transducer is said to be a sequential (resp. co-sequential) trans-
ducer if its underlying input automaton is deterministic (resp. co-deterministic).

A rational function is sequential (resp. co-sequential) if it is realized by a se-
quential (resp. co-sequential) transducer.

Remark 2.1. A co-sequential transducer is also often seen as a transducer with
deterministic underlying input automaton but which reads and writes words from
the right to the left, which is called a sequential right transducer.

Sequential functions were introduced by Schützenberger in [13] under the name
of subsequential functions (cf. also [2]). It will be no surprise that we rather follow
here the terminology of [12]. Moreover, and as in this last reference, we reserve the
qualifiers ‘right’ and ‘left’ for automata (and hence for transducers) which model
physical machines, and according to as they read words from right to left or from
left to right respectively. Functions are neither left nor right but they are realized
by transducers which can be right or left.

Example 2.2. The sequential right transducer of Figure 2a and the left co-
sequential transducer of Figure 2b, which is the transpose of the first one, realize
the same co-sequential function.

Sequential functions are characterized within rational functions by a topological
criterion in the following way: the prefix distance d of two words u and v is defined
by d(u, v) = |u| + |v| − 2 |u ∧ v|, where u ∧ v is the longest common prefix of u
and v.

Definition 2.3. A function ϕ is said to be k-Lipschitz (for the prefix distance) if:

∀u, v ∈ Dom(ϕ), d(uϕ, vϕ) ≤ k d(u, v).

The function ϕ is Lipschitz if there exists a k such that ϕ is k-Lipschitz.

RADIX ENUMERATION OF RATIONAL LANGUAGES 23

Theorem 2.1 [5]. A rational function is sequential if, and only if, it is Lipschitz.

Remark 2.2. By the left–right duality we define the suffix distance d′ on A∗.
A rational function is co-sequential if, and only if, it is Lipschitz for the suffix
distance.

Here, we just use this characterization in order to show that in some cases the
successor function of a rational language is not sequential or not co-sequential.

Example 2.3 (Ex. 2.2 cont.). Let us consider the language consisting of the whole
A∗. The successor function SuccA∗ is realized by the transducers of Figure 2, and
is thus co-sequential. If we consider the words u = (b)ka and v = (b)k it holds:

d(u, v) = 1 d(SuccA∗(u), SuccA∗(v)) = d((b)kb, (a)k+1) = 2k + 2.

The function SuccA∗ is not Lipschitz and hence not sequential.

Example 2.4 (Ex. 2.1 cont.). Let u = (b)2k and v = bba(b)2k for k ≥ 1. It holds:

d′(u, v) = 3 d′(SuccL1(u), SuccL1(v)) = d′((a)2k+1, bbb(a)2k−1b) = 4k + 4.

The function SuccL1 is not co-sequential.

Since the radix order, as well as the identity on every rational set, are synchro-
nous rational relations, standard properties of these synchronous rational relations
allow to prove the following result (cf. [3,12]):

Proposition 2.1. The successor function of a rational language is realized by a
letter-to-letter finite transducer.

Definition 2.4. A function which is a finite union of sequential (resp. co-sequen-
tial) functions is called a piecewise sequential (resp. piecewise co-sequential) func-
tion.

Theorem 1.1 can now be restated as:

Theorem 1.1. The successor function of a rational language is piecewise co-
sequential.

3. The synchronous product of ray automata

Let L and K be two rational languages which have at most one word per length.
In this section, we prove that the function which maps every word of L onto the
word of K with same length is piecewise sequential and piecewise co-sequential.

We adapt the terminology proposed by Reutenauer in [10] and call ray language
a language L of the form L = uv∗w. It is folklore (and has been proved many times)
that rational languages whose growth function is bounded – and in particular
rational languages which have at most one word per length – are finite union of
pairwise disjoint ray languages.

24 P.-Y. ANGRAND AND J. SAKAROVITCH

Figure 3. Two ray automata.

3.1. Ray automata

Definition 3.1. We call ray automaton an automaton which is trim, and has a
unique initial state, a unique final state and at most one circuit. Transducers are
automata and we call ray transducer a transducer with the same properties.

We call loop-initial a ray automaton in which the initial state belongs to the
circuit and loop-final if the final state belongs to the circuit; the same terminology
carries over to ray transducers.

The structure of ray automata clearly shows that they recognize ray languages
and that any ray language can be recognized by a ray automaton.

