
RAIRO-Theor. Inf. Appl. 45 (2011) 59–75 Available online at:

DOI: 10.1051/ita/2011011 www.rairo-ita.org

HOPCROFT’S ALGORITHM
AND TREE-LIKE AUTOMATA ∗

G. Castiglione
1
, A. Restivo

1
and M. Sciortino

1

Abstract. Minimizing a deterministic finite automata (DFA) is a
very important problem in theory of automata and formal languages.
Hopcroft’s algorithm represents the fastest known solution to the such
a problem. In this paper we analyze the behavior of this algorithm on a
family binary automata, called tree-like automata, associated to binary
labeled trees constructed by words. We prove that all the executions of
the algorithm on tree-like automata associated to trees, constructed by
standard words, have running time with the same asymptotic growth
rate. In particular, we provide a lower and upper bound for the running
time of the algorithm expressed in terms of combinatorial properties
of the trees. We consider also tree-like automata associated to trees
constructed by de Brujin words, and we prove that a queue imple-
mentation of the waiting set gives a Θ(n log n) execution while a stack
implementation produces a linear execution. Such a result confirms the
conjecture given in [A. Paun, M. Paun and A. Rodŕıguez-Patón. The-
oret. Comput. Sci. 410 (2009) 2424–2430.] formulated for a family of
unary automata and, in addition, gives a positive answer also for the
binary case.

Mathematics Subject Classification. 68Q45, 68Q25.

Introduction

Minimization of deterministic finite automata (DFA) is a classical and widely
studied problem in Theory of Automata and Formal Languages. It consists in
finding the unique (up to isomorphism) finite automaton with the minimal number
of states, recognizing the same regular language of a given DFA.

Keywords and phrases. Automata minimization, Hopcroft’s algorithm, word trees.

∗ Supported by the MIUR Project PRIN 2007 Mathematical aspects and emerging applications
of automata and formal languages
1 Università di Palermo, Dipartimento di Matematica e Applicazioni, via Archirafi, 34,
90123 Palermo, Italy; giusi@math.unipa.it

Article published by EDP Sciences c© EDP Sciences 2011

http://dx.doi.org/10.1051/ita/2011011
http://www.rairo-ita.org
http://www.edpsciences.org

60 G. CASTIGLIONE, A. RESTIVO AND M. SCIORTINO

Describing a regular language by its minimal automaton is important in many
applications, such as, for instance, text searching, lexical analysis or coding sys-
tems, where space considerations are prominent.

Several methods have been developed to minimize a deterministic finite au-
tomaton. Some of them operate by successive refinements of a partition of the
states leading to the coarsest congruence of the automaton. For instance, we re-
call the well known algorithm proposed by Moore in 1956 (cf . [11]) with time
complexity O(kn2), where n is the number of states of the DFA and k is the car-
dinality of the alphabet. More efficient is the algorithm provided by Hopcroft in
1971 (cf. [8]). It works by successive refinements and compute the the minimal
automaton in O(kn log n). Besides, such an algorithm is the fastest known solution
to the automata minimization problem.

The Hopcroft’s algorithm has some degrees of freedom due to the fact that at
each iteration of the main loop a free choice is allowed. One of the most relevant
degrees of freedom is related to the fact that in the algorithm an auxiliary data
structure, called waiting set, is used. Such a structure contains some subsets of
the set of all states that are processed in order to produce successive refinements
of the partition of states. Hence, different implementations of the waiting set
involve different executions that could lead to the same sequence of refinements
or not. Each of these executions can involve different running time. In [1] the
authors defined an infinite family of unary cyclic automata associated to the de
Brujin words. They described an execution with running time Ω(n log n) for such
automata and stated that also a linear execution exists. In [13,14] the authors
proved that the absolute worst case for unary automata is reached only for this
kind of automata. Furthermore, they prove that such a worst execution is obtained
when the waiting set is implemented as a queue and they conjectured that the stack
implementation leads to a linear time execution. In [5] we provided an infinite
family of unary cyclic automata for which the execution is unique independently
from the implementation of the waiting set. Such automata are associated to a
very well-known class of words, called standard words [10]. In [5] we proved that
for unary cyclic automata associated to finite Fibonacci words there is a unique
execution with running time Θ(n logn). Such a result is extended in [3].

