
RAIRO-Theor. Inf. Appl. 45 (2011) 181–196 Available online at:

DOI: 10.1051/ita/2011006 www.rairo-ita.org

AN IMPROVED DERANDOMIZED APPROXIMATION
ALGORITHM FOR THE MAX-CONTROLLED

SET PROBLEM ∗, ∗∗

Carlos Martinhon
1

and Fábio Protti
1

Abstract. A vertex i of a graph G = (V, E) is said to be controlled
by M ⊆ V if the majority of the elements of the neighborhood of i
(including itself) belong to M . The set M is a monopoly in G if every
vertex i ∈ V is controlled by M . Given a set M ⊆ V and two graphs
G1 = (V, E1) and G2 = (V, E2) where E1 ⊆ E2, the monopoly ver-

ification problem (mvp) consists of deciding whether there exists a
sandwich graph G = (V, E) (i.e., a graph where E1 ⊆ E ⊆ E2) such
that M is a monopoly in G = (V, E). If the answer to the mvp is No,
we then consider the max-controlled set problem (mcsp), whose
objective is to find a sandwich graph G = (V, E) such that the number
of vertices of G controlled by M is maximized. The mvp can be solved
in polynomial time; the mcsp, however, is NP-hard. In this work, we
present a deterministic polynomial time approximation algorithm for

the mcsp with ratio 1
2

+ 1+
√

n
2n−2

, where n = |V | > 4. (The case n ≤ 4 is

solved exactly by considering the parameterized version of the mcsp.)
The algorithm is obtained through the use of randomized rounding
and derandomization techniques based on the method of conditional
expectations. Additionally, we show how to improve this ratio if good
estimates of expectation are obtained in advance.

Mathematics Subject Classification. 68W20, 68W25.

Keywords and phrases. Derandomization, Monte Carlo method, Randomized rounding,
sandwich problems.

∗ A preliminary version of this paper appeared in the Proc. of the Third International
Workshop on Experimental and Efficient Algorithms, WEA2004, Angra dos Reis-RJ, Brazil;
Lect. Notes Comput Sci. 3059 (2004) 341–355.
∗∗ This work was partially supported by CNPq and FAPERJ (E-26/110.552/2010), Brazilian
Research Agencies.
1 Fluminense Federal University, Institute of Computing, Rua Passo da Pátria 156, Bloco E,
24210-230, Niterói, RJ, Brazil; mart@dcc.ic.uff.br; fabio@ic.uff.br

Article published by EDP Sciences c© EDP Sciences 2011

http://dx.doi.org/10.1051/ita/2011006
http://www.rairo-ita.org
http://www.edpsciences.org

182 C. MARTINHON AND F. PROTTI

1. Preliminaries

Given two graphs G1 = (V, E1) and G2 = (V, E2) such that E1 ⊆ E2, we say
that G = (V, E),where E1 ⊆ E ⊆ E2, is a sandwich graph for some property
Π if G = (V, E) satisfies Π. A sandwich problem consists of deciding whether
there exists some sandwich graph satisfying Π. Many different properties may
be considered in this context. In general, the property Π is non-hereditary by
(not induced) subgraphs (otherwise G1 would trivially be a solution, if any) and
non-ancestral by supergraphs (otherwise G2 would trivially be a solution, if any.)
As discussed by Golumbic et al. [9], sandwich problems generalize recognition
problems arising in various situations (when G1 = G2, the sandwich problem
becomes simply a recognition problem).

One of the most known sandwich problems is the chordal sandwich prob-

lem, where we require G to be a chordal graph (a graph where every cycle of
length at least four possesses a chord – an edge linking two non-consecutive ver-
tices in the cycle). The chordal sandwich problem is closely related to the
minimum fill-in problem [22]: given a graph G, find the minimum number of
edges to be added to G so that the resulting graph is chordal. The minimum fill-

in problem has applications to areas such as solution of sparse systems of linear
equations [18]. Another important sandwich problem is the interval sandwich

problem, where we require the sandwich graph G to be an interval graph (a graph
whose vertices are in a one-to-one correspondence with intervals on the real line
in such a way that there exists an edge between two vertices if and only if the
corresponding intervals intersect). Kaplan and Shamir [10] describe applications
to DNA physical mapping via the interval sandwich problem. In this work we
consider a special kind of sandwich problem, the max-controlled set problem

(mcsp) [14], which is described in the sequel.
Given an undirected graph G = (V, E) and a set of vertices M ⊆ V , a vertex

i ∈ V is said to be controlled by M if |NG[i] ∩M | ≥ |NG[i]|/2, where NG[i] =
{i} ∪ {j ∈ V |(i, j) ∈ E}. The set M defines a monopoly in G if every vertex
i ∈ V is controlled by M . Following the notation of [14], if cont(G, M) denotes
the set of vertices controlled by M in G, M will be a monopoly in G if and only
if cont(G, M) = V .

In order to defined formally the mcsp, we first define the monopoly verifi-

cation problem (mvp): given a set M ⊆ V and two graphs G1 = (V, E1) and
G2 = (V, E2), where E1 ⊆ E2, the question is to decide whether there exists a set
E such that E1 ⊆ E ⊆ E2 and M is a monopoly in G = (V, E). If the answer of
the mvp applied to M , G1, and G2 is No, we then consider the mcsp, whose goal
is to find a set E such that E1 ⊆ E ⊆ E2 and the number of vertices controlled
by M in G = (V, E) is maximized.

The mvp can be solved in polynomial time by formulating it as a network flow
problem [14]. If the answer to the mvp is No, then a natural alternative is to solve
the mcsp. Unfortunately, the mcsp is NP-hard, even for those instances where
G1 is an empty graph; and also for those instances where G2 is a complete graph.

