
RAIRO-Theor. Inf. Appl. 44 (2010) 525–543 Available online at:

DOI: 10.1051/ita/2011004 www.rairo-ita.org

A CAT ALGORITHM FOR THE EXHAUSTIVE
GENERATION OF ICE PILES ∗

Paolo Massazza
1

and Roberto Radicioni
1

Abstract. We present a CAT (constant amortized time) algorithm
for generating those partitions of n that are in the ice pile model
IPMk(n), a generalization of the sand pile model SPM(n). More pre-
cisely, for any fixed integer k, we show that the negative lexicographic
ordering naturally identifies a tree structure on the lattice IPMk(n):
this lets us design an algorithm which generates all the ice piles of
IPMk(n) in amortized time O(1) and in space O(

√
n).

Mathematics Subject Classification. 05A17, 68R99.

1. Introduction

In this paper, we consider the problem of generating particular integer partitions
that are called ice piles. Ice piles were introduced by Goles et al. in [6], where they
defined the ice pile model (IPM) as a generalization of the sand pile model (SPM),
a discrete dynamical system which describes the behaviour of a simple game (the
sand pile game).

The sand pile game simulates the fall of sand grains organized into adjacent
columns of decreasing heights and has a simple evolution rule: if there are two
adjacent columns, say i and i + 1, with heights differing by at least 2, a grain can
fall down from column i to column i + 1 (the game starts with n grains stacked in
column 1).

SPM was introduced by Goles and Kiwi [5] as a restriction of the discrete
dynamical model proposed in 1973 by Brylawski [2] in order to study the set of

Keywords and phrases. Sand pile model, ice pile model, integer partitions, exhaustive gener-
ation, CAT algorithms, discrete dynamical systems.

∗ Partially supported by Project M.I.U.R. PRIN 2007–2009: Mathematical aspects and forth-
coming applications of automata and formal languages.
1 Università degli Studi dell’Insubria, Dipartimento di Informatica e Comunicazione,

Via Mazzini 5, 21100 Varese, Italy; {paolo.massazza,roberto.radicioni}@uninsubria.it

Article published by EDP Sciences c© EDP Sciences 2011

http://dx.doi.org/10.1051/ita/2011004
http://www.rairo-ita.org
http://www.edpsciences.org

526 P. MASSAZZA AND R. RADICIONI

the linear partitions of an integer n. SPM has been widely studied in physics and
in the theory of cellular automata to represent granular objects, and also analyzed
from a combinatorial point of view, see [1,5–7].

IPM generalizes SPM by introducing an additional rule. Let k be a fixed integer,
then a grain can slide from column i with height p to column i + k′ with height
p− 2 if and only if k′ ≤ k and all the columns from i + 1 to i + k′ − 1 have height
p − 1. For any k, the set of linear partitions obtained from (n) by applying the
previous transition rules is denoted by IPMk(n). Moreover, IPMk(n) turns out to
be a lattice with respect to a suitable ordering (the dominance ordering) induced
by these rules [6].

Many combinatorial properties of IPMk are known. In particular, useful bounds
for the number of ice piles in IPMk(n) have been obtained in [3], together with
area-and-length, area-and-height and length-and-height generating functions.

Here we study the problem of the exhaustive generation of IPMk(n) by means
of a CAT (constant amortized time) algorithm. We recall that a CAT algorithm
for generating sand piles in SPM(n) using O(n) space has been recently presented
in [8]. We follow a similar approach and, by exploiting the negative lexicographic
ordering, we show that a tree structure associated with the lattice IPMk(n) nat-
urally arises: this lets us design an algorithm that sequentially generates all the
elements of IPMk(n) in O(1) amortized time using O(

√
n) space.

2. Preliminaries

A linear partition of n is a non-increasing sequence of positive integers s =
(s1, . . . , sl) such that

∑l
i=1 si = n; its height is s1 and its length l(s) is l. The

height difference of s at i is defined as δi(s) = si−si+1 (assume si = 0 for i > l(s)).
Let s = (s1, . . . , sl) and k > 0. On the set of linear partitions we consider two

(partial) functions defined as follows

Fall(s, i) =

⎧⎨
⎩

(s1, . . . , si−1, si − 1, si+1 + 1, . . . , sl) if 1 ≤ i ≤ l,
δi(s) ≥ 2

⊥ otherwise

and
Slidek(s, i) = (s1, . . . , si−1, p, p, . . . , p︸ ︷︷ ︸

k′+2

, si+k′+2, . . . , sl)

if there is k′ < k such that

s = (s1, . . . , si−1, p + 1, p, p, . . . , p︸ ︷︷ ︸
k′

, p− 1, si+k′+2, . . . , sl)

otherwise Slidek(s, i) = ⊥.
For any two integers n, k, the ice pile model IPMk(n) is defined as the set of

linear partitions of n (called ice piles) obtained by closing {(n)} with respect to

A CAT ALGORITHM FOR THE EXHAUSTIVE GENERATION OF ICE PILES 527

Fall and Slidek. Given s ∈ IPMk(n) and two integers i, j, with 1 ≤ i < j ≤ l(s),
we denote by s[i, j] the subsequence (si, si+1, . . . , sj). Moreover, we indicate by
p[h] the sequence (p, p, . . . , p︸ ︷︷ ︸

h

), that is, a block of h adjacent columns of equal height

p, and by · the catenation product,

(a1, . . . , ar) · (b1, . . . , bp) = (a1, . . . , ar, b1, . . . , bp).

Ice piles have been characterized in [6], Thm. 3. Here we are interested in a
characterization expressed in terms of forbidden patterns, as shown in Figure 1
and in the following:

Theorem 2.1. A linear partition of n belongs to IPMk(n) if and only if it does
not contain any subsequence of type

p[k+2] or (p + 1)[k+1] · p[k+1] or (p + h)[k+1] ·
h−1∏
i=1

(p + h− i)[k] · p[k+1]

with p > 0 and h > 1.

