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EXTENDING THE LAMBDA-CALCULUS
WITH UNBIND AND REBIND *

MARIANGIOLA DEZANI-CIANCAGLINI!, PAOLA GIANNINI?
AND ELENA Zucca®

Abstract. We extend the simply typed A-calculus with unbind and
rebind primitive constructs. That is, a value can be a fragment of open
code, which in order to be used should be explicitly rebound. This
mechanism nicely coexists with standard static binding. The motiva-
tion is to provide an unifying foundation for mechanisms of dynamic
scoping, where the meaning of a name is determined at runtime, re-
binding, such as dynamic updating of resources and exchange of mobile
code, and delegation, where an alternative action is taken if a binding
is missing. Depending on the application scenario, we consider two ex-
tensions which differ in the way type safety is guaranteed. The former
relies on a combination of static and dynamic type checking. That is,
rebind raises a dynamic error if for some variable there is no replacing
term or it has the wrong type. In the latter, this error is prevented by
a purely static type system, at the price of more sophisticated types.
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INTRODUCTION

Static scoping, where the meaning of identifiers can be determined at compile-
time, is the standard binding discipline in programming languages. Indeed, it gives
code which is easier to understand and can be checked by a conventional static
type system. However, the demands of developing distributed, highly dynamic
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applications have led to an increasing interest in alternatives where the meaning
of identifiers can only be determined at runtime. More precisely, the term dynamic
binding or dynamic scoping means that identifiers are resolved w.r.t. their dynamic
environments, whereas rebinding means that identifiers are resolved w.r.t. their
static environments, but additional primitives allow explicit modification of these
environments. The latter is particularly useful for, e.g., dynamic updating of
resources and exchange of mobile code. Finally, delegation in object systems allows
to take an alternative action if a binding is missing.

Typically, these mechanisms lack clean semantics and/or are modelled in an
ad-hoc way. In this paper, instead, we provide a simple unifying foundation, by
developing core unbind/rebind primitives as an extension of the simply typed A-
calculus. This extension is inspired by the treatment of open code in [1] and relies
on the following ideas:

e A term (I'|¢ ), where I' is a set of typed variables called unbinders, is
a value representing “open code” which may contain free variables in the
domain of T.

e To be used, open code should be rebound through the operator ¢[r], where
r is a substitution (a map from typed variables to terms). Variables in
the domain of r are called rebinders. When the rebind operator is applied
to a term ( I' | ¢ ), a dynamic check can be performed: if all unbinders
are rebound with values of the required types, then the substitution is
performed, otherwise a dynamic error is raised. An alternative is to have
a type discipline which assures that all unbinders are safely rebound.

It is important to note that typechecking is compositional, that is, the dynamic
check only relies on the declared types of unbinders and rebinders, without any
need to inspect ¢ and the terms in r. Indeed, their compliance with these declared
types has been checked statically.

Consider the classical example used to illustrate the difference between static
and dynamic scoping.

let x=3 in
let f=lambda y.x+y in
let x=5 in
f1

In a language with static scoping, the occurrence of x in the body of function £
is bound once and for all to its value at declaration time, hence the result of the
evaluation is 4. In a language with dynamic scoping, instead, as in McCarthy’s
Lisp 1.0 where this behaviour was firstly discovered as a bug, this occurrence is
bound to its value at call time, which is different for each call of £ and obviously
cannot be statically predicted. In the example, the result of the evaluation is 6.
In our calculus, the programmer can obtain this behaviour by explicitly unbinding
the occurrence of x in the body of £ and by explicitly rebinding x to 5 before
applying f to 1, as will be formally shown in the following section.
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t = x| n|ti+ta] Azt tite] (x|t)]|t[s]| error

X = I1,...,Tm

§ = Tt Ty by

v o= Azt {x|t)|n

C == []|C+t|n+C|Ct
ny+ng —n if n=m —l—Z N9 (Sum)
Met)t! — t{z — t'} (ApP)
(x]t)[s] — t{S|X} it x C dom(s) (REBINDUNBINDYES)
(x| t)s] — error if x & dom(s)  (ResinpUNBINDNO)
n[s] —n (REBINDNUM)
(tl + tg)[s] — 1 [S] + tQ[S] (REBINDSUM)
()\x.t)[s] — )\a:t[s] (REBINDABS)
(tl tg)[s] — [8] tg[s] (REBINDAPP)
t[s][s'] — t'[s'] if t[s] — ¢/ (REBINDREBIND)
error[s] — error (REBINDERROR)
t—t  C#]] t — error  C#]]

(ConT) (CONTERROR)
C[t] — C[t'] C[t] — error

F1GUure 1. Untyped calculus.

Paper structure. For sake of clarity, we first present in Section 1 an untyped
version of the calculus with explicit unbind /rebind primitives. Section 2 introduces
a typed version with runtime type checks so that a term with unbound variables
rebound by terms of incorrect types reduces to an error instead of being stuck.
The calculus of Section 3 instead assures that all unbound variables are rebound
by terms of appropriate types: the price to pay is more informative types. In
Section 4 we put our paper in the context of the current literature and we draw
some directions of further developments.

1. THE UNTYPED CALCULUS

In this section we introduce an extension of the untyped A-calculus with unbind
an rebind primitives, and show how the calculus can be used to simulate dynamic
scoping, rebinding and delegation.