IMPROVED DERANDOMIZED ALGORITHM FOR THE MCSP 183

In [14] a reduction from independent set to the mcsp is given. In the same
work, an approximation algorithm for the mcsp with ratio 1

2 is presented.
The notion of monopoly has applications to local majority voting in distributed

environments and agreement in agent systems [2,7,13,16,19,20]. For instance, sup-
pose that the agents must agree on one industrial standard between two proposed
candidate standards. Suppose also that the candidate standard supported by the
majority of the agents is to be selected. When every agent knows the opinion of
his neighbors, a natural heuristic to obtain a reasonable agreement is: every agent
i takes the majority opinions in N [i]. This is known as the deterministic local
majority polling system. In such a system, securing the support by the members
of a monopoly M implies securing unanimous agreement. In this context, the
motivation for the mcsp is to find an efficient way of controlling the maximum
number of objects by modifying the system’s topology.

In this work, we present a linear integer programming formulation and a ran-
domized rounding procedure for the mcsp. As far as we know, our procedure
achieves the best polynomial time approximation ratio for the mcsp. If y∗ de-
notes the optimum value of the linear relaxation and y∗ > A(k) (for some fixed
k ∈ (1, 2] and some function A(k) > 4), the approximation ratio 1

k + 1+
√

y∗
k(y∗−1) im-

proves the 1
2 -approximation algorithm presented in [14]. As described later, the

case y∗ ≤ A(k) may be solved exactly by considering a polynomial time algorithm
for the parameterized version of the mcsp. This procedure is based on the ideas
presented in [14] for the mvp.

This paper is organized as follows. In Section 2 some basic notation and re-
sults from [14] are presented. These are fundamental for the development of our
algorithm. In Section 3, we introduce the parameterized mcsp. For a given
parameter A ≥ 0, we solve exactly the parameterized mcsp in time O(nA).
Section 4 gives a detailed description of our mcsp formulation and outlines our
randomized rounding procedure. In randomized rounding techniques, we first solve
the linear relaxation and “round” the resulting solution to produce feasible solu-
tions. In Section 5 we present an approximation analysis via the probabilistic
method (introduced by Erdös and Spencer [6]). In this case, the main objective is
to construct probabilistic existence proofs of some particular combinatorial struc-
ture for actually exhibiting this structure. This is performed through the use of
derandomization techniques. In Section 6 we describe a derandomized procedure
via the method of conditional expectations, achieving an improved deterministic
approximation algorithm for the mcsp with performance ratio 1

2 + 1+
√

n
2n−2 . Finally,

in Section 7, we present some conclusions and suggestions for future work.

2. The
1
2
-approximation algorithm for the mcsp

Consider a maximization optimization problem P and an arbitrary input in-
stance I of P . Denote by ẑ(I) the optimal objective function value for I, and by
zH(I) the value of the objective function delivered by an algorithm H . Without
loss of generality, it is assumed that each feasible solution for I has a non-negative

184 C. MARTINHON AND F. PROTTI

objective function value. Recall that H is a ϕ-approximation algorithm for some
ϕ ∈ (0, 1], if and only if, a feasible solution with value zH(I) ≥ ϕẑ(I) is delivered
for all instances I of P .

From now on, we suppose that the answer for the mvp when applied to M , G1

and G2 is No. Let us briefly describe the deterministic 1
2 -approximation algorithm

for the mcsp presented in [14]. For A, B ⊆ V , define the edge set D(A, B) =
{(i, j) ∈ E2\E1 | i ∈ A, j ∈ B}. Let U = V \M . Two reduction rules are used: a
new edge set E∗

1 is obtained by the union of E1 and D(M, M), and a new edge
set E∗

2 is obtained by removing D(U, U) from E2. Since we are maximizing the
total number of vertices controlled by M , these reduction rules do not modify the
optimal solution. In other words, the edge set E in the sandwich graph G satisfies
E1 ∪D(M, M) ⊆ E ⊆ E1 ∪D(M, M) ∪D(U, M).

For simplicity, assume from now on that E1 = E∗
1 (Reduction Rule 1) and

E2 = E∗
2 (Reduction Rule 2). In the MYK algorithm, W1, W2 ⊆ V denote the

sets of vertices controlled by M in G = (V, E) for E = E1 and E = E2, respectively.

Algorithm 1: MYK algorithm [14]
1. compute |W1| by removing from G2 the edge set D(U, M);
2. compute |W2| by adding to G1 the edge set D(U, M);
3. zH ← max{|W1|, |W2|}.

Formally, they proved the following result:

Theorem 2.1. The value zH returned by Algorithm 1 satisfies zH(I) ≥ 1
2 ẑ(I),

for all instances I of the mcsp.

3. Parameterizing the mcsp

In this section we introduce the parameterized mcsp. Let A be a fixed
nonnegative integer. The objective is to find, in polynomial time, a solution for
the mcsp with value at least A. In other words, we require the parameter A to be
a lower bound for the maximum number of vertices that can be controlled by M
in a sandwich graph G = (V, E) with E1 ⊆ E ⊆ E2.

Let us describe an O(nA) algorithm for the parameterized mcsp. We first
consider a partition of V into six special subsets (some of them are implicitly
described in [14]):

– MC and UC , consisting of the vertices in M and U , respectively, which
are controlled by M in any sandwich graph (vertices which are “always
controlled”);

– MN and UN , consisting of the vertices in M and U , respectively, which
are not controlled by M in any sandwich graph (vertices which are “never
controlled”);

– MR and UR, defined as MR = M\(MC ∪MN) and UR = U\(UC ∪ UN).