Although there exist unary automata for which Hopcroft’s algorithm runs ef-
fectively in Θ(n logn), we want to underline that automata minimization can be
achieved in linear time when the alphabet has only one letter (cf. [12]). But,
the solution does not seem to extend to larger alphabet. Motivated by this fact,
in [6,7] we analyzed the tightness of the algorithm when the alphabet contains
more than one letter together with the uniqueness of the refinement process of
the set of states. We defined an infinite family of binary automata associated to
particular finite labeled binary trees, called standard tree, for which the refinement
process during Hopcroft’s algorithm is unique even if there could be different exe-
cutions. Also in the binary case we gave an infinite family of automata associated
to particular standard trees, constructed by using finite Fibonacci words, that are
minimized in Θ(n log n) by the algorithm.

HOPCROFT’S ALGORITHM AND TREE-LIKE AUTOMATA 61

In this paper we study the binary case in detail. We consider automata asso-
ciated to binary trees that we call word trees because constructed by words. We
provide a lower and upper bound for the running time of the algorithm when it
is applied on automata associated to word trees constructed by standard words.
Such bounds are expressed in terms of combinatorial properties of the trees. We
prove that, for this case, such bounds have the same asymptotic growth rate. We
conclude that all the possible executions of Hoprcroft’s algorithm on automata as-
sociated to word trees constructed by standard words produce the same sequence
of refinements and have running time of the same order.

Although in the case of standard word trees the choice of the implementation
of the waiting set does not imply substantial differences in the running time, there
exist binary automata associated to word trees for which some executions have run-
ning times of different order. Indeed, we prove that, in case of binary automata
associated to word trees constructed by de Brujin words, a queue implementation
of the waiting set gives a Θ(n log n) execution while a stack implementation pro-
duces a linear execution. Such a result confirms the conjecture given in [14] in
addition to giving a positive answer also for the binary case.

1. Hopcroft’s algorithm

In 1971 Hopcroft proposed an algorithm for minimizing a deterministic finite
state automaton with n states, over an alphabet Σ, in O(|Σ|n log n) time (cf. [8]).
This algorithm has been widely studied and described by many authors (see for
example [9,15]) cause of the difficult to give its theoretical justification, to prove
correctness and to compute running time.

In Section 1.1 we give a general description of the algorithm by focusing our
attention on its degrees of freedom. In Section 1.2 we describe the behavior of the
algorithm on unary automata by focusing our attention on families of automata
that represent the worst case of the algorithm and for which the algorithm has a
unique execution.

1.1. The algorithm

In Figure 1 we give a brief description of the algorithm’s running.
Given an automaton A = (Q, Σ, δ, q0, F), it computes the coarsest congruence

that saturates F (i.e. F is the union of some of the equivalence classes). Let us
observe that the partition {F, Q \ F}, trivially, saturates F . Given a partition
Π = {Q1, Q2, . . . , Qm} of Q, we say that the pair (Qi, a), with a ∈ Σ, splits the
class Qj if δ−1

a (Qi) ∩ Qj �= ∅ and Qj � δ−1
a (Qi). In this case, the class Qj is split

into Q′
j = δ−1

a (Qi) ∩ Qj and Q′′
j = Qj \ δ−1

a (Qi). Furthermore, we have that a
partition Π is a congruence if and only if for any 1 ≤ i, j ≤ m and any a ∈ Σ, the
pair (Qi, a) does not split Qj .

Hopcroft’s algorithm produces a sequence Π1, Π2, . . . , Πl of successive refine-
ments of a partition of the states and it is based on the so-called “smaller half”
strategy. Actually, it starts from the partition Π1 = {F, Q \ F} and refines it by

62 G. CASTIGLIONE, A. RESTIVO AND M. SCIORTINO

Hopcroft Minimization (A = (Q, Σ, δ, q0, F))
1. Π← {F, Q \ F}
2. for all a ∈ Σ do
3. W ← {(min(F, Q \ F), a)}
4. while W �= ∅ do
5. choose and delete any (C, a) from W
6. for all B ∈ Π do
7. if B is split from (C, a) then
8. B′ ← δ−1

a (C) ∩B
9. B′′ ← B \ δ−1

a (C)
10. Π← Π \ {B} ∪ {B′, B′′}
11. for all b ∈ Σ do
12. if (B, b) ∈ W then
13. W ←W \ {(B, b)} ∪ {(B′, b), (B′′, b)}
14. else
15. W ←W ∪ {(min(B′, B′′), b)}