1.1. SYNTAX AND OPERATIONAL SEMANTICS

The syntax and reduction rules of the calculus are given in Figure 1. Terms of
the calculus are the A-calculus terms, the unbind and rebind constructs, and the
dynamic error. We also include integers with addition to show how unbind and
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FV(z) = {z}

FV(n)=10

FV(tl + tg) = FV(tl) @] FV(tQ)

FV(\r.t) = FV (1) \ {z}

FV(tl tg) = FV( 1) @] FV(tl)
FV((x[t))=FV(i)\x

FV(i[s]) = FV(£) U FV(s)

FV(Il — tl; ey Iy t ) = UiEl..m FV(tl)

z{rx—t, st =t

z{s} =z if & & dom(s)

n{s}=n

(o + 02){s} = t1{s} + to{s}

(Az.t){s} = Az. t{s\{m}} ifz & FV(s)
(tito){s} = ta{s} to{s}

(x| t){s}=(x|t{s\x}) i xNFV(s) =0
E[ s'l{s} = t{s}[s'{s}]

T b,y T = ) {8 =@ s}, .., Tm — tn{s}

FIGURE 2. Free variables and substitution.

rebind behave on primitive data types. We use x for sets of variables and s for
substitutions, that is, finite maps from variables to terms.

The operational semantics is described by reduction rules. We denote by 7 the
integer represented by the constant n, by dom the domain of a map, by s}, and s,
the substitutions obtained from s by restricting to or removing variables in set x;,
respectively. The application of a substitution to a term, ¢{s}, is defined, together
with free variables, in Figure 2. Note that an unbinder behaves like a A-binder: for
instance, in a term of shape ( z | ¢ ), the unbinder z introduces a local scope, that
is, binds free occurrences of z in t. Hence, a substitution for z is not propagated
inside ¢. Moreover, a condition which prevents capture of free variables, similar
to the A-abstraction case, is needed. For instance, the term (Ay.( z |y )) (Az.z)
is stuck, since the substitution ( z | y Y{y — Az.z} is undefined, i.e., it does not
reduce to ( z | Az.z ), which would be wrong.

Rules for sum and application are standard. The (Rerivp.) rules determine what
happens when a rebind is applied to a term. There are two rules for the rebinding
of an unbind term. Rule (ResinoUneinoYrs) is applied when the unbound variables
are all rebound, in which case the associated values are substituted, otherwise
rule (ResvpUnsinbNo) produces a dynamic error. This is formally expressed by the
side condition xy C dom(s). On sum, application and abstraction, the rebind
is simply propagated to subterms, and if a rebind is applied to a rebind term,
(ReBinpREBIND), the inner rebind is applied first. The evaluation order is specified
by rule (Cont) and the definition of contexts, C, that gives the lazy call-by-name
strategy. Finally rules (RespError) and (ConTError) propagate errors. To make
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rule selection deterministic, rules (Cont) and (ContError) are applicable only when
C #[]. As usual —* is the reflexive and transitive closure of —.

1.2. TOY EXAMPLES

The term ( z,y |  + y )[x—1, y—2] reduces to 1 + 2, while ( z,y | x + y Y[z+—1]
reduces to error, since the dynamic check, formalised by the side condition in rules
(ReenpUneinpYEs) and (ReenpUneinoNo), detects that a rebinding is missing. Note that,
of course, this dynamic check is not enough to prevent reduction of a rebind to
get stuck,! as shown, for instance, by the term ( z,y | z + y )[z—1, y—=Az.2 + 1],
which reduces to 1 + (Az.z + 1).

When a rebind is applied, only variables which were explicitly specified as un-
binders are replaced. For instance, the term ( z |z + y [z — 1,y — 2] reduces
to 1 + y rather than to 1 + 2. In other terms, the unbind/rebinding mechanism is
explicitly controlled by the programmer.

Looking at the rules we can see that there is no rule for the rebinding of a
variable. Indeed, it will be resolved only when the variable is substituted as effect
of a standard application. For instance, the term (Ay.y[z — 2]) (z | z+1 ) reduces
to(z|x+ 1)z 2]

Note that in rule (ResinpAss), the binder z of the A-abstraction does not interfere
with the rebind, even in case z € dom(s). Indeed, rebind has no effect on the
free occurrences of z in the body of the A-abstraction. For instance, (Az.z +
(z]x))[xr — 1]2 reduces in some steps to 2 4+ 1, and is indeed a-equivalent to
(Ay.y + (z | z ))[z — 1] 2. On the other side, both A-abstractions and unbinders
prevent a substitution for the corresponding variable to be propagated in their
scope, for example:

(zylz+Ae(z+y) + (2| 2ty ) )[z—2,y—3]
— 2+ Azx+3)+(z|z+3).

Unbind and rebind behave in a hierarchical way. For instance, two rebinds must
be applied to the term (z | 2+ (2 | 2 ) ) in order to get an integer:

(zlet(elz)) ez =2 — 0+ (z|z))[z—2 —"1+2

See the Conclusion for more comments on this choice. A standard (static) binder
can also affect code to be dynamically rebound, when it binds free variables in a
substitution s, as shown by the following example:

Az Ayylz]+2)1(z|z+2) — QAyylzr — 1] +1){(z |z +2)
—(z]rx+2) r—1+1—1+2+1.