Example 3.1. Figure 3 shows two examples of ray automata, A2 and B2 where
A2 recognizes L2 = {(ab)k | k ∈ N} and B2 recognizes K2 = {ba (ba)kaa | k ∈ N}.
A2 is both loop-initial and loop-final and B2 is neither loop-initial nor loop-final.

3.2. Synchronous product

Definition 3.2. Let A = 〈Q, A, E, I, T 〉 and B = 〈R, A, F, J, U〉 be two finite
automata. The synchronous product of A and B is the trim component of the
transducer:

A �� B = 〈Q×R, A, A, G, I×J, T×U〉
where the set of transitions G is defined by:

G = {((p, r), (a, b), (q, s)) | (p, a, q) ∈ E, (r, b, s) ∈ F}.

Let A and B be two finite automata that recognize respectively the rational
languages L and K. The synchronous product2 A �� B realizes the relation
θ : A∗ → A∗ such that θ = {(u, v) | u ∈ L, v ∈ K, |u| = |v|}. The synchronous
product distributes over union, that is:

[⋃
i∈I

Ai

]
��

⎡
⎣⋃

j∈J

Bj

⎤
⎦ =

⋃
(i,j)∈I×J

(Ai �� Bj).

2 This synchronous product slightly differs by the final functions from the one considered
in [12], Exercise IV.6.17, which realizes the relation whose graph is L×K.

RADIX ENUMERATION OF RATIONAL LANGUAGES 25

Figure 4. The synchronous product of A2 and B2.

From the definition of synchronous product directly follows:

Proposition 3.1. The synchronous product of two ray automata is a ray trans-
ducer.

If K has at most one word for every length, then the transducer A �� B realizes
a function. Even if A is deterministic, it is not likely to be sequential as soon as
there is a state in B which is the source of more than one transitions.

Proposition 3.2. The synchronous product A �� B of two ray automata is sequen-
tial (resp. co-sequential) if and only if A is deterministic (resp. co-deterministic)
and B is loop-final (resp. loop-initial).

Example 3.2 (Ex. 3.1 cont.). Figure 4 shows the synchronous product A2 �� B2

which is not sequential (nor co-sequential).

3.3. Making the synchronous product sequential

For the purpose of the construction underlying our proof, we slightly enlarge
the family of automata we are considering:

• the transitions of automata are labeled either by a letter a of A or by
the empty word 1A∗ (transitions labeled by 1A∗ are called spontaneous
transitions);

• the subsets I and T of Q for initial and final states are replaced by (partial)
functions from Q into A∗, still denoted by I and T , and their value I(p)
and T (q) are rather denoted Ip and Tq.

The label |c| of a computation c : i
f−−→
A

t is then |c| = Ii.f.Tt. We denote by �(c)

the number of transitions of the computation c and we call it the length of c.
When it is needed, we call classical automaton an automaton without spon-

taneous transitions and with final and initial states. It is well known that the
family of languages recognized by (our new class of) automata is not larger than
the family of rational languages and that any classical automaton can be seen as

26 P.-Y. ANGRAND AND J. SAKAROVITCH

Figure 5. Transformation into a loop-final ray automaton.

an automaton by setting Tt = 1A∗ when t is final and Tt = emptyset otherwise,
Ii = 1A∗ if i is initial and Ii = ∅ otherwise.

The definition of this larger class of automata is taken in view of the following
construction.

Proposition 3.3. Every ray automaton B can be transformed into a ray automa-
ton

<< <B with the following properties:
(i)

<< <B is equivalent to B.
(ii) Every state of

<< <B is the source of at most one transition, that is,

<< <B is loop-final.
(iii) If the computations c in B and c′ in

<< <B have same label then �(c) = �(c′).

Proof. The transducer

<< <B is obtained from B by the following operations:
(a) replacing the unique path going out of the circuit in B by a final function

on the first state of this path – which thus belongs to the circuit – and
which value is the label of this path;

(b) adding at the initial state of B a path whose label is the empty word and
whose length is the length of the path removed in (a).

From (a)

<< <B is loop-final and equivalent to B; (iii) follows from (b). �

Such a construction can be seen in Figure 5 for B2.
The definition of synchronous product goes over this larger class of automata

and it now holds:
A �� B = 〈Q×R, A, A, G, I×J, T×U〉

where: [I×J](p,q) = (Ip, Jq), [T×U](p,q) = (Tp, Uq) and:

G = {((p, r), (x, y), (q, s)) | (p, x, q) ∈ E, (r, y, s) ∈ F}.