Figure 1. Hopcroft’s algorithm.

means of splitting operations until it obtains a congruence, i.e. until no split is
possible. To do that it maintains the current partition Πi and a set W ⊆ Πi × Σ,
called waiting set, that contains the pairs for which it has to check whether they
split some classes of the current partition. The main loop of the algorithm takes
and deletes one pair (C, a) from W and, for each class B of Πi, checks if it is split
by (C, a). If it is the case, the class B in Πi is replaced by the two sets B′ and
B′′ obtained from the split. For each b ∈ Σ, if (B, b) ∈ W , it is replaced by (B′, b)
and (B′′, b), otherwise the pair (min(B′, B′′), b) is added to W (with the notation
min(B′, B′′) we mean the set with minimum cardinality between B′ and B′′). Let
us observe that a class is split by (B′, b) if and only if it is split by (B′′, b), hence,
the pair (min(B′, B′′), b) is chosen for convenience.

We call refinement process the sequence of successive refinements i.e. the differ-
ent partitions produced during the execution of the algorithm.

We point out that the algorithm has a degree of freedom because the pair (C, a)
to be processed at each iteration is freely chosen. Another free choice is allowed
when a set B is split into B′ and B′′ with the same size and it is not present in
W . In this case, the algorithm can, indifferently, add to W either B′ or B′′.

Such considerations imply that there can be several refinement processes and
different executions depending on the data structure used to implement the wait-
ing set. Hence, for a given automaton, there could be different executions with
different time complexity.

In the following example we describe two different executions of the Hopcroft’s
algorithm on the same automaton.

HOPCROFT’S ALGORITHM AND TREE-LIKE AUTOMATA 63

1 2 3 4 51
0 0 1 1

1

0
0

1, 0

Figure 2. An automaton for which the Hopcroft’s execution is
not uniquely determined. Initial state is labeled by 1.

Example 1.1. Let us consider the automaton in Figure 2. Two possible different
refinement processes are

Π1 = {[1, 2], [3, 4, 5]}, Π2 = {[1], [2], [3, 4, 5]}, Π3 = {[1], [2], [3, 4], [5]},

Π4 = {[1], [2], [3], [4], [5]},

and

Π1 = {[1, 2], [3, 4, 5]}, Π2 = {[1, 2], [3, 4], [5]}, Π3 = {[1], [2], [3, 4], [5]}

Π4 = {[1], [2], [3], [4], [5]}.

Indeed at the first step the waiting set contains the pairs ([1, 2], 0) and ([1, 2], 1).
If we choose the first pair, the class [1, 2] is split in [1] and [2], if we choose the
second one, the class [3, 4, 5] is split in [3, 4] and [5].

As regards the running time of the algorithm we can observe that the split-
ting of classes of the partition, with respect to the pair (C, a) extracted from the
waiting set, takes a time proportional to the cardinality of the set C. Hence,
the running time of the algorithm is proportional to the sum of the cardinality
of all sets processed. Since the sequence of the extractions from the waiting set
depends on its implementation we have that different implementations could pro-
duce different running time. Hopcroft proved that the running time is bounded
by O(|Σ||Q| log |Q|).

1.2. Unary worst case

In [1] the authors proved that the bound of the Hopcroft’s algorithm is tight.
They provided a family of unary automata for which there exist a sequence of
refinements such that the time complexity of the algorithm is Θ(|Σ||Q| log |Q|).
Such a family is composed of cyclic automata defined as follows.

64 G. CASTIGLIONE, A. RESTIVO AND M. SCIORTINO

1

2
3

4

5

6
7

8

0

0 0

0

0

00

0

Figure 3. Unary cyclic automaton Aw for de Brujin word w = bbbabaaa.