Proof. Directly follows from Conditions II.1 and II.2 in [6], Thm. 3. �

p

. . .

k+1 k k+1k

p+1 p

p+h
p+h−1

k+1k+1
k+2

p p+1

Figure 1. IPMk(n): forbidden patterns.

528 P. MASSAZZA AND R. RADICIONI

The following result concerning subsequences of ice piles can be seen as an
immediate consequence of Theorem 2.1, although a direct proof could be easily
provided.

Corollary 2.2. Let s = (s1, . . . , sl) ∈ IPMk(n). Then, for 1 ≤ i < j ≤ l we have
s[i, j] ∈ IPMk(m) where m =

∑j
e=i se.

IPMk(n) has a unique fixed point i.e. a configuration where no grain can fall
or slide, characterized in [6], Prop. 2 and it turns out to be a lattice with respect
to the dominance ordering ≥, usually defined as

s ≥ t ⇐⇒
j∑

i=1

si ≥
j∑

i=1

ti, j = 1, . . . , max(l(s), l(t)).

In the sequel we are interested in a particular total ordering on IPMk(n) known as
the negative lexicographic or neglex ordering, <nlex, which is defined as follows:

(s1, . . . , sl) <nlex (t1, . . . , tm)

if and only if

∃i, 1 ≤ i ≤ min(l, m) : ∀j, 1 ≤ j < i, sj = tj , si > ti.

Moreover, we write s ≤nlex t if s <nlex t or s = t. It is immediate to note that if
s, t ∈ IPMk(n) and s > t (dominance ordering) then s <nlex t.

The set of moves of an ice pile s is defined as

M(s) = {e|1 ≤ e ≤ l(s), Fall(s, e) �= ⊥ ∨ Slidek(s, e) �= ⊥}.

An ice pile s with |M(s)| > 1 is called branching. The index of the rightmost
column of s where a move is possible is denoted by Rmost(s) = max(M(s)). For
any integer i we fix M(s)>i = {e ∈ M(s) | e > i} and M(s)<i = {e ∈M(s) | e < i}.
In the sequel, we write s

i⇒ t if t = Slidek(s, i) or t = Fall(s, i). As a matter of fact,
the effect of a move is local, in the sense that if s

i⇒ t then the symmetric difference
between M(s) and M(t), M(s)
M(t), contains at most six entries. Formally, we
have:

Lemma 2.3. Let s
i⇒ t and k′ = max{j < i |j = 0 ∨ δj(s) > 0}. Moreover, if

δi(s) > 1 set k′′ = 1 else k′′ = min{j > i |sj = si − 2)}. Then, one has

M(s)
M(t) ⊆ {i− k′, i− 1, i, i + 1, i + k′′ − 1, i + k′′}.

Proof. Both s and t consist of the same sequence except si = ti + 1 and si+k′′ =
ti+k′′ − 1 (k′′ = 1 if t = Fall(s, i) or 1 < k′′ ≤ k if t = Slide(s, i)). Thus, it is
immediate to see that for all j /∈ {i − 1, i, i + k′′} we have Fall(s, j) �= ⊥ if and
only if Fall(t, j) �= ⊥. Similarly, for all j /∈ {i− k′, i− 1, i, i + 1, i + k′′ − 1, i + k′′}
we have Slide(s, j) �= ⊥ if and only if Slide(t, j) �= ⊥. �

A CAT ALGORITHM FOR THE EXHAUSTIVE GENERATION OF ICE PILES 529

From now on, we consider the sequence of ice piles in IPMk(n) ordered with
respect to <nlex and denote the hth element by s(h). We conclude this section by
recalling the following property (see [5]).

Lemma 2.4. For any s ∈ IPMk(n) we have l(s) = O(
√

n).

2.1. A spanning tree for IPMk(n)

In Section 4, we exhibit an algorithm that generates all the ice piles in ascend-
ing neglex order, by traversing an implicitly defined spanning tree of the lattice
IPMk(n). In this subsection, we formally define this spanning tree by means of
the notions of “father” and “grand ancestor” of an ice pile.

Definition 2.5. The function f : IPMk(n) \ {(n)} �→ IPMk(n) given by

f(s) = max <nlex
{t ∈ IPMk(n) | ∃i, t i⇒ s}

is called the father function.

Figure 2 illustrates the spanning tree associated with IPM3(10), obtained by
drawing a thick edge between s and f(s), for all s ∈ IPM3(10). In the sequel,
we often consider the set of ice piles belonging to a subtree with a specific root s,
hence:

Definition 2.6. Given s ∈ IPMk(n), we denote by T (s) the set

T (s) = {s} ∪
⋃

s=f(x)

T (x).

The natural distinction between internal nodes and leaves is held by the notion
of grand ancestor.

Definition 2.7. Let t ∈ IPMk(n). The grand ancestor of t is the ice pile

a(t) = min <nlex
{s ∈ IPMk(n) | s[1, i] = t[1, i], i = Rmost(t) ∈M(s)}.

It is immediate to note that either a(t) = t or a(t) <nlex t. We say that an ice
pile s is a proper grand ancestor if and only if there is t �= s such that s = a(t).
We underline the ith column of s if and only if s is the grand ancestor of t �= s and
i = Rmost(t): in this case we say that s is a grand ancestor at i. Symmetrically,
an ice pile s is a grand ancestor at i if and only if

s = min <nlex
{t ∈ IPMk(n) | t[1, i] = s[1, i], i ∈M(t)}.

Informally, all the ice piles which are internal nodes in the spanning tree turn out
to be grand ancestors, while leaves correspond to those ice piles which are not
grand ancestors. These facts will be proved in Lemma 2.10 and Corollary 2.14,
respectively.

530 P. MASSAZZA AND R. RADICIONI

(10)

(9,1)

(8,2)

(3,2,2,1,1,1)

(2,2,2,2,1,1)

(2,2,2,1,1,1,1)

(8,1,1)(7,3)

(6,4) (7,2,1)

(5,5) (7,1,1,1)(6,3,1)

(6,2,2)(5,4,1)

(6,2,1,1)(5,3,2)

(4,4,2) (6,1,1,1,1)(5,3,1,1)

(4,3,3) (5,2,2,1)(4,4,1,1)

(4,3,2,1) (5,2,1,1,1)

(3,3,3,1) (4,3,1,1,1)(4,2,2,2)

(3,3,2,2) (4,2,2,1,1)

(3,3,2,1,1) (4,2,1,1,1,1)

(3,2,2,2,1) (3,3,1,1,1,1)

Figure 2. The spanning tree of IPM3(10).