Example 3.3 (Ex. 3.1 cont.). Figure 6 shows the synchronous product of A2

and

<< <B2.

From the definition of

<< <B, the two properties follow:

Property 3.1. Let A and B be two ray automata. Then A �� B and A ��

<< <B are
equivalent.

Property 3.2. Let A and B be two ray automata. If A is deterministic, then
A ��

<< <B is a sequential ray transducer.

RADIX ENUMERATION OF RATIONAL LANGUAGES 27

Figure 6. The synchronous product of A2 and

<< <B2.

We are now able to establish the main result of this section:

Proposition 3.4. Let L and K be two rational languages with at most one word
for each length. The function ϕ that maps every word of L onto the word of K
with the same length, if it exists, is realized by a finite union of sequential ray
transducers.

Proof. As we already recalled, a rational language with at most one word for each
length is a finite union of pairwise disjoint ray languages and then can be realized
by a finite union of deterministic ray automata. Let A1,. . . , Al be the determin-
istic ray automata whose union recognizes L and B1,. . . , Bk the deterministic ray
automata whose union recognizes K. Then K is also recognized by the union of

<< <B1,. . . ,

<< <Bk (Prop. 3.3).
For every i and j, Ai ��

<< <Bj is a sequential transducer and realizes the same
function as Ai �� Bj . The function ϕ is realized by the union of the Ai �� Bj , thus
by the union of the Ai ��

<< <Bj . �

The previous propositions and their proofs are symmetrical when B is trans-
formed into a ray automaton which is equivalent, loop-initial and for which the
computations with same label have same length. The following result holds:

Proposition 3.5. Let L and K be two rational languages with at most one word
for each length. The function ϕ that maps every word of L onto the word of K
with the same length is realized by a finite union of co-sequential ray transducers.

4. Concatenation of transducers

An automaton is said to be standard (resp. co-standard) if it has a single initial
(resp. final) state without any incoming (resp. outgoing) transition. Transducers
are automata and the same definitions apply.

28 P.-Y. ANGRAND AND J. SAKAROVITCH

Figure 7. Two transducers and their concatenation.

In the sequel, we denote relations and their graph by the same letter. The
concatenation of two relations ϕ and ϕ′ is denoted3 by ϕ||ϕ′ and is the relation
whose graph is the product (in A∗×A∗) of the graphs of ϕ and ϕ′: if (u, v) ∈ ϕ
and (u′, v′) ∈ ϕ′ then (uu′, v v′) ∈ ϕ||ϕ′. If ϕ and ϕ′ are rational functions, ϕ||ϕ′

is rational but not necessarily a function.
The concatenation of two automata – or two transducers – is a classical opera-

tion. In our proof, we consider a co-sequential and co-standard transducer κ and a
co-sequential ray transducer τ . In this case, the concatenation κ||τ can be realized
by merging the final state of κ with the initial state of τ and concatenating the
final function of κ and the initial function of τ to the output of the transitions
incoming to the final state of κ.

Figure 7 illustrates this construction. The following two properties directly
result from this construction.

3 The concatenation of subsets of a monoid is usually denoted by a simple juxtaposition, but
in order to avoid confusion with the composition of functions, which is also denoted in the same
way, we prefer to have a different, and explicit, notation.

RADIX ENUMERATION OF RATIONAL LANGUAGES 29

Property 4.1. Let κ be a co-deterministic co-standard transducer and τ a co-
sequential ray transducer. If one of the following two conditions holds:

(a) τ is not loop-initial;
(b) τ is loop-initial but the input of the incoming transition to the initial state

of τ is not the input of any transition incoming to the final state of κ, then,
the concatenation κ||τ is a co-sequential transducer.

5. The uniform-length successor function

Let L be a language of A∗. Let us denote the sets of minimal words and of
maximal words of L (for each length) by minL(L) and MaxL(L) respectively:

minL(L) = {u ∈ L | ∀v ∈ L, |u| = |v| ⇒ u � v},
MaxL(L) = {u ∈ L | ∀v ∈ L, |u| = |v| ⇒ v � u}.