Definition 1.2. Let w be a binary word, where w = a1a2 . . . an is a word of
length n over the binary alphabet A = {a, b}. The cyclic automaton associated to
w, denoted by Aw, is the automaton (Q, Σ, δ, F) such that:

• Q = {1, 2, . . . , n}
• Σ = {0}
• δ(i, 0) = (i + 1), ∀ i ∈ Q \ {n} and δ(n, 0) = 1
• F = {i ∈ Q| ai = b}.

In Figure 3 the automaton associated to de Brujin word bbbabaaa containing
all words of length 3 is depicted. Such automata associated to de Brujin words
are the automata given in [1].

However, for the same automata there exist other sequences of refinements
produced by executions that run in linear time. In [14] the authors considered
the running time of the algorithm for these automata and compute the actual
number of steps. In particular, they proved that the absolute worst case running
time complexity for the Hopcroft’s algorithm for unary automata is reached when
the waiting set is implemented by a FIFO strategy and only for cyclic automata
associated to de Brujin words. Moreover, they proved that an implementation by
a stack is better and they conjectured that such a strategy gives a linear running
time.

In [5] we presented a family of cyclic unary automata for which there is a unique
sequence of refinements and unique execution whatever data structure is chosen
to implement the waiting set.

Furthermore, we defined a subclass of such a family of automata for which the
running time is Θ(|Σ||Q| log |Q|). This is the family of cyclic unary automata
associated to Fibonacci finite words. In Figure 4 the unary cyclic automaton Aw

associated to the Fibonacci word w = abaababa is depicted.
Such a result is stated in the following theorem proved in [5].

Theorem 1.3. Hopcroft’s algorithm on cyclic automata associated to finite
Fibonacci words has a unique execution that runs in time Θ(|Q|log|Q|).

Such a subclass of unary automata was extended in [2].
Actually, unary automata represent a very special case for the automata min-

imization problem. In fact, the minimization can be achieved also in linear time

HOPCROFT’S ALGORITHM AND TREE-LIKE AUTOMATA 65

1

2
3

4

5

6
7

8

0

0 0

0

0

00

0

Figure 4. Unary cyclic automaton Aw for w = abaababa.

when the alphabet has only one letter (cf. [12]). So, in the next section, we study
the time complexity of the algorithm in the binary case.

2. Word trees and tree-like automata

In this section we present a family of binary automata for which we proved
(cf. [7]) that the sequence of refinements of the set of states is unique. Differently
from the unary case, although for these automata the refinement process is unique,
there may be different executions that produce the same sequence of partitions of
the states. Obviously, such executions may have different running time. In the
main result of this section we compute the running time of the algorithm on these
automata both in the best and in the worst execution.

The definition of these automata is based on the notion of binary tree below
described.

Let Σ = {0, 1} and A = {a, b} be two binary alphabets. A binary labeled tree
over A is a map τ : Σ∗ → A whose domain dom(τ) is a prefix-closed subset of Σ∗.
The elements of dom(τ) are called nodes, if dom(τ) has a finite (resp. infinite)
number of elements we say that τ is finite (resp. infinite). The height of a finite
tree τ , denoted by h(τ), is defined as max{|u| + 1, u ∈ dom(τ)}. We say that a
tree τ̄ is a prefix of a tree τ if dom(τ̄) ⊆ dom(τ) and τ̄ is the restriction of τ to
dom(τ̄). A complete infinite tree is a tree whose domain is Σ∗. Besides, a complete
finite tree of height n is a tree whose domain is Σn−1. The empty tree is the tree
whose domain is the empty set.

If x, y ∈ dom(τ) are nodes of τ such that x = yi for some i ∈ Σ, we say
that y is the father of x and in particular, if i = 0 (resp. i = 1) x is the left
son (resp. right son) of y. A node without sons is called leaf and the node ε
is called the root of the tree. Given a tree τ , the outer frontier of τ is the set
Fr(τ) = {xi|x ∈ dom(τ), i ∈ Σ, xi /∈ dom(τ)}.

Example 2.1. In Figure 5 an example of an infinite tree τ is depicted. We have,
for instance, that 0111, 1011 ∈ dom(τ) and 0110, 1001, 1000 ∈ Fr(τ). The nodes
belonging to the outer frontier are represented by a box.