The abbreviation t[s, z] means that free variable z in code ¢ will be bound to a
value which is still to be provided, and formally stands for t[s, z — z].

1However7 we prefer to include this weak form of dynamic check in the untyped calculus for
introducing the notion, and for preventing introduction of free variables during reduction.
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1.3. DYNAMIC SCOPING, REBINDING AND DELEGATION

We illustrate now how the calculus can be used as unifying foundation for
various mechanisms of dynamic scoping, rebinding and delegation.

Going back to the example of the introduction, and interpreting as usual the
let construct as syntactic sugar for application, we get static scoping, as shown
by the following reduction sequence.

let x=3 in X
let f=lambda y.3+y in

I let x=5 in I

f1

let f=lambda y.x+y in
let x=5 in
f1

let x=5 in

— (lambda y.3+y) 1 — 3+1
(lambda y.3+y) 1 ¢ y-3+y)

However, the programmer can obtain dynamic scoping for the occurrence of x
in the body of £ as shown below.

let x=3 in .
let f=<x|lambda y.x+y> in

I let x=5 in
flx] 1

let f=<x|lambda y.x+y> in
let x=5 in
flx] 1

let x=5 in *
— <x|lambda y.x+y>[x—5] 1 —— b5+1
<x|lambda y.x+y>[x] 1

Assuming to enrich the calculus with primitives for concurrency, we can model
exchange of mobile code, which may contain unbound variables to be rebound by
the receiver, as outlined above.

let x=3 in
let f=lambda y.x+y in let x=5 in
//f is used locally receive(f).send (f[x] 1). nil
send (<x|£>). nil

Note that dynamic typechecking should take place when code is exchanged: in
this way, compositionality of typechecking would allow to typecheck each process
in isolation, by only relying on type assumptions on code to be received. The
typed version of the calculus presented in Section 2 formalizes the required checks.
A calculus of processes based on this idea has been defined in [1], and could now
be reformulated in a cleaner modular way on top of this typed version.

Finally, method lookup and delegation mechanisms typical of object systems
consist in taking an alternative action when a binding is missing. This could
be modelled in our calculus by capturing absence (or type mismatch) of bindings
with a standard try-catch construct. Alternatively, taking the approach of [4], we
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could add a conditional rebind construct t[s] else ¢’ with the following semantics:

(x|t)[s] else " — (x [ 1)[s] if x S dom(s)
(x|t)[s] elset/ — ' if x € dom(s)

We also leave to further work this extension.

2. THE CALCULUS WITH MIXED TYPE SYSTEM

In this section we introduce a typed version of the calculus in which some of
the typechecking is done a runtime.

In this typed version, as shown in Figure 3, A-binders are annotated with types
as in the typed A-calculus. Unbinders and rebinders are annotated as well, so that
we can check whether unbound variables are rebound by terms of the right types
or not. We use I' for type contexts, that is, finite maps from variables to types,
and r for typed substitutions, that is, finite maps from variables into pairs of types
and terms.

The new reduction rules are shown in Figure 4, where the function subst extracts
an untyped substitution from a typed substitution:

subst(zy: Ty — tiy oo T T = b)) = X1 b1y ey T > by
and the function tenv extracts a type context from a typed substitution:
tenv(ax:Th =ty oo T T = ) = 21Ty o T T

The only difference w.r.t. the untyped calculus is in rules (ResmwpUnpmpYEs) and
(ReenpUneinoNo), which, in addition to the presence of rebindings for all unbound
variables, now also check that such rebindings are of the right type.

Going back to one of the examples at the beginning of Section 1.2, let us consider
the (well-)typed variant

(x:int,y:int | o + y )[z:int—1, y:int — int—Az:int.z + 1]
of
(z,y|z+y)|z—l, y—dz.z + 1].
We have that

(z:int, y:int | £ + y )[z:int—1, y:int — int—Az:iint.z + 1] — error

since the mismatch of types implies that rule (ResinoUnpivbNo) is the only applicable
rule.

Types are the usual primitive (int) and functional (77 — T5) types plus the
type code, which is the type of a term ( I' | ¢ ), that is, (possibly) open code.
Types are decorated with a level k. We abbreviate a type 7° by 7. If a term has
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t uw= zln|t+h| Tttt (T]¢t)]t[r]]| error

r = o:Th,. .., xm: Ty

T = x:Ti—t,....,en:Th — tn

v = ATt |(T|t)]|n

C == []|C+t|n+C|Ct

T == 7* keN

T == int|code| Ty — T

F1GUure 3. Typed syntax.
ny+ng —n if n=m +Z Nno  (Sum)
Az:T.t)t — t{z — t'} (APP)
(T t)[r] — t{subst(r)|dom(p)} if T C tenv(r) (REBINDUNBINDYES)
(T | t)[r] — error if T & tenv(r) (REBINDUNBINDNO)
n[r] —n (REBINDNUM)
(tl + tg)[?”] — [7"] + tQ[T] (REBINDSUM)
(Az:T.t)[r] — Aa:T.t[r] (REBINDABS)
(tl tg)[?”] — [7"] tQ[T] (REBINDAPP)
t[r][r'] — t'[r'] if tfr] —t/ (REBINDREBIND)
error[r] — error (REBINDERROR)
t—t  C#]] t — error  C#]]
(ConT) (CONTERROR)
C[t] — C[t'] C[t] — error

F1GURE 4. Calculus with mixed type system: reduction rules.

type 7%, then by applying k rebind operators to the term we get a value of type 7.
For instance, the term

(z:int|(y:int|z+y))
has types code’, code!, and int?, whereas the term
(z:int |z +(y:int|y+1))

has types code’ and int2. Both terms have also all the types int* for k > 2, see
rule (T-Int). Terms whose reduction does not get stuck are those which have a type
with level 0.