If L is rational, so are minL(L) and MaxL(L) (cf. [11,14] for instance).
The main building block of our construction is the synchronous product, which

yields transducers that realize length-preserving functions. As SuccL is not a
length-preserving function, we slightly change both the function and the language
that we study: if L is a language of A∗, let ULSuccL be the uniform-length successor
function, that is, the restriction of SuccL to (A×A)∗:

∀u ∈ L, ULSuccL(u) = SuccL(u) = v ⇔ |u| = |SuccL(u)|,

and if |SuccL(u)| > |u| then ULSuccL(u) is undefined. It holds then that ULSuccL(u)
is undefined if and only if u is in MaxL(L), which is equivalent to SuccL(u) being
in minL(L). Moreover if u is in MaxL(L) and v = SuccL(u) there is no word in L
of length l, |u| < l < |v|.

For an ordered alphabet A, let A$ = A ∪ {$} where $ is a letter that does not
belong to A, and which is by assumption smaller than every letter a in A. We
associate with every language L of A∗ the language K = $∗L of A∗

$.
Let u and v in A∗ such that v = SuccL(u); if |v| = |u| then ULSuccK(u) = v; if

|v| > |u|, then let k = |v| − |u| and since u ∈ MaxL(L) and v ∈ minL(L), it holds
that ULSuccK($ku) = v. Since ULSuccK is injective, it holds:

SuccL(u) = v ⇐⇒ ∃!k ULSuccK($ku) = v. (5.1)

Example 5.1 (Ex. 2.1 cont.). Figure 8 shows the tree representing K1 = $∗L1.
We have seen that SuccL1(bb) = aaa; it then holds that ULSuccK1($bb) = aaa.

Proposition 5.1. If ULSuccK is piecewise co-sequential, then so is SuccL.

Proof. Let π : A∗
$ → A∗ be the projection that erases the $ symbol. With a slight

abuse of notation we write:

π [ULSuccK ∩ ($∗A∗×A∗)] = SuccL.

30 P.-Y. ANGRAND AND J. SAKAROVITCH

Figure 8. Tree representing K1.

Let τ1, . . . , τk be the co-sequential transducers whose union realizes ULSuccK and
for every τi let:

τ ′
i = τi ∩ ($∗A∗×A∗).

The transducer τ ′
i is co-sequential as ($∗A∗×A∗) is a recognizable relation (cf. [12],

Ex. V.1.5). In general, a projection applied on the input of a transducer does not
preserve co-sequentiality but in our case, since the letters $ are read only at the
beginning of the words, it does, and this is what we prove now.

Let q be a state of τ ′
i such that there exists a path from q to the final state

of τ ′
i whose input u is in A∗. From (1) follows that if $ku is in Dom(τ ′

i), then for
no l �= k, $lu is in Dom(τ ′

i). Then, there exists at most one path – which can be
empty – from an initial state of τ ′

i to q whose input is in $∗; let vq – which can be
the empty word – be the output of this path.

Let τ ′′
i be the transducer built from τ ′

i by erasing all transitions whose input
is $ and by setting the initial function to 1|vq for every q, where vq is the word
defined as above. The transducer τ ′

i being co-sequential, so is τ ′′
i . We prove that

the union of τ ′′
i realizes SuccL.

Let v = SuccL(u), either |u| = |v| and then there is a path from an initial to
the final state of τ ′

i labelled by u|v, this path still exists in τ ′′
i ; or |u| < |v| and

then there exists a unique k such that there is a exactly one path – since τ ′
i is

co-sequential – from an initial state to the final state of τ ′
i labelled $ku|v. Let q be

the state reached after reading $k in that path, then vq is the prefix of v of length
k and u|v is a pair of words accepted by τ ′′

i . �

6. Proof of Theorem 1.1

From Proposition 5.1, it is sufficient to establish the following:

Theorem 6.1. If L is a rational language of A∗, then ULSuccL is a piecewise
co-sequential function.

RADIX ENUMERATION OF RATIONAL LANGUAGES 31

Proof. To prove the theorem we build a set of co-sequential transducers whose
union realizes the function ULSuccL. Since L is rational, there exists a deter-
ministic automaton recognizing it. Let A = 〈Q, A, δ, i, T 〉 be such a deterministic
automaton and which is fixed for the remaining of the proof. Each word of L and
its uniform length successor share a longest common prefix. This common prefix
leads to a unique state of A. We then build, for every state, a set of concatenations
of co-sequential transducers reading and writing the common prefix and a union
of co-sequential transducers realizing the adequate function on the suffixes. The
main point in the proof is to build these co-sequential transducers in order to make
the concatenation co-sequential (Claim 3).