66 G. CASTIGLIONE, A. RESTIVO AND M. SCIORTINO

a

b a

b b a

a a b a b

�

�

� ��

Figure 5. Binary infinite labeled tree.

a

b

b

a

b

b

� �

�

a

b

� �

�

a

b

b

� �

�

a

b

� �

�

a

b

b

� �

�

a

b

� �

�

a

b

a

b

b

� �

�

a

b

� �

�

a

b

b

� �

�

a

b

� �

�

a

b

b

� �

�

a

b

� �

�

Figure 6. The tree τ ◦ τ .

Let τ and τ ′ be two binary labeled trees. We have that τ is a subtree of τ ′ if
there exists a node v ∈ dom(τ ′) such that:

(i) v · dom(τ) = {vu|u ∈ dom(τ)} ⊆ dom(τ ′)
(ii) τ(u) = τ ′(vu) for all u ∈ dom(τ).

In this case we say that τ is a subtree of τ ′ that occurs at node v.
We use the operation of simultaneous concatenation defined in [6]. The tree

τ1 ◦ τ2 is the simultaneous concatenation of τ2 to all the nodes of Fr(τ1), i.e. the
root of τ2 is attached to all the nodes of the outer frontier of τ1. More formally, it
is defined as follows:

(i) dom(τ1 ◦ τ2) = dom(τ1) ∪ Fr(τ1)dom(τ2);

(ii) ∀x ∈ dom(τ1◦τ2), τ1◦τ2(x) =
{

τ1(x) if x∈dom(τ1)
τ2(y) if x=zy, z∈Fr(τ1), y∈dom(τ2).

Let τ be a tree, with τω the infinite simultaneous concatenation τ ◦ τ ◦ τ ◦ . . .
is denoted. Notice that, by infinitely applying the simultaneous concatenation, a
complete infinite tree is obtained. In Figure 6, τ ◦ τ is depicted, where τ is defined
in Figure 7a.

In what follows we recall some notions and definitions about trees given in [6].
We define factor of a tree a finite complete subtree of the tree.

HOPCROFT’S ALGORITHM AND TREE-LIKE AUTOMATA 67

Figure 7. A finite tree τ and its circular factors of height 2.

Let τ be a tree, and let σ and σ̄ be two factors of τ such that σ̄ is the complete
prefix of σ of height h(σ) − 1, then σ is called an extension of σ̄ in τ . A factor σ
of a tree τ is extendable in τ if there exists at least one extension of σ in τ .

A factor σ of τ is 2-special if there exist exactly two different extensions of σ in
τ .

We say that γ is a circular factor of τ if it is a factor of τω with h(γ) ≤ h(τ). A
circular factor γ of τ is a special circular factor if there exist at least two different
extensions of γ in τω (that we can call circular extensions or simply extensions).
A special factor is called 2-special circular factor if it has exactly two different
extensions.

Example 2.2. In Figure 7a, a tree τ and three of its circular factors are depicted.
The single node labeled by b is a 2-special circular factor indeed it has two different
extensions depicted in Figures 7b and 7c. The single node labeled by a has a unique
extension depicted in Figure 7d.

The concept of circular factor can be easily understood by noting that in the
case of unary tree it coincides with the well-known notion of circular factor of a
word.

With reference to a characterization of the notion of circular standard word
given in [4], we say that a finite tree τ is a standard tree if for each 0 ≤ h ≤ h(τ)−2
it has only a 2-special circular factor of height h.

In this section we analyze some particular binary trees that are close related to
the combinatorial notion of word. Such trees were investigated also in [6,7] and
here we recall some definitions and results that are preliminary for the goal of this
section.

Given two words v = v1v2 . . . vn−1 ∈ Σ∗ and w = w1w2 . . . wn ∈ A∗, by τv,w we
denote the labeled tree τv,w such that dom(τv,w) is the set of prefixes of v and the
map is defined as follows:

{
τv,w(ε) = w1

τv,w(v1v2 . . . vi) = wi+1 ∀1 ≤ i ≤ n − 1.
We call word tree the finite labeled tree τv,w. When v is obtained by taking the

prefix of length n − 1 of w and by substituting a’s with 0’s and b’s with 1’s, we
use the simpler notation τw. In Figure 8, a word tree τw with w = abaababa is
depicted.