Typing rules are defined in Figure 5. We denote by T, I the concatenation of
the two type contexts I' and IV with disjoint domains, which turns out to be a
type context (map) as well.

Note that the present type system only takes into account the number of rebinds
which are applied to a term, whereas no check is performed on the name and the
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Ik t:intF . Tht:(T —rhth* . N(z)=T
)F}—t:intk'*'l <7LN)FI—t:(T—M'h)""H <7AR)FI—:£:T

(T-INT

P'Ft:int® TF &y : int”

A T Y U T error - T
. T,o:TiFt: Ty . Pt (T -1 Ikt T
A T x e Tot - (1 = To0 ™ TF by 7htF
. , OT'F¢:T I LTkt r*
O T T4y s coae® Y TR (T 1) s AT
Lkt:7"Y Dkr:ok 't :T;Viel.m

(T-REBIND) (T-REBINDING)

Tk tr]: 7k TrFa:Ty— by, Tm: T — tm 2 Ok

FiGURE 5. Calculus with mixed type system: typing rules.

type of the variables to be rebound. This check is performed at runtime by rules
(REBINDUNBINDYES) and (REBINDUNBINDNO).

The first two typing rules are special kinds of subsumption rules. Rule (T-ixt)
says that every term with type int® has also type int” for all A > k: this is
sound by the reduction rule (ResnoNum). Rule (T-Fun) allows to decrease the level
of the return type of an arrow by increasing of the same amount the level of
the whole arrow?. This is sound since in rule (T-arp) the level of the type in
the conclusion is the sum of these two levels. It is useful since, for example, we
can derive - Az:int.z + ( y:int |y + ( z:int |z ) ) : (int — int!)! and then
F (Az:int.x + ( yrint |y + ( z:int | 2z ) ))[y:int — 5] : (int — int!)?, which
means that the term reduces to a lambda abstraction, i.e., to a value, which
applied to an integer needs one rebind in order to produce an integer or error.

Clearly with rules (T-Int) and (T-Fun) we can derive more than one type for the
same typed term. This is formalised in Lemma 2.1.

Note that terms which are stuck since application of substitution is undefined,
such as (any typed version of) the previous example (Ay.( z | y )) (A\z.z), are ill
typed. Indeed, in the typing rules for unbinding, unbinders are required to be
disjoint from outer binders, and there is no weakening rule. Hence, a type context
for the example should simultaneously include a type for  and not include a type
for z in order to type Az.z and Ay.{ z | y ), respectively. For the same reason, a
peculiarity of the given type system is that weakening does not hold, in spite of
the fact that no notion of linearity is enforced.

The type system is safe since types are preserved by reduction and a closed
term with a type of level 0 is either a value or error or it can be reduced. In other
words, the system has both the subject reduction and the progress properties. Note

2The rule obtained by exchanging the premise and the conclusion of rule (T-Fun) is sound too,
but useless since the initial level of an arrow is always 0.
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that a term with only types of level greater than 0 can be stuck, as for example
1 + ( z:int | z ), which has type int!. These properties will be formalised and
proved in the next subsection.

2.1. SOUNDNESS OF THE TYPE SYSTEM

We start by defining the subtyping relation implemented by rules (T-ixt) and
(T-Fun). This relation clearly gives an admissible subsumption rule (Lem. 2.1).
The subtyping relation < is the least preorder relation such that:

inth < intht! (T — Th+1)k <(T— Th)k—H.

Lemma 2.1. IfT'+t: T and T < T', thenT 1t :T'.

The proof of subject reduction (Thm. 2.5) is standard. We first state an in-
version lemma (Lem. 2.2), a substitution lemma (Lem. 2.3) and a context lemma
(Lem. 2.4). The first two lemmas can be easily shown by induction on type deriva-
tions, the proof of the third one is by structural induction on contexts.

Lemma 2.2 (inversion lemma).

1) IfTHx: T, thenT(z) < T.
2) IfTFn: T, then T = int*.
3) IfT' -ty +ty: T, then T = int* and ' t; : int* and I' - ty : int".
4) IfTFXe:Ty.t: T, then T = (Ty — 7% and T, 2: Ty =t : 7hHF,
5) If T tity: T, then T =7"* and Tty : (T" — 7")% and Tty : T".
6) IfT (T |t): T, then
o cither T = code® and I'\T" -t : T',
o or T =7F1 gqnd T,TV +t: 7%,
(7) If T t[r]: T, then T=71% and T+t : 7**1 and T+ r : ok.
8) If 'k a:Ty — 1, ..., Ty Ty = by, 2 Ok, then T'F & 2 T for all i € 1..m.

Lemma 2.3 (substitution lemma). If T,a:T' b t : T and T F ¢ : T, then
Tk t{z— t'}: T.