Let us note q = p · w if q = δ(p, w), Lp = {w ∈ A∗ | p · w ∈ T } and L′
p = {w ∈

A∗ | i ·w = p}. The Lp and L′
p are rational and the L′

p, for all p in Q, are pairwise
disjoint as A is deterministic.
Let u in L and v = ULSuccL(u). Let w = u ∧ v be the longest common prefix of
u and v: u = wau′ and v = wbv′ with a < b (this holds since |u| = |v|). Let
p = i ·w (w ∈ L′

p), this state is unique since A is deterministic. Furthermore both
au′ and bv′ belong to Lp.

Let Kp,a be the set of maximal words of Lp which begin with an a:

Kp,a = MaxL(a(a−1Lp))

and let Hp,a be the set of minimal words of Lp which begin with a letter c greater
than a:

Hp,a = minL(
⋃
c>a

c(c−1Lp)).

The sets Kp,a and Hp,a are rational sets and both have at most one word for every
length. We prove in the following two claims that, for every u and its successor v,
the function that maps au′ to bv′ is the function that maps any word of Kp,a to
the word of Hp,a of same length.

Claim 1. au′ ∈ Kp,a and bv′ ∈ Hp,a.
Proof of Claim 1. If w ∈ L′

p and wau′ is recognized by A then au′ ∈ a(a−1Lp).
If au′ �∈ Kp,a then there exists au′′ ∈ a(a−1Lp) with |u′| = |u′′| and such that
au′ ≺ au′′. Thus u = wau′ ≺ wau′′ ≺ wbv′ = v, contradiction with v =
ULSuccL(u) = SuccL(u). We prove that bv′ ∈ Hp,a symmetrically. �

Claim 2. If w′ ∈ Kp,a, w′′ ∈ Hp,a, and |w′| = |w′′|, then, for all w in L′
p, we have:

ww′′ = ULSuccL(ww′).

Proof of Claim 2. From the definition of Kp,a and Hp,a, it holds that ww′ and ww′′

are in L, |ww′| = |ww′′| and ww′ ≺ ww′′ and hence w is a prefix of the longest
common prefix of ww′ and of its successor. Since w′ is in Kp,a (the set of maximal
words of Lp beginning with a) the longest common prefix of ww′ and its successor
is a prefix of w. Hence the longest common prefix of ww′ and its successor is w.
From Claim 1 and since Kp,a and Hp,a have at most one word for every length,
ww′′ = ULSuccL(ww′). �

32 P.-Y. ANGRAND AND J. SAKAROVITCH

By Proposition 3.4 and Proposition 3.5 the synchronous product of the ray
automata that recognizes them Kp,a and Hp,a is either a finite union of sequential
transducers, or a finite union of co-sequential transducers τp,1, . . . , τp,k. Let us
choose the co-sequential option. There exists exactly one i such that au′ belongs
to Dom(τp,i) and then bv′ = (au′)τp,i.

To realize the concatenation with the prefix we need to build a union of concate-
nation with co-sequential and co-standard transducers that read and write every
word of L′

p. For this, let K′
p be a co-deterministic and co-standard automaton rec-

ognizing L′
p and let κ′

p be the letter-to-letter transducer that realizes the identity
on L′

p deduced from K′
p, and thus co-sequential and co-standard.

The concatenations of κ′
p and τp,i realize the uniform length successor function:

let θp,i = κ′
p||τp,i, we have v = uθp,i. In the following Claim we prove that every

θp,i is a piecewise co-sequential function by transforming the transducers κ′
p and

τp,i to make the concatenation co-sequential. The idea is that the concatenation of
the transducers is not co-sequential if τp,i is loop-initial and the incoming transition
to the initial state has same label as one transition incoming to the final state of
κ′

p. We somehow transfer the transition of κ′
p to τp,i and do this transformation

again if needed. We finally prove that we only have to make a finite time this
transformation to ensure that the concatenation is co-sequential.

Claim 3. θp,i realizes a piecewise co-sequential function.

Proof of Claim 3. We transform the transducer θp,i into a finite union of co-
sequential transducers which realizes the same function.

As τp,i is a ray transducer, two cases are possible:
(i) Either τp,i is not loop-initial or it is loop-initial but the input of the transi-

tion arriving at its initial state is different from the input of every transition
arriving at the final state of κ′

p; from Property 4.1, θp,i is a co-sequential
transducer.