IMPROVED DERANDOMIZED ALGORITHM FOR THE MCSP 185

Define the binary variables xij ∈ {0, 1} for i, j ∈ V and assume that xij = xji,
∀i, j ∈ V . Define binary constants aij ∈ {0, 1} such that aij = 1 if and only if
i = j or (i, j) ∈ E2. Consider now the following auxiliary equations:

Bi =
∑
j∈M

aijxij −
∑
j∈U

aijxij , for i = 1, . . . , |V |. (1)

In these equations, assume that: xii = 1 for every i ∈ V , xij = 1 for every
(i, j) ∈ E1, and xij = 0 for every (i, j) /∈ E2. This means that the remaining binary
variables are associated to edges in E2\E1 (set of optional edges). It is clear that
Bi ≥ 0 for some 0-1 assignment (to variables associated to optional edges) if and
only if vertex i can be controlled by M in some sandwich graph. Observe that the
subsets MC , UC , MN , UN can be thus characterized by the following properties:

– i ∈MC ∪ UC if and only if Bi ≥ 0 for every 0-1 assignment;
– i ∈MN ∪ UN if and only if Bi < 0 for every 0-1 assignment.

In fact, it is easy to construct these four sets, since it is sufficient to look at
“worst-case” assignments. For instance, if i ∈M then i ∈MC if and only if Bi ≥ 0
for a 0-1 assignment which sets xij = 1 for every (i, j) ∈ D({i}, U).

Use now the following new reduction rules:

– set xij = 1 for every (i, j) ∈ D(MC ∪MN , UR) (Reduction Rule 3);
– set xij = 0 for every (i, j) ∈ D(MR, UC ∪ UN) (Reduction Rule 4);
– set arbitrary values to variables xij for (i, j) ∈ D(MC ∪MN , UC ∪ UN)

(Reduction Rule 5).

It is clear that if A ≤ |MC |+ |UC | then the algorithm for the parameterized

mcsp answers Yes. Hence, from now on, assume that A > |MC |+ |UC |.
Clearly, MR = Ø if and only if UR = Ø. Thus, if MR = Ø or UR = Ø, the

algorithm must answer No. Add then the assumption MR, UR
= Ø.
We fix an arbitrary subset S ⊆MR ∪ UR of cardinality |S| = A− |MC | − |UC |,

and check whether it is possible to control S. Similarly to the reduction rules
described above, set xij = 1 for every edge (i, j) ∈ D(MR\S, UR ∩S), and xij = 0
for every edge (i, j) ∈ D(MR ∩ S, UR\S). Finally, set xij = 0 for every edge
(i, j) ∈ D(MR ∩ S, UR ∩ S), and calculate the corresponding Bi’s according to
equations (1).

Following the ideas in [14], we construct a network N whose vertex set consists
of S together with two additional vertices s, t. Create an edge (s, i) with capacity
Bi for every i ∈ S ∩MR, an edge (j, t) with capacity B′

j = max{−Bj, 0} for every
j ∈ S∩UR, and an edge (i, j) with capacity 1 for every (i, j) ∈ D(S∩MR, S∩UR).
Notice that N can be constructed in constant time, since its edge set contains at
most O(A2) elements. Now, if the maximum flow in N is equal to

∑
j∈S∩UR

B′
j

then S can be controlled by selecting the edges of the form (i, j) ∈ D(S ∩MR, S ∩
UR) with unitary flow value. This maximum flow problem can be solved in constant
time, depending on A.

By repeating this procedure for every S ⊆MR∪UR such that |S| = A−|MC |−
|UC |, we obtain an algorithm with complexity O(nA).

186 C. MARTINHON AND F. PROTTI

4. An improved randomized rounding procedure

for the mcsp

The definition of performance ratio in randomized approximation algorithms is
the same as in the deterministic ones. In this case, however, zH(I) is replaced by
E(zH(I)), where the expectation is taken over the random choices made by the
algorithm. Then, an algorithm H for a maximization problem P is a randomized
ϕ-approximation algorithm for some ϕ ∈ (0, 1] if and only if E(zH(I)) ≥ ϕẑ(I) is
delivered for all instances I of P .

In randomized rounding techniques (introduced by Raghavan and Thompson
[17]), one usually solves a relaxation of a combinatorial optimization problem
(by using linear or semidefinite programming), and uses randomization to return
from the relaxation to the original optimization problem. The main idea is to
use fractional solutions to define tuned probabilities in the randomized rounding
procedure.

In order to introduce a new integer programming formulation for the mcsp,
we define the binary variables zi for i ∈ V , which determine whether vertex i is
controlled or not by M . Binary variables xij are used to decide whether optional
edges belonging to E2\E1 will be included or not in the sandwich graph. The
objective function (2) computes the maximum number of controlled vertices. As
defined before, binary constants aij ∈ {0, 1} are associated to edges (i, j) ∈ E2

with aij = 1 if and only if i = j or (i, j) ∈ E2. (Assume that aij = aji, ∀i, j ∈ V .)
Inequalities (3) guarantee that every time a vertex i is controlled by M , the left
hand side will be greater than or equal to 1. On the other hand, if the left hand
side is less than 1, vertex i will not be controlled by M and zi will be set to 0. The
divisions by n are used to maintain the difference between the two summations
always greater than −1. Equalities (4) define the set of fixed edges. The linear
programming relaxation is obtained by replacing integrality constraints (5) and (6)
by xij ∈ [0, 1] and zi ∈ [0, 1], respectively:

ẑ = max
∑
i∈V

zi (2)

subject to :∑
j∈M

(aij/n)xij −
∑
j∈V

(aij/2n)xij + 1 ≥ zi, ∀i ∈ V (3)

xij = 1, ∀(i, j) ∈ E1 (4)

xij ∈ {0, 1}, ∀(i, j) ∈ E2\E1 (5)

zi ∈ {0, 1}, ∀i ∈ V. (6)

It is assumed from now on that (x∗, z∗) and y∗ will denote, respectively, an
optimal solution of the relaxed integer programming formulation and its associated
objective function value. The value of the original integer problem will be denoted
by ẑ.