Example 2.8. Let us consider the ice piles in IPM3(10) and list them according
to the neglex ordering:

(10), (9, 1), (8, 2), (8, 1, 1), (7, 3), (7, 2, 1), (7, 1, 1, 1), (6, 4), (6, 3, 1)(6, 2, 2),
(6, 2, 1, 1), (6, 1, 1, 1, 1), (5, 5), (5, 4, 1), (5, 3, 2), (5, 3, 1, 1), (5, 2, 2, 1),
(5, 2, 1, 1, 1), (4, 4, 2), (4, 4, 1, 1), (4, 3, 3), (4, 3, 2, 1), (4, 3, 1, 1, 1), (4, 2, 2, 2),
(4, 2, 2, 1, 1), (4, 2, 1, 1, 1, 1), (3, 3, 3, 1), (3, 3, 2, 2), (3, 3, 2, 1, 1),
(3, 3, 1, 1, 1, 1), (3, 2, 2, 2, 1), (3, 2, 2, 1, 1, 1), (2, 2, 2, 2, 1, 1), (2, 2, 2, 1, 1, 1, 1).

For instance, with respect to Figure 2, we have a((6, 1, 1, 1, 1)) = (6, 4), a((6, 2, 2)) =
(6, 2, 2) and a((4, 2, 1, 1, 1, 1)) = a((4, 3, 1, 1, 1)) = (4, 3, 2, 1). Look at the internal
nodes of the spanning tree: proper grand ancestors turn out to be branching, while
ice piles satisfying the relation t = a(t) are not branching.

The father of an ice pile s is determined by the rightmost grain in s which can be
moved to the left by reversing either a Slide or a Fall. Usually, this grain belongs
to one of the last two blocks of s, with one exception occurring when s admits
a suffix of particular shape. The four possible cases which arise are depicted in
Figure 3 and proved in the next lemma.

A CAT ALGORITHM FOR THE EXHAUSTIVE GENERATION OF ICE PILES 531

. . .

k kkkc b

B
B + 1

B + 2
B + C − 1

B + C
B + D

a

. . .

k kk b

A

B
B + 1

B + 2
B + C − 1

B + C

a

B + C + 1

k + 1

. . .

k

B
B + 1

B + 2

a

A

k + 1 b− 2

i

. . .

k

B
B + 1

B + 2

a

A

k + 1

i

Case (1)
i

. . .

B + 1B + 2

k + 1

B

k − 2

i

k − 1

The pattern for a child suffix

Case (2a) Case (2b)

Case (2c)

2

A

Figure 3. Finding the father: suffix shape from Lemma 2.9.

532 P. MASSAZZA AND R. RADICIONI

Lemma 2.9. Let t ∈ IPMk(n), l = l(t) and consider the longest suffix w of t such
that

w = (B + D)[c]
∏

1≤j≤C

(B + j)[k] B[b]Aa

for suitable integer values A, B, C, D, a, b, c satisfying the constraints

0 < A < B, 0 ≤ C, 0 ≤ a ≤ 1, 0 ≤ b < k, 0 < c ≤ k + 1

and either D = C + 1 and c �= k or D > C + 1.
Then, the ice pile s = f(t) and the position i such that s

i⇒ t are determined
as follows:

(1) if c = k + 1 and D = C + 1 then i = l− |w|+ 1 = l− (a + b + Ck + c) + 1
and

s = t[1, i− 1](B + C + 2)(B + C + 1)[k−1](B + C)
∏

1≤j≤C

(B + j)[k] B[b]Aa;

(2) if c < k or D > C + 1, then:
(a) if a = b = 1 we have i = l − 1 and

s = t[1, i− 1](B + 1)(A− 1);

(b) if b > 1 we have i = l− a− b + 1 and

s = t[1, i− 1](B + 1)B[b−2](B − 1)Aa;

(c) if b = 1 and a = 0 we have i = l− k + 1 and

s = t[1, i− 1](B + 2)(B + 1)[k−2]B2.

Proof. First, we have s ∈ IPMk(n) since it satisfies Theorem 2.1. In fact, it is
immediate to see that, in all cases, if one forbidden pattern occurred in s then it
would also occur in t. Then, s

i⇒ t by construction. Moreover, s = f(t). Indeed,
as suggested by Figure 3, it is clear that in cases (2a), (2b) and (2c) there is not

an ice pile s′ such that s′
j⇒ t and j > i, while in case (1) s′ would contain a

forbidden pattern of type p[k+1](p− 1)[k](p− 2)[k] . . . (p− h + 1)[k](p− h)[k+1]. �

The father of an ice pile has several interesting properties; in particular, it turns
out to be a grand ancestor as stated in the following:

Lemma 2.10. Let t ∈ IPMk(n) and s = f(t) with s
i⇒ t. Then s is a grand

ancestor at i.

Proof. We argue by contradiction and suppose that the grand ancestor at i with
prefix s[1, i] is x <nlex s. Let ı̄ > i be the smallest index for which x[̄ı] > s[̄ı].

A CAT ALGORITHM FOR THE EXHAUSTIVE GENERATION OF ICE PILES 533

Obviously we have δı̄−1(s) > 0 and ı̄ < l(s). We recall Lemma 2.9 and distinguish
four cases. In case (1),

s = v(B + C + 2)(B + C + 1)[k−1](B + C)[k+1] · · · (B + 2)[k](B + 1)[k]B[b]Aa

and i = l(v) + 1. Since i ∈ M(x), one has ı̄ �= i + 1, i + k. For all the other
positions, x[̄ı] > s[̄ı] implies the existence in x of the forbidden pattern p[k+1](p−
1)[k](p−2)[k] . . . (p−h+1)[k](p−h)[k+1]. Case (2) is even simpler since i = l(s)−1
and then x would not belong to IPMk(n). A similar analysis holds in case (3) and
in case (4), since x[̄ı] > s[̄ı] implies i /∈M(x). �

The following lemma plays a fundamental role for the correctness of the algo-
rithm, since it shows how to visit the spanning tree in order to obtain the neglex
ordered sequence of all ice piles.