Lemma 2.4 (context lemma). Let I' - C[t] : T, then

e 'k1¢: T, for some T', and
o forallt', if TH T, thenTHC[t']: T.

Theorem 2.5 (subject reduction). IfT'Ft¢: T and t — t/, then T H¢': T.

Proof. By induction on reduction derivations. We only consider some interesting
cases.

If the last applied rule is (arp), then

ATy 0) t — t{z— t'}
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From I' - (Az:T1.t) t' : T by Lemma 2.2, cases (5) and (4), we get Ty z: Ty H¢: T
and I'+ ¢’ : Ty, so the result follows by Lemma 2.3.

If the last applied rule is (ReswpUneinpYEs), then
(7| £)[r] — t{subst(r) gomy} T’ C tenu(r)

Let 1gom@y = 21:T1 = b1, ..., i Ty = . Since IV C tenv(r), we have that
I''=ua1:T1,...,%n: Ty From T (IV | ¢ )[r] : T by Lemma 2.2, case (7), we get
T=rFand T F (T"|t): 7" and T I r : ok. By Lemma 2.2, case (6), since
7F+1 cannot be code®, we have that I', TV - ¢ : 7. Moreover, by Lemma 2.2, case
(8), we have that I' - r : ok implies I' - ¢; : T; for all i € 1..m. Applying m times
Lemma 2.3, we derive I' = t{subst(7)|gomr } : T O

In order to show the progress theorem (Thm. 2.9), we start as usual with a
canonical forms lemma (Lem. 2.6) and then we prove the standard relation between
type contexts and free variables (Lem. 2.7) and lastly that all closed terms which
are rebinds always reduce (Lem. 2.8).

Lemma 2.6 (canonical forms).
(1) If - v : int®, then v = n.
(2) If - v : code’, thenv= (T |t).
(3) If v : (T — T, then v = Mz:T.t.

Proof. By case analysis on the shapes of values. O
Lemma 2.7. IfT'+t: T, then FV(t) C dom(T).
Proof. By induction on type derivations. O

Lemma 2.8. If t = t/[r] for some t' and r, and FV (t) = 0, then t — t" for
some t"".

Proof. Let t = ¢/[ry]---[ry] for some ¢, r, ..., r, (n > 1), where t' is not a
rebind. The proof is by arithmetic induction on n.

If n = 1, then it is easy to see that one of the reduction rules is applicable to
t'[r1]. In particular, if ¢/ = (I' | #; ), then rule (ResinoUnsivoYes) is applicable in case
I is a subset of the type context extracted from 71, otherwise rule (RerinpUNBINDNO)
is applicable.

Let ¢t = t'[r] - [rnea]. EEV (& [r1] - [rnga]) = 0, then also FV (¢'[r1] -+ - [rn]) =
(). Hence, by induction hypothesis ¢'[r] - - - [r,] — ¢, therefore t'[r1] - - - [rn 1] —
t"[rp+1] by rule (ResinoResinb). O

Theorem 2.9 (Progress). If -t : 7°, then either t is a value, or t = error, or
t — t’ for some t'.

Proof. By induction on type derivations.
If ¢ is not a value or error, then the last applied rule in the type derivation
cannot be (T-Nuwm), (T-Error), (T-ABs), (T-UNBIND-0), OT (T-Unsmp). Moreover, since the
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level of the type is 0, and the type context for the expression is empty, the last
applied rule cannot be (T-Var), (T-InT), O (T-FUN).
If the last applied rule is (T-Are), then ¢t = #; to, and

Ft (T —79° kit T
FtthZTO

If ¢ is not a value or error, then, by induction hypothesis, 4 — #{. So by rule
(Cont), with context C = [|ta, t1to — t{ lo. If {1 is error, we can apply rule
(ContError) with the same context. If ¢ is a value, then, by Lemma 2.6, case (3),
t; = Ax:T”.t' and, therefore, we can apply rule (Arp).

If the last applied rule is (T-sum), then ¢ = t; + t, and

Ft:int® F ¢y int®
Ft+ty: into

If ¢ is not a value or error, then, by induction hypothesis, t — #;. So by rule
(Cont), with context C = []| + ta, we have t; + to — t{ + to. If #; is error, we can
apply rule (ContError) with the same context. If ¢ is a value, then, by Lemma 2.6,
case (1), t1 = my. Now, if ¢ is not a value or error, then, by induction hypothesis,
ty — t5. So by rule (Conr), with context C = ny + [], we get & + to — & + t§. If
to is error, we can apply rule (ContError) with the same context. Finally, if ¢ is a
value, then by Lemma 2.6, case (1), to = ny. Therefore rule (Sum) is applicable.