IMPROVED DERANDOMIZED ALGORITHM FOR THE MCSP 187

The value of linear programming relaxation may be reduced if the reduction
rules for the mcsp are used. As will be observed in Section 5, the performance
ratio of our randomized algorithm is based on the value of the linear relaxation
and an improvement of this ratio is attained if good upper bounds are obtained.
Thus, assume without loss of generality that mcsp instances satisfy Reduction
Rules 1 to 5.

Algorithm 2, based on randomized rounding techniques, is a Monte Carlo pro-
cedure and delivers, in polynomial time and with high probability, a value within
a prescribed approximation ratio. In Step 3 of the algorithm we define a function
A(k) for a given parameter k ∈ (1, 2] conveniently chosen. The construction of
A(k) will be detailed in the next section. For the time being, an “oracle” is used.

Algorithm 2: randomized algorithm for the mcsp

1. compute z1 using Algorithm 1;
2. solve the linear programming relaxation and return x∗ and y∗;
3. compute A(k) for some k ∈ (1, 2] (conveniently chosen);
4. if y∗ ≤ A(k)

then compute zH by executing the algorithm for the parameterized

mcsp in Section 3 for parameters A = �y∗�, �y∗� − 1, . . . , 1, 0, until
obtaining a Yes answer

else for each (i, j) ∈ E2\E1 do
Pr(x̄ij = 1) = x∗

ij (constructing the integer feasible solution)
Pr(x̄ij = 0) = 1− x∗

ij ;
compute z2 by using the integer feasible function x̄;
zH ← max{z1, z2};

5. return zH .

We can use, for example, an interior point method in Step 2 (introduced by
Karmarkar [11]) to compute the fractional solution x∗, yielding in this way a poly-
nomial time execution for Algorithm 2. Observe that Algorithm 2 always produce
a feasible solution, and additional executions of Step 4 (for y∗ > A(k)) arbitrarily
reduce the failure probability, provided that a prescribed approximation ratio is
given. Moreover, it is obviously a 1

2 -approximation algorithm since Algorithm 1
was used in Step 1. As will be pointed out in the next section, this will directly
help us to build an improved approximation algorithm with ratio 1

k + 1+
√

y∗
k(y∗−1) for

some k ∈ (1, 2], conveniently chosen. It is straightforward to observe that, even
for k = 2, this ratio is strictly greater than 1

2 , thus improving the previous result
of [14]. In addition, recall that all those instances with y∗ ≤ A(k) (for some param-
eter A = �y∗�) are polynomially solved by the algorithm for the parameterized

mcsp given in Section 3.

188 C. MARTINHON AND F. PROTTI

5. Approximation analysis

Before to proceed to the approximation analysis, consider the following auxiliary
definitions and lemmas. We first present the notion of negative association.

Definition 5.1 (negative association). Let X = (X1, X2, . . . , Xn) be a vector
of random variables. The random variables X are negatively associated if for
every two disjoint index sets I, J ⊆ {1, 2, . . . , n}, E(f(Xi, i ∈ I)g(Xj , j ∈ J)) ≤
E(f(Xi, i ∈ I))E(g(Xj , j ∈ J)) for all functions f :
|I| →
 and g :
|J| →

that are either both non-decreasing or both non-increasing.

For a more detailed study concerning negative dependence see Dubhashi and
Ranjan [5].

The next lemma ensures that the lower Chernoff-Hoeffding bound (lower CH
bound) may be applied to not necessarily independent random variables. See
Motwani and Raghavan [15] and Dubhashi and Ranjan [5] for the proof. An
analogous result may be established for the upper CH bound.

Lemma 5.1 (lower Chernoff-Hoeffding bound and negative association). Let
X1, X2, . . . , Xn be negatively associated Poisson trials such that, for 1 ≤ i ≤ n,
Pr(Xi = 1) = pi, where 0 < pi < 1. Then, for X =

∑n
i=1 Xi, μ = E(X) =∑n

i=1 pi, and any 0 < δ ≤ 1, we have that Pr(X < (1 − δ)μ) < exp(−μδ2/2).

Finally, consider the following auxiliary lemma:

Lemma 5.2. Let X, Y be arbitrary random variables. Then E(min(X, Y)) ≤
min(E(X), E(Y)).

Now, in order to describe the approximation analysis of Algorithm 2, we define
random variables Zi ∈ {0, 1} for every i ∈ V . These variables denote the set of
vertices controlled by M . We also define random variables Xij ∈ {0, 1} for every
i, j ∈ V . Assume Xii = 1 for every i ∈ V , and Xij = 1 for every (i, j) ∈ E1.
Observe that variables Xij for (i, j) ∈ E2\E1 are associated to the set of optional
edges. Additionally, let ZH be the sum of not necessarily independent random
variables Zi ∈ {0, 1} for i ∈ V . Thus, we have the following preliminary result:

Lemma 5.3. The random variables Zi for all i ∈ V are negatively associated.

Proof. Consider two arbitrary disjoint index sets I, J ⊆ {1, 2, . . . , n}. Then we
want to show that:

E

(∑
i∈I

Zi

∑
j∈J

Zj

)
−E

(∑
i∈I

Zi

)
E

(∑
j∈J

Zj

)
=

∑
i∈I,j∈J

(E(ZiZj)−E(Zi)E(Zj)) ≤ 0.