Lemma 2.11. Let t, v ∈ IPMk(n). Then:
(1) f(t) <nlex t;

(2) if f(t) = f(v) = s and s
j⇒ t, s

i⇒ v with i < j, then for all x ∈ T (t) \ {t}
and y ∈ T (v) \ {v}, we have

t <nlex x <nlex v <nlex y.

Proof. Statement (1) immediately follows from the definitions of <nlex and f , and
implies the relations t <nlex x and v <nlex y in statement (2). So, we have only
to prove x <nlex v. By contradiction, let x̂ be the smallest ice pile in T (t) such
that v <nlex x̂ and consider its father x̃ = f(x̂). Note that along the path from
t to x̂ the move x̃

p⇒ x̂ is the first which is not to the right of i, that is, p ≤ i.
By recalling Lemma 2.10, x̃ is a grand ancestor at p: this implies p < i since the
grand ancestor at i with prefix x̃[1, i] is s <nlex x̃.

Finally, consider the ice pile x̄ = f(x̃), x̄
r⇒ x̃

p⇒ x̂ with r > i > p, and note
that p ∈M(x̄) since δi(x̄) ≥ 1. Then, we have x̄

p⇒ z
r⇒ x̂ with z <nlex x̃ and this

implies x̃ �= f(x̂). �
In particular, from statement (2) of Lemma 2.11 we directly obtain:

Corollary 2.12. A preorder visit of the spanning tree of IPMk(n) produces the
neglex ordered sequence of all ice piles.

2.2. Properties of grand ancestors

Lemma 2.10 lets us walk through the branches of the spanning tree of IPMk(n)
only by moving a grain in column i in an ice pile s which is a grand ancestor at
i. If the current ice pile t satisfies t = a(t) we move at column Rmost(t) in t and,
by Lemma 2.3, we update the set of moves in constant time; if t is a leave, in
order to continue the visit of the tree we have to reconstruct the grand ancestor
of t at Rmost(t). We will prove that the cost of reconstructing a grand ancestor
is bounded by the distance between t and a(t) in the tree.

534 P. MASSAZZA AND R. RADICIONI

. . .

k + 1 k kk
k
′

si si − 1 si − 2 si − 3

k − 1

si − 4

si − h + 1
si − h

e

Figure 4. IPMk(n): the suffix of a proper grand ancestor.

In this subsection we formalize these topics, basically by showing that the set
of fathers of ice piles (i.e. the internal nodes of the tree) coincides with the set
of grand ancestors. We first present a lemma which characterizes the suffixes
of grand ancestors: as shown in Figure 4, “long” suffixes look like stairs with a
first block of width k − 1, a second one of width k + 1, and then a sequence of
blocks of decreasing height and width k (with possibly exceptions regarding the
last two blocks). “Short” suffixes have a simpler structure consisting of either a
single column or a block of width at most k− 1 followed by at most two columns.
Moreover, the lemma also illustrates how the value si and the number of grains
in the suffix s[i + 1, l(s)] of a grand ancestor s at i univocally determine the
subsequence (si+1, . . . , sl(s)).

Lemma 2.13. Let s ∈ IPMk(n) be a grand ancestor at i = Rmost(t), s = a(t),
with d =

∑l(t)
j=i+1 tj =

∑l(s)
j=i+1 sj. Then we have:

• if d < si − 1, then l(s) = i + 1 and si+1 = d;
• if si − 1 ≤ d < k(si − 1)− 1, then s[i + 1, l(s)] = (si − 1)[k

′] · (si − 2) · (e),
with

k′ =
⌊

d− si + 2
si − 1

⌋
, e = d− k′(si − 1)− si + 2;

• if d ≥ k(si − 1)− 1, then

s[i + 1, l(s)] = (si − 1)[k−1] · (si − 2) ·
h−1∏
j=2

(si − j)[k] · (si − h)[k
′] · e, (2.1)

A CAT ALGORITHM FOR THE EXHAUSTIVE GENERATION OF ICE PILES 535

with

h =

⌊(
si − 1

2

)(
1−

√
1− d + 1

k(4si − 2)2

)⌋
, (2.2)

k′ =
⌊

d− k(h− 1)(si − h/2) + 1
si − h

⌋
, (2.3)

e = d− k(h− 1)(si − h/2) + 1− k′(si − h). (2.4)

Proof. By definition, the grand ancestor of t is the smallest ice pile s such that
s[1, i] = t[1, i] and i ∈ M(s). So, the idea is that we start from column i + 1 and
proceed from left to right, setting each column as high as possible, while ensuring
i ∈M(s) and avoiding forbidden patterns.

Trivially, if d < si−1 the grand ancestor at i is s = t[1, i]·(d), that is, l(s) = i+1
and si+1 = d.

Otherwise, if si−1 ≤ d < k(si−1)−1, then we set si+1 = si−1 only if d ≥ 2si−3
(otherwise i /∈M(s)). More generally, we set sj = si−1 for j = i+1, i+2, . . . i+k′

only if we can place si − 2 grains in column i + k′ + 1 (so that Slide(s, i) �= ⊥).
Moreover, observe that d < k(si − 1) − 1 implies k′ < k. In other words, k′ is
the largest integer smaller than (d− si + 2)/(si − 1). Hence, we place k′ columns
of height si − 1, then a column of height si − 2 and, finally, a column with the
remaining d − k′(si − 1) − (si − 2) grains. The resulting partition satisfies the
characterization of Theorem 2.1.