If the last applied rule is (T-Resivn), then ¢ = #/[r] and, since - #'[r] : 70, we have
that FV (t'[r]) = 0 by Lemma 2.7. Hence, by Lemma 2.8 we get that ¢'[r] — ¢”
for some t”. O

3. THE CALCULUS WITH STATIC TYPE SYSTEM

In this section we define a version of the calculus with a purely static type
system, such that runtime checks of types are no longer needed.
The syntax is as the one with mixed type system given in Figure 3, except that

error is no longer a term and the production T ::= 7% is replaced by
T == 78
S == €| TS

where S is a stack of type contexts. Let |S| be the length of the stack S. The
superscript S indicates that a term needs |S| rebind operators to be a term of type
7 and moreover shows, for each rebind, from right to left, the variables that need
to be rebound and their type. So the present type 7° corresponds naturally to
the type 7!8! of previous section. In particular, the empty stack e corresponds to
the level 0, and, as for the mixed type system, we abbreviate 7¢ by 7. Note that
a term with type of shape 7¢ (for instance, 1 4 2) needs no rebinds to reduce to a
value, whereas a term with type of shape 7% (for instance, ( () | 1 + 2 )) needs an
arbitrary rebind.
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I'kst:int® . Dhst: (T —r5T) Sy Nz)=T
ks t:int!"s (ST Thgt: (T — 755 (VA Pksz: T

(ST-INT)

IFbsty:int® Thgty:int®

ST-NuM) —————————— ST-SuM
( o) I'ks n:int€ ( uM) Thsty +1t:intS
_ Doz:Tibst: Ty _ Phst: (T —715)5 Thsty: T
(ST-Ass) DhsAz:Ty.t: (T — Tr)e (ST-Arr) Thstyty: 755

D Fst:T D[ Fst:75 TV CT”

(ST-UNBIND-€)

ST-
Phs (TV|t): code® (ST OpIND)

Ths (T ] t): 75T
Phst:r% Thgr:I" TV CTV

(ST-REBIND) T FS t[r] . 7_S

IFrFsap:Ti—ti, ooyt T — b s x0T, oo T Ty

(ST-REBINDING)

FIGURE 6. Static typing rules.

The reduction rules are those of the calculus with the mixed type system,
given in Figure 4, where rules (RerpError) and (ContError) are removed, and rules
(ReBINDUNBINDYES) and (ResnpUnsinbNo) are substituted by

(T t)[r] — t{subst(r)|dom(p)} (REBIND)

so that no check is performed.

The static type system is given in Figure 6. Observe that, by replacing 7!5!
to 7%, we get the typing rules of Figure 5, except for rule (T-Error) and for the last
two typing rules dealing with rebind. In fact, in the static type system, the type
of a substitution is not just the trivial type ok, but is a type context, which must
contain the top type context in the stack of the term to be rebound.

Rule (sT-Fun) plays the role of rule (T-Fun) putting the top type context in the
stack of the return type of an arrow as the bottom context in the stack of the
whole arrow.

In rule (sT-Uxsivp) the condition IV C I allows to put in the stack also types
for variables which are not unbinders. This is useful for example to derive

Fs (z:int |z ) + (y:int |y ) : ing@ineviet,

The calculus with static type system enjoys a stronger soundness result than

the calculus of Section 2, since well-typed terms do not get stuck in spite of the fact
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that there are no dynamic checks (producing error). The proof of the soundness
result is the content of next subsection.

3.1. SOUNDNESS OF THE STATIC TYPE SYSTEM

The soundness proof for the static type system is similar to the one for the
mixed type system.
The subtyping relation < is the least preorder relation such that:

’

intS < int!"S (T —75T)S" < (T — 755",

Lemma 3.1. If'Fst: T and T < T', thenT' kg t: 1.

Lemma 3.2 (inversion lemma).

(1) fTksz: T, then(z) < T.

(2) If T s n: T, then T = int”.

(3) If Tks ty +ta: T, then T = int’ and T ks t; : int¥ and [ s ty = int®.
(4) T ks Ae:T'.t: T, then T = (T" — 75)5 and T, 2:T' bs t : 755",

(5) If T' ks tity : T, then T = 55" and T ks t : (7" — TS)Sl and

Thsty: T
(6) IfTEs (T | t): T, then
e cither T = code® and '\ s t: T,
o or T=75"" qnd I CI” and T,I" s t : 75.
(7) If T ks t[r] : T, then T = 7% and T ks t : 757 and T Fs 7 : T and
IV C1”.
8) If T ks ai:Th — t1, o+ y&m: T = bty : 21 Thy - @ T, then T bg
T; for alli € 1..m.
Lemma 3.3 (substitution lemma). If T',2:T" Fs ¢ : T and T ks t' : T', then
Thst{z—t'}: T.
Lemma 3.4 (context lemma). Let I'Fs C[t] : T, then
e I'kst: T, for some T', and
o forallt', if Tkst' : T, then T ks C[¢']: T.
Theorem 3.5 (subject reduction). IfI'tst: T andt — t/, then T ks t': T.

Proof. By induction on reduction derivations. We only consider some interesting
cases.
If the last applied rule is (arp), then

Az:Th.t)t" — t{z — t'}.

From I' Fs (Az:Ty.t)t' : T by Lemma 3.2, case (5), we derive that T = 75
and ' Fs (Az:T1.t) : (T" — 75)% and T b ¢/ - T’ for some 7, S, S/, and T,
Therefore, Lemma 3.2, case (4), implies that 7" = Ty and T, 2: Ty Fs ¢ : 55
By Lemma 3.3, we have T g t{z +— t'} : 755",
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If the last applied rule is (Repmp), then

(I t)[r] — t{subst(r)|gom(r)}-

Let TV =21:Th, ...,z T oand 7 = 21: Ty — by e ooy % Ty = by ooy T 1: Ty —
botts-eosTm T — ty, (m >n). From T' ks (I |¢ )[r] : T by Lemma 3.2,
cases (7) and ( ), we get
(a) T =
(b) I'Fs (F'|t> s
(¢) T Ca:Th,y... & Ty and, for all 4 € 1.om, T+ ¢« T;.
By Lemma 3.2, case (6) and (b), we derive that
(%) either 757" = code®, and I',I" b5 t : T' for some 1",
() or IV CT” and I, TV s t : 79.
The case (*) implies S - T = ¢, so it is impossible. So we consider the case ().
From I',T' b5 t : 7° applying Lemma 3.3 n times we get

I's t{subst(r)|gom )} : 5.
If the last applied rule is (RepivpAss), then
Az : T'.1)[r] — Ax = T'.t[r].