68 G. CASTIGLIONE, A. RESTIVO AND M. SCIORTINO

a

b

a

a

b

a

b

a

Figure 8. The word tree τw with w = abaababa.

In this paper we focus on word trees τw such that w is a standard word.
We recall the well known notion of standard word. Let d1, d2, . . . , dn, . . . be

a sequence of natural integers, with d1 ≥ 0 and di > 0, for i = 2, . . . , n,
Consider the following sequence of words {sn}n≥0 over the alphabet A: s0 = b,
s1 = a, sn+1 = sdn

n sn−1 for n ≥ 1. Each finite word sn in the sequence is
called standard word. It is uniquely determined by the (finite) directive sequence
(d0, d1, . . . , dn−1). In the special case where the directive sequence is of the form
(1, 1, . . . , 1, . . .) we obtain the sequence of Fibonacci words.

In [7] we proved the following result.

Proposition 2.3. w is a standard word if and only if the word tree τw is a standard
tree.

Remark 2.4. Note that previous proposition is a consequence of a result given
in [7] stating that there exists a one-to-one correspondence between the set of
circular factors of a word w and the set of circular factors of τw, in the sense that
the occurrences of a factor of τw univocally individuate the occurrences of the
corresponding factors in w.

Given a word tree τv,w we can uniquely associate an automaton Aτv,w called
tree-like automaton having τv,w as skeleton and such that for each missing edge
in the tree we add a transition to the root of the tree. Moreover, the root is the
initial state and the states corresponding to nodes labeled by a (resp. b) are not
final (resp. final) states. When v is obtained by taking the prefix of length n − 1
of w and by substituting a’s with 0’s and b’s with 1’s, we use the simpler notation
τw for the word tree and Aτw for the corresponding automaton.

Example 2.5. In Figure 9 the automaton associated to the word tree of Figure 8
is depicted. The automaton in Figure 2 is the tree-like automaton associated to
the word tree τw with w = aabbb.

We define standard tree-like automaton a tree-like automaton Aτ associated to
a standard word tree τ .

HOPCROFT’S ALGORITHM AND TREE-LIKE AUTOMATA 69

1
2

3

4
5

6

7

8

1

0

1
0

0

1

0

1

1

0

0

1

1 0

0
1

Figure 9. The tree-like automaton Aτw associated to the word
tree τw with w = abaababa.

We proved in [6,7] that for these automata the refinement process of Hopcroft’s
algorithm is uniquely determined whatever execution is realized. In particular
we gave the exact description of the partitions of states during each execution of
the algorithm. Actually, there exists a close relation between the split operation
during the execution of Hopcroft’s algorithm on a standard tree-like automaton
and the existence of a circular 2-special circular factor of the standard word-tree
associated. In few words, since there is a unique 2-special circular factor for each
height in the word tree then at most a unique split of a class occurs at each
iteration. We report such a result in Proposition 2.6.

Note that, in this context we do not focus our attention on the language rec-
ognized by the tree-like automaton because it is not relevant for our purpose.
The relative positions of the final states and the transitions in such automata are
fundamental to prove our statements, instead.

Let Aτ = (Q, Σ, δ, q0, F) be a tree-like automaton. For any circular factor σ of
τ , we define the subset Qσ of states of Aτ that are occurrences of σ in τ . Trivially,
we have that Qε = Q, Qb = F and Qa = Q \ F .

Proposition 2.6. Let Aτ be a standard tree-like automaton. Let Qσ and Qγ be
classes of a partition of Q. If (Qγ , x) splits Qσ, for some x ∈ Σ, with h(γ) = h(σ),
then σ is a 2-special circular factor of τ . The resulting classes are Qσ′ and Qσ′′ ,
where σ′ and σ′′ are the only two possible extensions of σ in τ . Viceversa, if σ is
a 2-special circular factor of τ and Qσ is a class of a partition of Q then Qσ is
split in Qσ′ and Qσ′′ where σ′ and σ′′ are the unique two extensions of σ in τ .