Now, consider the case d ≥ k(si − 1) − 1. First we set s[i + 1, i + k] = (si −
1)[k−1] · (si− 2) (this guarantees Slide(s, i) �= ⊥), then we place k(si− 2) grains in
s[i + k + 1, i + 2k] = (si− 2)[k], k(si− 3) grains in s[i + 2k + 1, i + 3k] = (si− 3)[k],
and so on as long as there are enough grains to fill each block. Thus, the number
of grains in s[i + 1, i + (h− 1)k], is

f(h) = (k − 1)(si − 1) + (k + 1)(si − 2) +
h−1∑
j=3

k(si − j)

=
h−1∑
j=1

k(si − j)− 1 = k(h− 1)(si − h/2)− 1.

Since there are d grains in the suffix, the number h−1 of blocks of maximal width
satisfies the relation f(h) ≤ d < f(h + 1). By solving the two inequalities we
obtain the value in Expression (2.2). The remaining grains lie in a block of height
si − h or in the last column. The width of this last block is obtained by dividing
the number of remaining grains by si − h, as shown in Expression (2.3). Last
column is filled with the rest, as stated in Expression (2.4).

In all cases, minimality is ensured by construction and no forbidden pattern
arises. �

536 P. MASSAZZA AND R. RADICIONI

The shape of the suffix of a grand ancestor provided by the previous lemma
directly leads to the following

Corollary 2.14. Let s be a grand ancestor at i and s
i⇒ t. Then, s = f(t).

Indeed, the grain involved in the move s
i⇒ t is exactly the rightmost grain in

t which can be moved back without introducing a forbidden pattern (see Fig. 4).
Grand ancestors have further interesting properties. First, their suffixes contain

at most four positions where a move possibly occurs. Second, if s is a grand
ancestor at i, by moving the grain in column i one obtains the smallest ice pile
with that prefix of length i. More formally we have:

Lemma 2.15. Let s ∈ IPMk(n) be a grand ancestor at i, l = l(s) and s
i⇒ t.

Then, one has
(1) M(s)>i ⊆ {l− 〈l − i〉k, l − 2, l− 1, l};
(2) v ∈ IPMk(n) ∧ v[1, i] = t[1, i] =⇒ t ≤nlex v.

Proof.
(1) We follow the three cases of Lemma 2.13. The first two cases are trivial

and we have M(s)>i ⊆ {l − 2, l − 1, l}. In the third case, depicted in
Figure 4, for each j, with i < j < l − 1, we have δj(s) ≤ 1 and then
Fall(s, j) = ⊥. Moreover, each column j such that δj(s) = 1 is always
followed by a block of width either k + 1 or k (and so Slidek(s, j) = ⊥),
unless j = l−〈l− i〉k. Therefore, since δj(s) = 0 for l−〈l− i〉k < j < l−1,
we have M(s)>i ⊆ {l − 〈l − i〉k, l− 1, l}.

(2) Note that s = f(t) and then, by considering the four cases in Lemma 2.9,
the two conditions v[1, i] = t[1, i] and v <nlex t imply that either v admits
a forbidden pattern or v ∈ IPMk(m) with m > n.

�

The following lemma lets us easily compute the ordered sequence of ice piles in
IPMk(n). Such a sequence is obtained by defining, for any h > 0, s(h+1) as either
Fall(a(s(h)), i) or Slide(a(s(h)), i), with i = Rmost(s(h)).

Lemma 2.16. Let s(h) ∈ IPMk(n) and i = Rmost(s(h−1)). Then we have

(1) a(s(h−1)) i⇒ s(h);
(2) f(s(h)) = a(s(h−1)).

Proof.
(1) Let s(h−1) = (s1, . . . , sl), d =

∑
j>i sj and m = l(s(h)). By definition,

one has a(s(h−1))[1, i] = s(h−1)[1, i] and so the move a(s(h−1)) i⇒ t implies
t[1, i] = (s1, . . . , si−1, si − 1). Now, suppose s(h−1) <nlex s(h) ≤nlex t and
note that this implies s(h)[1, i−1] = t[1, i−1] = (s1, . . . , si−1) and si−1 ≤
s
(h)
i ≤ si. If s

(h)
i = si then we have s(h−1)[i + 1, l] <nlex s(h)[i + 1, m],

which is obviously impossible since s(h−1)[i+1, l], s(h)[i+1, m] ∈ IPMk(d)
and s(h−1)[i + 1, l] is the bottom (M(s(h−1)[i + 1, l]) = ∅). So, we have

A CAT ALGORITHM FOR THE EXHAUSTIVE GENERATION OF ICE PILES 537

s(h)[1, i] = t[1, i] and, by statement (2) in Lemma 2.15, the relation t ≤nlex

s(h) holds, that is, s(h) = t.
(2) Suppose s = f(s(h)) �= a(s(h−1)) and s

j⇒ s(h) with j �= i. Statement (1)
and j < i imply s <nlex a(s(h−1)) and so s would not be the father of s(h).
Thus, we have j > i and s(h)[1, i] = s[1, i]. Statement (2) in Lemma 2.15
immediately leads to the contradiction s(h) ≤nlex s.

�

3. Exhaustive generation

Here we come to our goal, that is, the design of a CAT algorithm which, for
any fixed integer k, solves the following problem:

Problem: ice piles generation (IPGk)
Input: an integer n
Output: the ordered sequence of ice piles in IPMk(n).

Note that because of the exponential growth of |IPMk(n)| (see [3], Thm. 1) a
standard approach based on dynamic programming is not feasible due to the huge
space requirement. Nevertheless, we show that we can easily define an iterative
CAT algorithm that traverses the spanning tree associated with IPMk(n) and
produces the sequence of ice piles

s(1) = (n), s(2) = (n− 1, 1), . . . , s(m),

where s(m) is the unique fixed point of IPMk(n). This result extends the method
introduced in [8] for the distributive lattice SPM(n) to the (non modular) lattice
IPMk(n). The main difference is that the formal definition of a tree structure
associated with IPMk(n) (see Def. 2.5) together with the characterization of the
suffixes of grand ancestors in Lemma 2.13, let us lower the space requirement from
O(n) to O(

√
n), while providing a simpler proof of the CAT property.