IMPROVED DERANDOMIZED ALGORITHM FOR THE MCSP 189

In particular, it is easy to observe (from the definition of the mcsp) that Zi and Zj

(for i
= j) are independent random variables if they simultaneously belong to M
(or U). However, Zi and Zj are negatively associated if they are not in the same
set. Generally, for arbitrary index sets I and J , we can establish that Pr(Zj = 1 |
Zi = 1) ≤ Pr(Zj = 1) or, equivalently, Pr(Zi = 1 | Zj = 1) ≤ Pr(Zi = 1). Thus,
for every pair i ∈ I and j ∈ J , we have that E(ZiZj) = Pr(ZiZj = 1) = Pr(Zi =
1)Pr(Zj = 1 | Zi = 1) ≤ Pr(Zi = 1)Pr(Zj = 1) = E(Zi)E(Zj), which proves the
lemma. �

Now, consider our relaxed integer programming formulation. For i, j ∈ V ,
assume Xij = 1 if i = j or (i, j) ∈ E1. Assume also we assign, as described in
Algorithm 2, arbitrarily values Xij for every (i, j) ∈ E2\E1. If ZH is the sum of
random variables denoting the value of the randomized solution, it follows from
constraints (3)–(6) that:

ZH =
∑
i∈V

Zi ≤
∑
i∈V

min

{
1;
∑
j∈M

(aij/n)Xij −
∑
j∈V

(aij/2n)Xij + 1

}
. (7)

From Lemma 5.2 and the linearity of expectation one obtains:

E(ZH) =
∑
i∈V

E(Zi) ≤ min

{
1;
∑
j∈M

(aij/n)x∗
ij −

∑
j∈V

(aij/2n)x∗
ij + 1

}
,

where E(Xij) = x∗
ij . Therefore:

E(ZH) ≤
∑
i∈V

min{1; z∗i } ⇒ E(ZH) ≤
∑
i∈V

z∗i = y∗ for z∗i ∈ [0, 1]. (8)

Recall that Step 1 Algorithm 2 guarantees a performance ratio equal to 1
2 .

Therefore, each iteration of Algorithm 2 returns a solution with ZH ≥ ẑ/2 (where
ẑ denotes the value of the optimal integer solution). Now, as the optimal solution
itself may be generated at random, one may concludes, without loss of generality,
that E(ZH) is strictly greater than ẑ/2 (otherwise, the solution generated by
Algorithm 1 would be optimal). Thus, we assume from (8) that ẑ/2 < E(ZH) ≤
y∗, where E(ZH) = μ = y∗/β for some β ∈ [1, 2).

Now, for some α > 1, to be considered later, define a bad event B ≡ (ZH <
y∗/α). Equivalently to the definition of a randomized approximation algorithm
(described in the preceding section), ZH defines an 1

α -approximation solution for
the mcsp if Bc
= Ø holds (complementary event).

How small a value for α can we achieve while guaranteeing good events Bc
= Ø?
Since we expect to obtain an approximation algorithm with a superior performance
ratio (greater than 1

2), it suffices to consider α ∈ (β, k) for some k ∈ (β, 2]. The
parameter k will be fixed later. This give us an improved 1

α -approximation ZH

with nonzero probability. As discussed later, this solution will be made deter-
ministic through derandomization techniques, namely, the method of conditional
expectations.

190 C. MARTINHON AND F. PROTTI

Therefore, a bad event B occurs if ZH < y∗/α. Then:

Pr(B) = Pr

(
ZH <

y∗

α

)
= Pr

(
ZH <

βμ

α

)
= Pr

(
ZH < (1− δ)μ

)
,

where δ = 1− β
α > 0.

In order to apply the lower CH bound, in addition to the negative association
(Lem. 5.3), all random variables must assume values in the interval (0,1). In our
case, however, as observed in Section 3, Pr(Zi = 1) = 1 for every i ∈ MC ∪ UC

(set of vertices which are always controlled by M) and Pr(Zi = 1) = 0 for every
i ∈MN∪UN (set of vertices which are never controlled by M). Despite of that, CH
bounds may be applied, since the linear programming relaxation is being solved
by some interior point method (see Wright [21]).

Therefore, from the lower CH bound and assuming μ > ẑ/2, it follows that:

Pr(B) <
1

exp
(
(1− β/α)2 μ

2

) <
1

exp
(
(1− β/α)2 ẑ

4

) · (9)

This implies:

Pr(B) <
1

exp((1− β/α)2 ẑ
4 − 1

4)
· (10)

We expect that Pr(B) < 1 (probability of bad event). Thus, if we impose this
last condition, it follows from (10) that:

Pr(B) =
1

exp((1− β/α)2 ẑ
4 − 1

4)
< 1 for some α ∈ (β, k). (11)

Additional executions of Step 4 in Algorithm 2 for y > A(k) arbitrarily reduce
the failure probability (Monte Carlo method). Therefore, without loss of general-
ity, if Pr(B) = C < 1 is the probability of a bad event, and ξ > 0 is a given error,
� | log ξ/ logC | � iterations are sufficient to ensure a 1

α -approximation algorithm
with probability 1− ξ > 0.