(ii) The ray transducer τp,i is loop-initial and the input x of the transition
arriving at the initial state of τp,i is equal to the input of one of the tran-
sitions arriving at the final state p of κ′

p. Such κ′
p and τp,i are represented

in Figure 9. The loop on the initial state is labeled f |g where f = f ′x.
For the figure be correct, we need to have f ′ not being the empty word,
however the same reasoning apply when the loop is labeled by a single
letter.

We then duplicate κ′
p; in the first copy κ′

p,1, we remove the transition q
x|x→ p. In

the second copy we remove all the other transitions arriving at p (see Fig. 10).
Let us prove by way of contradiction that the transducers κ′

p,1||τp,i and κ′
p,2||τp,i

have disjoint domains. Let us suppose there is a word in both κ′
p,1||τp,i and

κ′
p,2||τp,i, it is then respectively of the form ux(f ′x)ks, with ux ∈ L′

p, and of
the form u′y(f ′x)k′

s, with u′y ∈ L′
p. Since x �= y, we have k′ > k and ux =

u′y(f ′x)k′−k. Since A is deterministic then ux and u′y in L′
p implies that there is

a circuit around p labeled by (f ′x)k′−k. Since Hp,a ⊂ Lp, the word (f ′x)k′−khgt

is in Lp, and so is (f ′x)2(k
′−k)t. These both words have same length, begin with

RADIX ENUMERATION OF RATIONAL LANGUAGES 33

Figure 9. κ′
p and τp,i.

Figure 10. Splitting κ′
p into two pieces.

same letter and (f ′x)k′−khgt > (f ′x)2(k
′−k)t. This is in contradiction with the

definition of τp,i and hence κ′
p,1||τp,i and κ′

p,2||τp,i have disjoint domains.
The transducer κ′

p,1||τp,i falls into the preceding case (i) and is co-sequential, it
remains to deal with κ′

p,2 and τp,i represented in Figures 11a and 11b.
Let us suppose that f ′ = f ′′x′. We replace κ′

p,2 by κ′′
p and τp,i by τ ′′

p,i as
represented in Figures 11c and 11d.

We have on one hand Dom(κ′′
p) =

[
Dom(κ′

p,2)
]
x−1 and uκ′′

p = ux and, on the
other hand, Dom(τ ′′

p,i) = xDom(τp,i) and (xv)τ ′′
p,i = vτp,i.

It holds then:

(uxv)
[
κ′′

p ||τ ′′
p,i

]
= (uκ′′

p) ((xv)τ ′′
p,i)

= ((ux)κ′
p,2) (vτp,i) = (uxv)

[
κ′

p,2||τp,i

]
.

34 P.-Y. ANGRAND AND J. SAKAROVITCH

Figure 11. Transformation of κp,2 and τp,i into κ′′
p and τ ′′

p,i.

We write (as in a program) κ′
p = κ′′

p , τp,i = τ ′′
p,i and θp,i = κ′

p||τp,i, and we are
back to the beginning of the proof of the claim: either θp,i is co-sequential and we
are done, or we are in case (ii) and we perform the transformation again. This
kind of transformation could go for ever and it is not difficult to build examples
of κ and τ for which it really does (see remark below). However, in our case, the
transformation has to stop at some point, and this is what we establish now.

Let n be the number of states of A we started from and let l = |f |. Suppose
that we have done nl times the previous transformation, and matched every time
the case (ii). Then fn is a suffix of L′

p. There is then a state r of A such that
there exist integers k1 and k2 such that r · fk1 = r and r · fk2 = p. The first
equality implies that there exists a circuit labelled by fk1 around r and, since A
is deterministic, p belongs to that circuit and p · fk1 = p.

As we have already noted before, we prove that the circuit around p labeled
k1 is in contradiction with the definition of τp,i. Since τp,i realizes a restriction of
Hp,a �� Kp,a, it holds that fk1s and hgk1t are words of Lp of same length and it
also holds that a is the first letter of f and, if b is the first letter of hg, then a < b.

RADIX ENUMERATION OF RATIONAL LANGUAGES 35

Figure 12. Transducers for which the construction goes for ever.