The algorithm is based on Lemma 2.16, that is, it starts from s(1) = (n) and,
for any h > 1, it computes s(h) by moving a grain in column Rmost(s(h−1)) in
a(s(h−1)). As shown in Corollary 2.12, this corresponds to a preorder visit of the
spanning tree of IPMk(n). To this aim, a crucial point is that of testing for each ice
pile s in the sequence whether s = a(s). This can be done by maintaining, at each
step h, an array GrAn of couples of integers that univocally identify the suffixes
of all generated ice piles which are proper grand ancestors at j ≤ Rmost(s(h)) and
share with s(h) a prefix of length j.

More formally, if s(h) is the current ice pile and i = Rmost(s(h)) then the entries
of GrAn are defined as

GrAn[j] =

⎧⎨
⎩

(p, q) if j ≤ i ∧ ∃g ≤ h s.t. s(g) is a proper grand ancestor at j,

s(g)[1, j] = s(h)[1, j], l(s(g)) = p, s
(g)
p = q,

(0, 0) otherwise.

538 P. MASSAZZA AND R. RADICIONI

Thus, a single iteration consists of three steps:
(1) Determine the grand ancestor at i with prefix s(h)[1, i]: if GrAn[i] = (0, 0)

then a(s(h)) = s(h), otherwise construct a(s(h)) from s(h)[1, i] and (p, q) =
GrAn[i] and then set GrAn[i] := (0, 0);

(2) Make the move a(s(h)) i⇒ s(h+1);
(3) Check whether s(h+1) is a proper grand ancestor and update GrAn: for e ∈

M(s(h+1)), i− k ≤ e < Rmost(s(h+1)), if GrAn[e] = (0, 0) set GrAn[e] :=
(l(s(h+1)), s(h+1)

l(s(h+1))
).

Example 3.1. Let us consider IPM2(8). Starting with s(1) = (8), we proceed to
s(2) = (7, 1) and then to the branching ice pile s(3) = (6, 2) (note that this is the
grand ancestor of the ice pile t having (6) as a prefix and with Rmost(t) = 1).
Now we have M(s(3)) = {1, 2} and we set GrAn[1] := (2, 2). Once we have
computed s(4) = Fall(s(3), Rmost(s(3))) = (6, 1, 1), the next ice pile is obtained
by a move in the first column. Actually, since GrAn[1] = (2, 2), we proceed as
follows: first, we construct a(s(3)) = (6, 2) and set GrAn[1] := (0, 0), then we
compute s(5) = Fall((6, 2), 1) = (5, 3). Now, we have M(s(5)) = {1, 2} and set
GrAn[1] := (2, 3). The process continues by computing the ice piles

s(6) = Fall(s(5), Rmost(s(5))) = (5, 2, 1) (GrAn = [(2, 3)]),
s(7) = Slide2(s(6), Rmost(s(6)) = (5, 1, 1, 1) (GrAn = [(2, 3)]),
s(8) = Fall(s(5), Rmost(s(7))) = (4, 4) (GrAn = [(0, 0)]),
s(9) = Fall(s(8), Rmost(s(8))) = (4, 3, 1) (GrAn = [(0, 0)]),
s(10) = Fall(s(9), Rmost(s(9))) = (4, 2, 2) (GrAn = [(3, 2)]),
s(11) = Fall(s(10), Rmost(s(10))) = (4, 2, 1, 1) (GrAn = [(3, 2)]),
s(12) = Fall(s(10), Rmost(s(11))) = (3, 3, 2) (GrAn = [(0, 0)]),
s(13) = Fall(s(12), Rmost(s(12))) = (3, 3, 1, 1) (GrAn = [(0, 0)]),
s(14) = Fall(s(13), Rmost(s(13))) = (3, 2, 2, 1) (GrAn = [(0, 0)]),
s(15) = Slide2(s(14), Rmost(s(14))) = (3, 2, 1, 1, 1) (GrAn = [(0, 0)]),
s(16) = Slide2(s(15), Rmost(s(15))) = (2, 2, 2, 1, 1) (GrAn = [(0, 0)]).

4. The algorithm

The idea presented in the previous section leads immediately to Algorithm 1.
In the code we use two arrays, partition and GrAn, a stack St, two procedures,
GrAncestor and Check, and two functions, Move and MSet.

At each step the array of integers partition represents an ice pile which has a set
of moves represented by an increasing sequence of integers contained in St. The
elements of GrAn are couples of integers with the meaning given in the previous
section.

GrAncestor(partition,i, l, m, q) sets the ice pile partition with rightmost move
in i to its grand ancestor: it modifies the suffix partition[i + 1, l] according to
Lemma 2.13 (knowing the length m of the proper grand ancestor and the height
q of its last column). Move(partition,i, l) executes either Fall(partition,i) or

A CAT ALGORITHM FOR THE EXHAUSTIVE GENERATION OF ICE PILES 539

Algorithm 1 Exhaustive generation of IPMk(n).

1: Procedure IcePileGenerationk(n)
2: partition ← [n, 0, . . . , 0]; GrAn ← [(0, 0), . . . , (0, 0)];
3: St ← EmptyStack(); Push(St,1); l ← 1;
4: while IsNotEmpty(St) do
5: i ← Top(St); Pop(St); (m, q) ← GrAn[i];
6: if (m, q) �= (0, 0) then
7: GrAncestor(partition,i, l, m, q);
8: GrAn[i] ← (0, 0); l ← m;
9: end if

10: l ← Move(partition,i,l); Check(St,i);
11: (l1, . . . , lp) ← MSet(partition,i);
12: for e = 1 to p− 1 do
13: if GrAn[le] = (0, 0) then
14: GrAn[le] ←(l,partition[l]);
15: Push(St,le);
16: end if
17: end for
18: Push(St,lp);
19: end while

Slide(partition,i) and returns the length of the new generated ice pile. Check(St,i)
is used to check the entries of St after the move. More precisely, it possibly elimi-
nates the two top elements of St if they are no more valid after the move in column
i (see Lem. 2.3). If partition = s(h) is an ice pile of length l obtained by a move
in column i = Rmost(s(h−1)) in a(s(h−1)), then MSet(partition,i, l) returns an
ordered list of integers corresponding to M(s(h)) \M(s(h−1)). By Lemma 2.3 this
list contains at most six integers in the range [i− k, l].