Then, we need to determine if there is some value α ∈ (β, k) (where β ≥ 1 and
k ≤ 2) for which inequality (11) makes sense. Equivalently, we expect to obtain
(ẑ − 1)α2 − (2ẑβ)α + β2ẑ > 0 for some α ∈ (β, k). By solving the quadratic
equation, we obtain the roots:

α′ =
β(ẑ −√ẑ)

ẑ − 1
and α′′ =

β(ẑ +
√

ẑ)
ẑ − 1

·
Since α > β, it is easy to observe that inequality (ẑ ± √ẑ)/(ẑ − 1) > 1 holds

only for α′′ with ẑ > 1. In addition, we expect that α′′ < k for some k ∈ (β, 2].
Thus, since β = y∗/μ ≥ 1, it follows that:

α′′ =
y∗(ẑ +

√
ẑ)

μ(ẑ − 1)
< k ⇒ y∗(ẑ +

√
ẑ)

k(ẑ − 1)
< μ ≤ y∗. (12)

IMPROVED DERANDOMIZED ALGORITHM FOR THE MCSP 191

Therefore:

y∗(ẑ +
√

ẑ)
k(ẑ − 1)

< y∗ ⇒ ẑ +
√

ẑ < k(ẑ − 1). (13)

Now, inequality (13) holds only for ẑ > A(k) with:

A(k) =
2k(k − 1) + 1 +

√
4k(k − 1) + 1

2(k − 1)2
·

Notice that constraint ẑ > 1 above is immediately verified since we have A(k) ≥
4 for every k ∈ (1, 2]. Finally, from expression (12), since E(ZH) = μ, ẑ ≤ y∗ and
y∗ > A(k), it follows that:

E(ZH) >

(
ẑ +
√

ẑ

ẑ − 1

)(
y∗

k

)
>

(
y∗ +

√
y∗

k(y∗ − 1)

)
ẑ =

(
1
k

+
1 +
√

y∗

k(y∗ − 1)

)
ẑ. (14)

Moreover, observe from the above expression that:

1 +
√

y∗

k(y∗ − 1)
> 0 and lim

y∗→∞
1 +
√

y∗

k(y∗ − 1)
= 0 for every y∗ > A(k).

Thus, inequality (14) gives us a randomized 1
k + 1+

√
y∗

k(y∗−1) -approximation algo-
rithm for every y∗ > A(k) and k ∈ (β, 2]. Therefore, with high probability and
for a large class of instances, this ratio improves the 1

2 -approximation algorithm
in [14]. The case y∗ ≤ A(k) may be solved exactly in time O(nA(k)) through the
algorithm for the parameterized mcsp in Section 3. Observe for instance that
A(k1) > A(k2) for every k1, k2 ∈ (β, 2] with k1 < k2. In other words, despite
the increase in the computational time of the algorithm for the parameterized

mcsp, small values of k (for k > β) guarantee improved approximation ratios for
every y∗ > A(k). Formally, we proved the following result:

Theorem 5.1. Consider y∗ and μ as above. Then, for a given parameter k ∈
(β, 2] with β = y∗/μ, Algorithm 2 defines a randomized 1

k + 1+
√

y∗
k(y∗−1) -approximation

algorithm for the mcsp.

Unfortunately, we do not know explicitly the value of β = y∗/μ since the ex-
pectation μ is unknown and hard to compute. Moreover, we cannot guarantee
a parameter k strictly less than 2. This problem is minimized if some good es-
timations of E(ZH) = μ, and thus of β, are obtained. By running independent
experiments with respect to ZH , the recent work of Dagum et al. [3] ensures, for
a given ξ and ε, an estimator μ′ of μ within a factor 1 + ε and probability at least
1− ξ. Therefore, if this approximation is performed in advance, and if we assume
k = min{2, y∗

μ′(1−ε)}, an improved randomized approximation algorithm (for every
instance of the mcsp) may be achieved if k < 2. Notice for instance that, given
an interval (β, k), the proof of Theorem 5.1 guarantees the existence of α ∈ (β, k),
thus improving the performance ratio.

192 C. MARTINHON AND F. PROTTI

6. A derandomized algorithm

Derandomization techniques convert a randomized algorithm into a determin-
istic one. Here, this is performed through the probabilistic method (introduced
by Erdös and Spencer [6]). The main idea is to use the existence proof of some
combinatorial structure for actually exhibiting this structure.

The purpose of this section is to derandomize Algorithm 2 by using the method
of conditional expectations. In this case, the goal is to convert the expected
approximation ratio into a guaranteed approximation ratio while increasing the
running time by a factor that is polynomial on the input size. Basically, the method
of conditional expectations analyzes the behavior of a randomized approximation
algorithm as a computation tree, in a such way that each path from the root to a
leaf of this tree corresponds to a possible computation generated by the algorithm.

In order to describe our derandomized procedure for the MCSP, consider in-
equality (7). Then, it follows that:

ZH =
∑
i∈V

Zi ≤
∑
i∈V

Yi, where Yi =min

{
1,
∑
j∈M

(aij/n)Xij−
∑
j∈V

(aij/2n)Xij +1

}
.

Recall that Xii = 1 for every i ∈ V , and Xij = 1, ∀(i, j) ∈ E1. In addition,
suppose that all optional edges in E2\E1 are arbitrarily ordered and indexed by
k = 1, . . . , |E2\E1|. In this section, the notation x

(k)
ij = 1 has the following

meaning: the k-th edge of E2\E1, with endpoints i and j, belongs to the sandwich
graph G = (V, E). Otherwise, x

(k)
ij = 0 means that (i, j) /∈ E. For simplicity, we

will suppress indexes i and j and simply write x(k). Capital letters X(k) mean
that a value 0 or 1 was assigned to variable x(k), for some k ∈ {1, . . . , |E2\E1|}.
Furthermore, the notation E(ZH | x(k) = 0 or 1) denotes the average value
produced by the randomized algorithm by computations that set x(k) = 0 or 1.

Thus, from de definition of conditional expectation and from its linearity prop-
erty one concludes that:

E(ZH) = E(ZH | x(1) = 1)Pr(x(1) = 1) + E(ZH | x(1) = 0)Pr(x(1) = 0)

≤ max

{ ∑
i∈V

E(Zi | x(1) = 1) ;
∑
i∈V

E(Zi | x(1) = 0)

}
=
∑
i∈V

E(Zi | X(1))

≤ max

{∑
i∈V

E(Zi | X(1), x(2) = 1) ;
∑
i∈V

E(Zi | X(1), x(2) = 0)

}

=
∑
i∈V

E(Zi | X(1), X(2)).