Using once the circuit around p, we have that both f2k1s and fk1hgk1t belong
to Lp and these two words have same length. Since hg begins with b it holds:
f2k1s ≺ fk1hgk1t; hence f2k1s is not a maximal word beginning with a and should
not be in Dom(τp,i). This is in contradiction with the definition of τp,i; it is
then impossible to have to perform nl successive transformations: θp,i realizes a
piecewise co-sequential function. �

Now we prove that the θ′p,i realize exactly the uniform length successor function.
Let θ′p,i be the finite union of co-sequential transducers with pairwise disjoint
domains built as above from θp,i and let r and s be two words of A∗ such that:

r = sθ′p,i = sθp,i.

First, s belongs to Dom(θp,i) = Dom(κp)Dom(τp,i) and necessarily s = ww′ with
w ∈ L′

p and w′ ∈ Kp,a ⊂ Lp. The word s thus belongs to L. It follows then
that r = ww′′ with w′′ in Hp,a and |w′′| = |w′|. According to Claim 2 we have
ww′′ = ULSuccL(ww′).

As ULSuccL is a function, the domains of the θp,i are pairwise disjoint, and this
completes the proof of Theorem 6.1 and thus of Theorem 1.1. �
Remark 6.1. A pair of transducers κ and τ , such that κ is co-standard and co-
sequential and τ is a co-sequential ray-transducer, for which the transformation
performed in the proof of Claim 3 goes for ever is represented in Figure 12.

Remark 6.2. Every construction involved in the proof of Theorem 6.1 is sym-
metrical in the sense that the automata can be chosen to be deterministic or co-
deterministic and the transducers sequential or co-sequential (for instance, the ‘τi’)
but for one point: the automata K′

p can be chosen to be co-deterministic and co-
standard but it is not possible to assume, in general, that they can be chosen
deterministic and co-standard (which would be necessary to complete the sym-
metrical construction).

References

[1] P.-Y. Angrand, J. Sakarovitch and R. de Souza, Sequential transducer cascades. In prepa-
ration.

[2] J. Berstel, Transductions and Context-Free Languages. Teubner (1979).
[3] V. Berthé, Ch. Frougny, M. Rigo and J. Sakarovitch, On the cost and complexity of the suc-

cessor function, in Proc. WORDS 2007, edited by P. Arnoux, N. Bédaride and J. Cassaigne,
Tech. Rep., Institut de mathématiques de Luminy (Marseille) (2007) 43–56.

36 P.-Y. ANGRAND AND J. SAKAROVITCH

[4] V. Berthé, Ch. Frougny, M. Rigo and J. Sakarovitch, On the concrete complexity of the
successor function. In preparation.

[5] Ch. Choffrut, Une caractérisation des fonctions séquentielles et des fonctions sous-
séquentielles en tant que relations rationnelles. Theoret. Comput. Sci. 5 (1977) 325–337.

[6] Ch. Choffrut and M.P. Schützenberger, Décomposition de fonctions rationnelles, Proc.
STACS’86 , edited by B. Monien, G. Vidal-Naquet. Lect. Notes Comput. Sci. 210 (1986)
213–226.

[7] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press (1974).
[8] P. Lecomte and M. Rigo, Numeration systems on a regular language. Theor. Comput. Syst.

34 (2001) 27–44.
[9] D. Perrin, Finite automata. Handbook of Theoretical Computer Science Vol. B, edited by

J. van Leeuwen. Elsevier (1990) 1–53.
[10] Ch. Reutenauer, Une caractérisation de la finitude de l’ensemble des coefficients d’une série

rationnelle en plusieurs variables non commutatives. C. R. Acad. Sci. Paris 284 (1977)
1159–1162.

[11] J. Sakarovitch, Deux remarques sur un théorème de S. Eilenberg. RAIRO-Theor. Inf. Appl.
17 (1983) 23–48.

[12] J. Sakarovitch, Eléments de théorie des automates. Vuibert (2003). English corrected edition:
Elements of Automata Theory, Cambridge University Press (2009).

[13] M.P. Schützenberger, Sur une variante des fonctions séquentielles. Theoret. Comput. Sci. 4
(1977) 47–57.

[14] J. Shallit, Numeration systems, linear recurrences, and regular sets. Inform. Comput. 113
(1994) 331–347.

	Introduction
	Preliminaries
	The synchronous product of ray automata
	Ray automata
	Synchronous product
	Making the synchronous product sequential

	Concatenation of transducers
	The uniform-length successor function
	Proof of Theorem 1.1
	References