Given an integer n (k is fixed), we start with partition=[n, 0, . . . , 0] (the first ice
pile in IPMk(n)) and by pushing 1 onto St (lines 2-3, we suppose n > 1). We also
set the length l of the ice pile to 1. Then, as long as St is not empty, an integer i is
popped: this indicates the rightmost move in the latest generated ice pile (line 5).
If partition has a proper grand ancestor then GrAn[i] �= (0, 0) and GrAncestor

(line 7) restores it. Hence, we generate the next ice pile (line 10) and update the
set of moves. Note that all the integers in St denote valid moves, with possibly
two exceptions regarding the two elements at the top (the call to Check in line 10
fix them). So, The other valid moves are found in the suffix partition[i− k, l] (the
list returned by Mset, line 11). Finally, St and GrAn are updated (lines 12-17).

The correctness of the algorithm is proved in the following theorem.

Theorem 4.1. IcePileGenerationk(n) solves IPGk.

Proof. We prove, by induction on h, that at the end of the hth iteration we have

(1) partition = s(h+1);

540 P. MASSAZZA AND R. RADICIONI

(2) St ≡ M(s(h+1)), that is, St contains the ordered sequence of integers in
M(s(h+1)), with Top(St) = Rmost(s(h+1));

(3) GrAn[j] = (l, p) �= (0, 0) if and only if there is e ≤ h + 1 such that s(e)

is a proper grand ancestor at j of length l with s(e)[1, j] = s(h+1)[1, j],
j ≤ Rmost(s(h+1)) and s

(e)
l = p.

Basis (h = 1). At the end of the first iteration we have
(1) partition = (n− 1, 1);
(2) St is either empty (if n = 2 or n = 3 and k = 1) or contains the integer 1;
(3) GrAn[j] = (0, 0) for all j (no proper grand ancestor has been generated).

Induction (h > 1). By induction hypothesis, at the beginning of the hth iter-
ation we have partition = s(h) and St ≡ M(s(h)) (with Top(St) = Rmost(s(h))).
Moreover, GrAn contains all the couples of integers that univocally identify all the
proper grand ancestors at j ≤ Rmost(s(h)) with prefix s(h)[1, j] (GrAn[j] = (0, 0)
for j > Rmost(s(h))). Then,

(1) i is assigned the value Top(St) = Rmost(s(h)) and the algorithm moves a
grain in column i in a(s(h)). In fact, if GrAn[i] = (0, 0) then s(h) = a(s(h))
and the move executed in line 10 is s(h) i⇒ s. Otherwise, GrAn[i] = (l, p)
and (line 7) the grand ancestor at i is restored, say s(e) = a(s(h)), and
then the move s(e) i⇒ s is executed. Lemma 2.16 states that s = s(h+1)

and so partition = s(h+1) (line 10);
(2) after line 10, St contains only the values of M<i−k(s(h+1)) together with

the values of M(s(h))∩M(s(h+1)) in the range [i− k, i]. By definition, the
call to Mset in line 11 returns the list (l1, . . . , lp) of integers in M(s(h+1))\
M(s(h)) (in the range [i−k, l]). These values are then pushed in order onto
St, yielding St ≡ M(s(h+1));

(3) since M<i−k(s(h+1)) = M<i−k(s(h)) and s(h+1)[1, i − 1] = s(h)[1, i − 1],
the first i − k − 1 entries of GrAn keep holding the right value. This
is also true for the nonzero entries in the range [i − k, i − 1]. Finally,
s(h+1) turns out to be a proper grand ancestor at e for all e belonging
to the list returned by MSet (integers in the range [i − k, l(s(h+1))], see
Lem. 2.3), with the only exception given by e = lp = Rmost(s(h+1)). It is
immediate to see that after the for loop (line 17) also the entries GrAn[e],
i− k ≤ e ≤ Rmost(s(h+1)), have assigned the right value.

�

4.1. Complexity

In order to determine the complexity of IcePileGenerationk, we indepen-
dently analyze Move, Check, Mset and GrAncestor, respectively. Clearly,
Move admits an implementation running in time O(1). The same remark holds
for Check since it accesses at most two integers in St (at the top) and, for any in-
teger i, the cost of testing whether Fall(partition , i) �= ⊥ or Slide(partition , i) �= ⊥
is O(1). Then, Lemmas 2.3 and 2.15 lead to an implementation of Mset which

A CAT ALGORITHM FOR THE EXHAUSTIVE GENERATION OF ICE PILES 541

also runs in O(1). Finally, the complexity of GrAncestor is not O(1). Never-
theless, an amortized analysis shows that the cost of generating the sequence of all
ice piles in IPMk(n) by calling IcePileGenerationk(n) is O(|IPMk(n)|). The
proof is based on the following two lemmas.

Lemma 4.2. For each leaf t in the spanning tree of IPMk(n), we can compute
a(t) in time O(d) where d is the length of the path from t to a(t).

Proof. We assume that t is represented by an array of integers and we show how
to modify it in order to obtain the representation of s = a(t). So, we have as input
t, i = Rmost(t) and GrAn[i] = (p, q), where p = l(s) and q = sl(s). Observe that
the pair (p, q) determines the exact number of grains in t that lie in a different
column in s: this is N = |tp − q| +∑l(t)

j=p+1 tj and is bounded by d, since each of
these grains has been eventually moved during the derivation of t from s.

By Theorem 2.13, in nontrivial cases s[i + 1, p] is the sequence of blocks illus-
trated in Figure 4. So, we fix x = p − 〈p − i〉k + 1 and y = ti − �(p − i)/k�,
and construct the sequence from right to left, starting from column p which has q
grains and is preceded by p−x columns of height y−1. Then, columns in positions
from x − jk − 1 to x − (j + 1)k have height y + j, with j = 0, . . . , �(p − i)/k�,
except column i + k that has height ti − 2, see Figure 4.