Let r=a1:Th — t1, ..oy T Ty = b From T s (Az : T7.t)[r] : T by Lemma 3.2,
cases (7) and (8), we get

() T =17,

(B) Ths Az : T'.t: 75T

VM) IVCa:Th,oo o @m: T, and, foralli € 1...m, ks t; @ Ty

By Lemma 3.2, case (4), and (), we derive that 7 = T" — TOSO and I 2:T' kg ¢ :
Tgo's'r/ for some 79 and Sp.

From (), applying rule (St-resmn), we get I', z:T" b5 t[r] : TOSU'S. Applying rule
(st-ans) we derive I' g Az : T'.t[r] : (T — TSO S)E. Therefore, Lemma 3.1 implies
that T ks Az : T'.t[r] : T.

If the last applied rule is (Cont), the theorem follows by induction hypothesis
using Lemma 3.4.
The other rules are easier. g

Lemma 3.6 (canonical forms).
(1) If ks v: int, then v = n.
(2) IfFs v: code, then v = (T |t).
(3) If ks v : (T — T7)¢, then v = :T.t.

Lemma 3.7. IfT'Fst: T, then FV(t) C dom(T).
Proof. By induction on type derivations. O
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Lemma 3.8. If t = t'[r] for some t' and r, and FV(t) = 0, then t — t" for
some t".

Proof. The proof is similar to that one of Lemma 2.8, the only difference being
that, if ¢’ = ( T'| &; ), then rule (Resmp) is always applicable, since no check is
performed. 0

Theorem 3.9 (progress). If ks t : 7¢, then either t is a value, or t — t' for
some t'.

Proof. By induction on type derivations.

Since ¢ is closed, is not a value, and its type has an empty stack, then the last
applied rule in the type derivation cannot be (ST-Ixt), (ST-Fun), (ST-VaRr), (ST-Nuwm),
(ST-ABs), (ST-UNBIND-0), (ST-UNBIND).

If the last applied rule is (sT-Arp), then t = t; t» and

st (T — 755 Fsty: T
Fo tity 1 755

By hypothesis S = S’ = e. If #; is not a value, then, by induction hypothesis,
t1 — t{. So by rule (Cont), with context C = [] t2, we have t; to — ] ta.
If ¢; is a value, then, by Lemma 3.6, case (3), we have that t; = Az:T’.¢, and
rule (Arp) is applicable.
If the last applied rule is (ST-Sum), then
Fst:int® Fg & : int€
Fs t1 + tp : int© .

If ¢; is not a value, then, by induction hypothesis, t — #;. So by rule (Coxt), with
context C = [] + t2, we have t; + to — ] + t5. If ¢; is a value, by Lemma 3.6, case
(1), t1 = n. Now, if #5 is not a value, then, by induction hypothesis, to — ;. So
by rule (Cont), with context C = n + [], we get {1 + to — &1 + t5. Finally, if &2 is a
value, then by Lemma 3.6, case (1), to = m. Therefore rule (sum) is applicable.

If the last applied rule is (ST-Resp), then t = ¢'[r] and by hypothesis Fg t'[r] :
7¢, therefore FV (t'[r]) = 0 by Lemma 3.7. By Lemma 3.8, ¢ — " for some ¢”.
(|

3.2. RELATIONS BETWEEN THE TWO CALCULI

A term t of the calculus with static type system can be uniquely mapped into a
term of the calculus with mixed type system simply by replacing each 7% occurring
in ¢t by 7!l we use [t| to denote the so obtained term. The mapping |_| extends
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to type contexts and substitutions in the obvious way. Formally:

2| =z

In| =mn

[t + t2| = |ta] + |22
[Az:T.t| = Az:| T|.|¢t|
[t 2| = [t1] [22]

KT [t ) = (0D
[t = [¢][]7]]

lint| = int
|code| = code
[Ty — To| = |Th| — | T2

%] = 7|
|x13T17~'~7xm3Tm| = ZI:|T1|7~'~7xm:|Tm|
|21:Th =ty .oy T T = | = 21| Th| = |G, -0 @i Ton | — [t

There is no inverse mapping, for example
(x:code — int |z (0 |1))+ (z:int — int | 22)

is a term of the calculus with mixed type system, since we can derive

F(z:code — int |2 (0| 1))+ (x:int — int |2 ) : int*
but it is not a term of the calculus with static type system, since there is no I’
which allows us to derive

Fs (ricode — int |2 (0| 1))+ (2:int — int | 22) : int’

Note that int is short for int® when the term above is seen as a term of the
calculus with mixed type system and for int€ when the term above is seen as a
term of in the calculus with static type system, and similarly for code.