IMPROVED DERANDOMIZED ALGORITHM FOR THE MCSP 193

By repeating this process for every edge in E2\E1, one obtains:

E(ZH) ≤ max

{∑
i∈V

E(Zi | X(1), . . . , X(|E2\E1|));
∑
i∈V

E(Zi | X(1), . . . , X(|E2\E1|))

}
.

Therefore, within this framework, a guaranteed performance ratio is polynomi-
ally attained through an expected approximation ratio, gathering, in this way, an
improved deterministic approximation solution.

Now, from the definition of conditional expectation,

E(Zi | X(1), . . . , X(k−1), x(k) = 0 or 1) = Pr(Zi = 1 | X(1), . . . , X(k−1), x(k) = 0 or 1),

for every i ∈ V and k = 1, . . . , |E2\E1|. Unfortunately, for the mcsp, these
probabilities are hard to compute. Lemma 6.1 will give us an alternate way to
deal with these expectations without explicitly consider conditional probabilities.

Lemma 6.1. Suppose that Zi and Yi, for some i ∈ V , are random variables as
described above. Then:

(a) E(Zi | X(1), . . . , X(k−1), x(k) = 1) ≥ E(Zi | X(1), . . . , X(k−1), x(k) = 0)⇔
E(Yi | X(1), . . . , X(k−1), x(k) = 1) ≥ E(Yi | X(1), . . . , X(k−1), x(k) = 0)

(b) E(Zi | X(1), . . . , X(k−1), x(k) = 0) ≥ E(Zi | X(1), . . . , X(k−1), x(k) = 1)⇔
E(Yi | X(1), . . . , X(k−1), x(k) = 0) ≥ E(Yi | X(1), . . . , X(k−1), x(k) = 1).

Proof. We will prove item (a), the proof of (b) follows analogously. Consider
without loss of generality that E(Zi | X(1), . . . , X(k−1), x(k) = 1) ≥ E(Zi |
X(1), . . . , X(k−1), x(k) = 0). Thus, since E(ZH) = y∗/β for some β ∈ [1, 2), it
follows from inequalities (7)–(8) and from the definition of conditional expecta-
tions that:

E(Zi | X(1), . . . , X(k−1), x(k) = 0 or 1)=(1/β) E(Yi | X(1), . . . , X(k−1), x(k) =0 or 1).

Thus:

(1/β)E(Yi | X(1), . . . , X(k−1), x(k) = 1) ≥ (1/β)E(Yi | X(1), . . . , X(k−1), x(k) = 0).

By multiplying both sides by β, we get the desired inequality

E(Yi | X(1), . . . , X(k−1), x(k) = 1) ≥ E(Yi | X(1), . . . , X(k−1), x(k) = 0).

The converse is obtained in the same way by first multiplying this last inequality
by 1

β . �

194 C. MARTINHON AND F. PROTTI

Now, from Lemma 6.1, it follows that E(ZH) is less than or equal to

max

{∑
i∈V

E(Yi | X(1), . . . , X(k−1), x(k) = 1);
∑
i∈V

E(Yi | X(1), . . . , X(k−1), x(k) = 0)

}
,

for k = 1, . . . , |E2\E1|.
We repeat the process above for every optional edge in E2\E1. Therefore,

the sequence X(1), . . . , X(|E2\E1|) is obtained deterministically in polynomial time
while improving the approximation ratio.

From the preceding section, we have described a randomized algorithm whose
expectation E(ZH) is greater than or equal to 1

k + 1+
√

y∗
k(y∗−1) for some k ∈ (β, 2] con-

veniently chosen. Since we expect to obtain a deterministic procedure, it suffices
to consider (in the worst case) k = 2 and y∗ = θ(n). Observe, from the preced-
ing section, that by setting k = 2 one obtains A(2) = 4. This will give us (for
an arbitrary instance) an improved deterministic polynomial time approximation
algorithm with performance ratio equal to 1

2 + 1+
√

n
2n−2 .

Algorithm 3: derandomized algorithm for the mcsp

1. compute z1 using Algorithm 1;
2. solve the linear programming relaxation and return y∗;
3. if y∗ ≤ 4

then compute zH by executing the algorithm for the parameterized

mcsp in Section 3 for parameters A = �y∗�, �y∗� − 1, . . . , 1, 0, until
obtaining a Yes answer

else for k = 1, . . . , |E2\E1| do
if E(Yk | X(1), . . . , X(k−1), x(k) = 1) ≥ E(Yk | X(1), . . . , X(k−1), x(k) = 0)

then X(k) ← 1
else X(k) ← 0;

compute z2 by using the integer feasible function X ;
zH ← max{z1, z2};

5. return zH .
Observe above that expectations E(Yk | X(1), . . . , X(k−1), x(k) = 0 or 1) are

easily obtained. This may be accomplished in polynomial time by solving a linear
programming problem for every optional edge (settled 0 or 1). If L denotes the
length of the input, the linear relaxation has complexity O(n3L) [21], and thus
the total complexity of Algorithm 3 will be equal to O(max{n4, |E2\E1|n3L}).
Moreover, from Theorem 5.1, it is straightforward to observe that an improvement
of the approximation ratio may be attained if good upper bounds are obtained via
the linear relaxation. This may be accomplished, for example, through the use of
new reduction rules and/or through the use of additional cutting planes. Notice
for instance that, even in the worst case, when y∗ = θ(n), one obtains an improved
approximation ratio. Formally, we can establish the following result:

Theorem 6.1. Algorithm 3 guarantees in polynomial time an approximation ratio
equal to 1

2 + 1+
√

n
2n−2 for n > 4.