Each time we extract a pair from the waiting set it can either cause some splits
or not. Hence, at each iteration of the main loop of the algorithm the current par-
tition can be either equal to or different from that one of the previous iteration.
Then, we call refinement process the sequence Π1, Π2, . . .Πm of the different parti-
tions produced during a possible execution of the algorithm, where Π1 = {F, Q\F}
and Πm is the partition corresponding to Nerode equivalence. We recall the fol-
lowing theorem (cf. [6,7]) stating that in case of standard tree-like automata, the
refinement process of Hopcroft’s algorithm is unique whatever strategy is used for
choosing and deleting any pair from the waiting set. Actually such a result has

70 G. CASTIGLIONE, A. RESTIVO AND M. SCIORTINO

been proved for a more general class of binary automata associated to standard
trees.

Theorem 2.7. Let Aτ be a standard tree-like automaton. The refinement process
Π1, Π2, . . . Πm is uniquely determined. Furthermore, m = h(τ) − 1 and for each
1 ≤ k ≤ h(τ) − 1,

Πk = {Qσ| σ is a circular factor of τ with h(σ) = k}.

Note that from this results it follows that each standard tree-like automaton is
minimal.

As mentioned before, the uniqueness of the refinement process does not neces-
sarily imply the uniqueness of the execution.

The aim of this section is to compute the running time of Hopcroft’s algorithm
on standard tree-like automata in the best and worst execution. We report the
following lemma proved in [7] that we use in such a computation.

Lemma 2.8. Let τw be a standard word tree and let Aτw be the automaton associ-
ated. Let σ and γ be two circular factors of τw having the same height. If (Qγ , 0)
(resp. (Qγ , 1)) splits Qσ then (Qγ , 1) (resp. (Qγ , 0)) either does not split Qσ.

We know that for each automaton A with n states several executions of the
algorithm can exist. We denote by t(n) the running time of the current execution
of Hopcroft’s algorithm to minimize A.

In the following theorem we express the running time of the best and the worst
execution of Hopcroft’s algorithm on a standard tree-like automata in terms of the
occurrences of 2-special circular factors of the standard word tree. With sp(τw)
we denote the set of 2-special circular factors of τw.

Theorem 2.9. Let w be a standard word of length n and let Aτw be the standard
automaton associated to the standard tree τw. Each execution of Hopcroft’s algo-
rithm on this automaton has a running time satisfying the following inequalities:

∑
σ∈sp(τw)

min(|Qσ′ |, |Qσ′′ |) + n − 1 ≤ t(n) ≤ 2
∑

σ∈sp(τw)

min(|Qσ′ |, |Qσ′′ |).

Proof. The second inequality is proved in [6,7]. We prove the first one by comput-
ing the running time of the best execution of the algorithm on the automaton.

One can verify that since τw is a standard word tree if Qγ splits Qσ in Qσ′ and
Qσ′′ then |Qσ′ | = |Qγ | and |Qσ′′ | = |Qσ| − |Qγ |.

Let Π1, Π2, . . . , Πn−1 be the unique sequence of refinements of the set of the
states. There exists a unique set of classes P = {Qσ1 , Qσ2 , . . . , Qσn−1} such that
for each 1 ≤ i ≤ n − 1 one has that Qσi is never added to the waiting set and
Qσi ⊃ Qσi+1 .

As soon as a class Qσi ∈ P is split, the minimal class between Qσ′
i

and Qσ′′
i

is
added to the waiting set paired both with 0 and 1, the other one is a class of P too.
By iterating this process, starting from Qσ1 = Q up to Qσn−1 (that is a singleton

HOPCROFT’S ALGORITHM AND TREE-LIKE AUTOMATA 71

1
2

3

4
5

6

7

8

1

0

0
1

0

1

0

1

0

1

0

1

0 1

1
0

Figure 10. The tree-like automaton Aτw associated to the word
tree τw with w = aaaaaaab.

by the minimality of the automaton) we have that the sum of the cardinality of
all these minimal classes resulting by these kind of splits is equal to n − 1.