We conjecture that the terms of the calculus with mixed type system which
cannot be mapped to terms of the calculus with static type system are such that
for no sequence of rebinders they can reduce to values. We leave for future work
the study of this conjecture.

4. RELATED WORK AND CONCLUSION

In this paper we have defined two extensions of the simply-typed A-calculus
with explicit unbind and rebind operators. They differ in the way type safety
is guaranteed, that is, either by a purely static type system or by a mixed type
system where existence and type of the binding for a given variable is checked at
runtime. The latter solution is particularly useful, e.g., in distributed scenarios
where code is not all available at compile time, or in combination with delegation
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mechanisms where, in case of dynamic error due to an absent/wrong binding, an
alternative action is taken.

Ever since the accidental discovery of dynamic scoping in McCarthy’s Lisp
1.0, there has been extensive work in explaining and integrating mechanisms for
dynamic and static binding.

The classical reference for dynamic scoping is [7], which introduces a A-calculus
with two distinct kinds of variables: static and dynamic. The semantics can be
(equivalently) given either by translation in the standard A-calculus or directly.
In the translation semantics, A-abstractions have an additional parameter corre-
sponding to the application-time context. In the direct semantics, roughly, an
application (Az.t) v, where z is a dynamic variable, reduces to a dynamic let
dlet z = v in ¢. In this construct, free occurrences of z in ¢ are not immediately
replaced by v, as in the standard static let, but rather reduction of t is started.
When, during this reduction, an occurrence of z is found in redex position, it is
replaced by the value of z in the innermost enclosing dlet. Clearly in this way
dynamic scoping is obtained.

In our calculus, as shown in Section 2, the behaviour of the dynamic let is
obtained by the unbind and rebind constructs. However, there are at least two
important differences.

First, the unbind construct allows the programmer to explicitly control the
program portions where a variable should be dynamically bound. In particular,
occurrences of the same variable can be bound either statically or dynamically,
whereas in [7] there are two distinct sets.

Moreover, our rebind behaves in a hierarchical way, whereas, taking the ap-
proach of [7] where the innermost binding is selected, a new rebind for the same
variable would rewrite the previous one, as also in [4]. For instance, ( z | z )[z —
1][z — 2] would reduce to 2 rather than to 1. The advantage of our semantics,
at the price of a more complicated type system, is again more control. In other
words, when the programmer wants to use some “open code”, she/he must explic-
itly specify the desired binding, whereas in [7] code containing dynamic variables is
automatically rebound with the binding which accidentally exists when it is used.
This semantics, when desired, can be recovered in our calculi by using rebinds of
the shape t[z1, ..., z,).

The calculus in [3] also has two classes of variables, with a rebind primitive that
specifies new bindings for individual variables. The work of [7] is extended in [6]
to mutable dynamic environments and a hierarchy of bindings. Finally the Aparsn
calculus of [2] has a single class of variables and supports rebinding w.r.t. named
contexts (not of individual variables). Environments are kept explicitly in the term
and variable resolution is delayed as last as possible to realise dynamic binding
via a redex-time and destruct-time reduction strategies. Our unbind construct
corresponds to the mark plus marshal of [2], and we neither need marshalling (that
results from the evaluation of the previous two constructs), nor unmarshalling,
since in our calculus standard application is used to move unbound terms to their
dynamic execution environment.
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Distributed process calculi provide rebinding of names, see for instance [8].
Moreover, rebinding for distributed calculi has been studied in [1]. In this setting,
however, the problem of integrating rebinding with standard computation is not
addressed, so there is no interaction between static and dynamic binding.

Finally, another important source of inspiration has been multi-stage program-
ming as, e.g., in [9], notably for the idea of allowing (open) code as a special value,
for the hierarchical nature of the unbind/rebind mechanism and, correspondingly,
of the type system. A more deep comparison will be subject of further work.

A strongly related paper is [5], where we investigated the call-by-value strategy,
which behaves differently from call-by-name in presence of unbind and rebind
constructs. As a simple example take:

let x =2 + (y:int|y) in
x [ y:int — 3]
Being 2 + (y:int |y ) stuck, a call-by-value evaluation of previous term is stuck
too, while a call-by-name evaluation gives

(2+ (y:int|y)) [ y:int — 31—
2 [ yiint — 3] + (y:int|y) [ y:int — 3] — 243

In pure A-calculus there are closed terms, like (Ax.A\y.y)((Az.z 2)(Az.z 2)), which
converge when evaluated by the lazy call-by-name strategy and diverge when evalu-
ated by the call-by-value strategy, and open terms, like (Ax.Ay.y) z, which converge
when evaluated by the lazy call-by-name strategy and are stuck when evaluated
by the call-by-value strategy. But there is no closed term which converges when
evaluated by the lazy call-by-name strategy and is stuck when evaluated by the
call-by-value strategy. In [5], we propose a typed variation of our calculus using
intersection types which enjoys progress for the call-by-value reduction strategy.

For the calculus with mixed type system, in order to model different behaviours
according to the presence (and type concordance) of variables in the rebinding
environment, we plan to add the construct for conditional execution of rebind
outlined at the end of Section 1.3. With this construct, as shown in [4], we could
model a variety of object models, paradigms and language features.

Finally, future investigation will deal with the general form of binding discussed
in [10], which subsumes both static and dynamic binding and also allows fine-
grained bindings which can depend on contexts and environments.
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