So, we start from the rightmost column of t and proceed to construct s by
moving all the grains we encounter in positions l(t), l(t) − 1, . . . , p + 1 of t, while
setting l(t)− p entries of t to 0.

More precisely, s can be constructed by an iterative process that, at each iter-
ation, moves a grain of t to its final destination in s. The number of iterations is
N and at each step we have two indices, j1 and j2, denoting a column to fill (in
s) and a column to empty (in t), respectively. As soon as a column gets the right
height, the corresponding index takes a new value which identifies the first column
(to the left) with a wrong height. Note that updating j1 has cost O(1). In fact,
as soon as we get tj1 = sj1 = a, if tj1−1 = sj1−1 we have only to check whether
th = sh for the largest r such that h = i + rk < j1. Therefore, it is immediate to
see that the overall cost is O(N) = O(d). �
Lemma 4.3. Let s(d), s(e) be two leaves in the spanning tree of IPMk(n) and
let Pd, Pe be the two paths joining s(d) to a(s(d)) and s(e) to a(s(e)), respectively.
Then, Pd and Pe do not have a common edge.

Proof. Lemma 2.16 states that s(d+1) is obtained by a move in column i =
Rmost(s(d)) in a(s(d)), and then we have a(s(d)) = f(s(d+1)). Thus, let

a(s(d)) <nlex . . . <nlex s(c) <nlex . . . <nlex s(d) <nlex s(d+1) <nlex . . . <nlex s(e)

where s(c) is the node preceding a(s(d)) in the path from s(d) to a(s(d)), f(s(c)) =
a(s(d)). By Lemma 2.11, if s(e) ∈ T (s(c)) then s(e) <nlex s(d+1). Therefore, s(e)

does not belong to T (s(c)) and this means that Pd and Pe do not have a common
edge. �

We can now prove our main result.

542 P. MASSAZZA AND R. RADICIONI

Theorem 4.4. For any fixed integer k, IcePileGenerationk(n) runs in time
O(|IPMk(n)|).
Proof. The number of iterations of IcePileGenerationk is exactly |IPMk(n)|.
The only instruction which has not cost O(1) is the call to GrAncestor (line 7).
GrAncestor is called only on leaves and if it is called at the ith iteration on the
leaf s(i) then, by Lemma 4.2, its cost is O(|Ps(i) |), where |Ps(i) | is the length of the
path from s(i) to a(s(i)).

Thus, if T (n) denotes the running time of IcePileGenerationk(n) we have

T (n) ≤ C1|IPMk(n)|+
∑

s is a leaf

C2|Ps|

where C1, C2 are suitable constants. Finally, by Lemma 4.3 each edge of the
spanning tree belongs to at most one path Ps. Therefore, we obtain

T (n) ≤ C1|IPMk(n)|+ C2(|IPMk(n)| − 1) = O(|IPMk(n)|).

�

Lastly, the only data structures used in IcePileGenerationk are the arrays
partition, GrAn and the stack St, all having size O(

√
n) (see Lem. 2.4). Thus,

from the previous theorem we immediately get:

Corollary 4.5. Procedure IcePileGenerationk(n) runs in O(1) amortized time
and uses O(

√
n) space.

5. Conclusions

We considered in this paper the problem of generating all the reachable con-
figurations of the discrete dynamical system IPMk(n), showing a CAT algorithm
working on a tree structure which naturally arises when considering the negative
lexicographic ordering. Hence, it is quite natural to ask whether a similar approach
can be applied to deal with the exhaustive generating problem for other (similar)
discrete models.

In particular, the discrete models BSPM (bidimensional sand pile model) and
BIPM (bidimensional ice pile model) have been introduced in [5] by adding a
further dimension to SPM(n) and IPMk(n), respectively. Thus, the elements of
BSPM and BIPM are plane partitions, that is, matrices of non-negative integers
that are non-increasing from top to bottom and from left to right. These models
exhibit some important differences with respect to the unidimensional case. First,
they are not lattices and several fixed points possibly exist; second, no character-
ization is known for reachable states and for fixed points. As a consequence, the
presented algorithm can not be easily extended to these models. For instance, a
first problem is that of finding a suitable ordering which lets us construct a tree
structure associated with BSPM(n) (or BIPMk(n)).

A CAT ALGORITHM FOR THE EXHAUSTIVE GENERATION OF ICE PILES 543

An intermediate step towards the design of a CAT generation algorithm for
BSPM(n) or BIPMk(n) could be the study of a simpler problem, that is, the
exhaustive generation of the plane partitions of an integer n in constant amortized
time.

Acknowledgements. The authors would like to thank Roberto Mantaci of LIAFA for
stimulating discussions.

References

[1] P. Bak, C. Tang and K. Wiesenfeld, Self-organized criticality. Phys. Rev. A 38 (1988) 364–374.
[2] T. Brylawski, The lattice of integer partitions. Discrete Math. 6 (1973) 201–219.
[3] S. Corteel and D. Gouyou-Beauchamps, Enumeration of sand piles. Discrete Math. 256 (2002)
625–643.

[4] E. Duchi, R. Mantaci, H.D. Phan and D. Rossin, Bidimensional sand pile and ice pile models.
PU.M.A. 17 (2007) 71–96.

[5] E. Goles and M.A. Kiwi, Games on line graphs and sand piles. Theoret. Comput. Sci. 115
(1993) 321–349.

[6] E. Goles, M. Morvan and H.D. Phan, Sandpiles and order structure of integer partitions.
Discrete Appl. Math. 117 (2002) 51–64.

[7] M. Latapy, R. Mantaci, M. Morvan and H.D. Phan, Structure of same sand piles model.
Theoret. Comput. Sci. 262 (2001) 525–556.

[8] P. Massazza, A CAT algorithm for sand piles. PU.M.A. 19 (2008) 147–158.

Communicated by Ch. Choffrut.
Received February 7, 2009. Accepted January 13, 2011.

	Introduction
	Preliminaries
	A spanning tree for IPMk(n)
	Properties of grand ancestors

	Exhaustive generation
	The algorithm
	Complexity

	Conclusions
	References