IMPROVED DERANDOMIZED ALGORITHM FOR THE MCSP 195

7. Conclusions

We presented an improved deterministic polynomial time approximation algo-
rithm for the max-controlled set problem through the use of randomized
rounding and derandomization techniques. As far as we know, this is the best
approximation result for the mcsp. This improves the 1

2 -approximation procedure
presented by Makino et al. [14]. A new linear integer programming formulation
was presented to define tuned probabilities in our randomized procedure. Through
the use of the probabilistic method, we converted a probabilistic proof of existence
of an approximated solution into an efficient deterministic algorithm for actually
constructing this solution. Additionally, we show that if some good estimations
of expectation are obtained in advance, some improved approximation ratios may
be attained.

As future work, an interesting question is to decide whether the parameter-

ized mcsp is fixed parameter tractable – FPT. (A problem with parameter A is
FPT if it admits an O(f(A)nγ) time algorithm, for some function f and some
constant γ independent of A, see [4].) Another interesting attempt of research is
to use different randomized rounding strategies such as the dependent rounding as
introduced in Gandhi et al. [8]. Their technique allows negative correlation in con-
junction with various new ideas to develop improved (approximation) algorithms
via LP-rounding.

Finally, the question of determine an improved constant ratio (equal to 1/2+ ε
for some ε ∈ (0, 1/2]) for the mcsp remains an open problem. Thus, to better eval-
uate the performance ratio attained by any approximation algorithm, an additional
study concerning negative results is necessary. Therefore, as a future direction, an
interesting question is to deal with non-approximation techniques (for instance,
through the use of the PCP theorem [1] or the Unique Game Conjecture [12])
applied to the mcsp.

Acknowledgements. We thank Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-
nológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro
(FAPERJ) for their partial financial support and the anonymous referees for their in-
sightful comments.

References

[1] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP. J.
ACM 45 (1998) 70–122.

[2] J.-C. Bermond and D. Peleg, The power of small coalitions in graphs. Discrete Appl. Math.
127 (2003) 399–414.

[3] P. Dagum, R. Karp, M. Luby and S. Ross, An optimal algorithm for Monte Carlo estimation.
SIAM J. Comput. 29 (2000) 1484–1496.

[4] R.G. Downey and M.R. Fellows, Fixed parameter tractability and completeness I: Basic
results. SIAM J. Comput. 24 (1995) 873–921.

[5] D. Dubashi and D. Ranjan, Balls and bins: A study of negative dependence. Random Struct.
Algorithms 13 (1998) 99–124.

196 C. MARTINHON AND F. PROTTI

[6] P. Erdös and J. Spencer, The Probabilistic Method in Combinatorics. Academic Press,
San Diego (1974).

[7] D. Fitoussi and M. Tennenholtz, Minimal social laws. Proc. AAAI’98 (1998) 26–31.
[8] R. Gandhi, S. Khuler, S. Parthasarathy and A. Srinivasan, Dependent rounding and its

applications to approximation algorithms. J. ACM 53 (2006) 324–360.
[9] M.C. Golumbic, H. Kaplan and R. Shamir, Graph sandwich problems. J. Algorithms 19

(1994) 449–473.
[10] H. Kaplan and R. Shamir, Bounded degree interval sandwich problems. Algorithmica 24

(1999) 96–104.
[11] N. Karmarkar, A new polynomial time algorithm for linear programming. Combinatorica 4

(1984) 375–395.
[12] S. Khot, On the power of unique 2-prover 1-round games, in STOC ’02: Proceedings of

the thiry-fourth annual ACM symposium on Theory of computing, NY, USA, ACM Press
(2002) 767–775.

[13] N. Linial, D. Peleg, Y. Rabinovich and N. Saks, Sphere packing and local majorities in
graphs. Proc. 2nd Israel Symposium on Theoretical Computer Science, IEEE Computer
Society Press, Rockville, MD (1993) 141–149.

[14] K. Makino, M. Yamashita and T. Kameda, Max-and min-neighborhood monopolies.
Algorithmica 34 (2002) 240–260.

[15] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University Press,
London, 1995.

[16] D. Peleg, Local majority voting, small coalitions and controlling monopolies in graphs: A
review. Technical Report CS96-12, Weizmann Institute, Rehovot (1996).

[17] P. Raghavan and C.D. Thompson, Randomized rounding: A technique for provably good
algorithms and algorithmic proofs. Combinatorica 7 (1987) 365–374.

[18] J.D. Rose, A graph-theoretic study of the numerical solution of sparse positive definite sys-
tems of linear equations, in Graph Theory and Computing, edited by R.C. Reed, Academic
Press, New York (1972) 183–217.

[19] Y. Shoham and M. Tennenholtz, Emergent conventions in multi-agent systems: Initial exper-
imental results and observations. Proc. International Conference on Principles of Knowledge
Representation and Reasoning (1992) 225–231.

[20] Y. Shoham and M. Tennenholtz, On the systhesis of useful social laws for artificial agent
societies. Proc. AAAI’92 (1992) 276–281.

[21] S.J. Wright, Primal-Dual Interior-Point Methods. SIAM (1997).
[22] M. Yannakakis, Computing the minimum fill-in is NP-complete. SIAM J. Algebr. Discrete

Methods 2 (1981) 77–79.

Communicated by C. Choffrut.
Received June 16, 2009. Accepted October 4, 2010.

	Preliminaries
	The 12-approximation algorithm for the mcsp
	Parameterizing the mcsp
	An improved randomized rounding procedure for the mcsp
	Approximation analysis
	A derandomized algorithm
	Conclusions
	References