All the classes not belonging to P and included in some partition of the set of
states will be added to the waiting set after some splits. The best execution of the
algorithm is obtained by extracting at each iteration the unique (see Prop. 2.6 and
Lem. 2.8) splitter pair. By following such a strategy, if (Qσ, x) is in the waiting
set and it is not a splitter then it will be never extracted but, when Qσ is split,
(Qσ, x) will be replaced by (Qσ′ , x) and (Qσ′′ , x), that are not splitter too, and
the pair (min(Qσ′ , Qσ′′), y), with y �= x, will be added to the waiting set. On the
contrary, the pair added after the split of a class in P contributes one more time
to the size of the waiting set. At each step of the refinement process during this
execution, if σ is a 2-special circular factor either (Qσ, x) is in the waiting set, for
some x, or Qσ belongs to P . In any case, the pair (min(Qσ′ , Qσ′′), y) is added
with y �= x, in particular, if Qσ ∈ P , (min(Qσ′ , Qσ′′), x) is added too. The new
class added it will be the new splitter with respect to either 1 or 0. Then, the
running time is

t(n) ≥
∑

σ∈sp(τw)

min(|Qσ′ |, |Qσ′′ |) + n − 1.

�

The following two examples describe two family of standard tree-like automata
for which the running time is Θ(n) and Θ(n logn), respectively.

Example 2.10. Let us consider the standard word w = an−1b. The associated
tree-like automaton is depicted in Figure 10. In this case |F | = 1 and |Q\F | = n−1.
Then, after each split, a singleton paired with both 0 and 1 will be added to the
waiting set. One can easily verify that the execution is unique and its running
time is t(n) = 2(n − 1).

Example 2.11. Let fn be the n-th finite Fibonacci word and let Aτfn
be a stan-

dard automaton associated to the standard tree τfn , with n ≥ 0. We denote by
Fn the number of the states of Aτfn

, i.e. Fn = |fn|. As stated in a theorem proved
in [7], the family of standard tree-like automata associated to Fibonacci words

72 G. CASTIGLIONE, A. RESTIVO AND M. SCIORTINO

1
2

3

4
5

6

7

8

0

1

0
10

1

0

1

1

0

0

1

0 1

0
1

Figure 11. The tree-like automaton Aτw associated to the word
tree τw with w = bbbabaaa.

represents a worst case for Hoprcroft’s algorithm. Each execution of Hopcroft’s
algorithm on this automaton has a running time that satisfies the following in-
equalities:

K

φ
Fn log Fn + Fn − 1 ≤ t(Fn) ≤ 2KFn log Fn,

where K = 3
5logφ ·

Note that, as we can deduce by the proof of the Theorem 2.9, the best and the
worst executions do not always correspond with the implementation by stack and
queue of the waiting set, respectively. On the other hand, in case of the tree-like
automata associated to standard word trees, the theorem states also that the order
of the running time of any execution of the algorithm on such automata does not
depend by the strategy to implement the waiting set. Instead, there exist binary
automata associated to word trees for which the choice of the implementation
significantly influences the order of the running time. The following two theorems
confirm such a statement by exhibiting two executions of Hopcroft’s algorithm on
tree-like automata associated to de Brujin words. The first one is performed by
implementing the waiting set as a stack and the second one by using a queue. In
Figure 11 the tree-like automaton associated to de Brujin word bbbabaaa of order
3 is depicted.

Theorem 2.12. Let w be any de Brujin word of order n and let Aτw be the
associated tree-like automaton. Then, there exists an execution that use a stack
implementation of the waiting set such that t(N) = Θ(N), where N = 2n is the
number of states of Aτw .

Proof. Let w be any de Brujin word of order n and let τw be the associated word
tree. We show an execution of Hopcroft’s algorithm on the automaton Aτw by
implementing the waiting set as a stack. Since each class that will be pushed in
the waiting set will be paired with both 0 and 1, we choose to insert the pair (C, 0)
and then (C, 1). In this way, (C, 1) will be processed always before than (C, 0).

Note that, when a class B of the partition is split into B′ and B′′, and the pair
(B, x) belongs to the waiting set for some x, we substitute (B, x) with (B′) and we
push (B′, 0) and (B′′, 1) where |B′| > |B′′|. The case |B′| = |B′′| will be discussed

HOPCROFT’S ALGORITHM AND TREE-LIKE AUTOMATA 73

in the following. By using the one-to-one correspondence between the set of circu-
lar factors of τw and the set of circular factors of w described in Remark 2.4, if u is
a circular factor of w, we denote by Qu the set of states of Aτw that are occurrences
of the corresponding circular factor of τw. With this notation Qb and Qa are the
set of final and not final states, respectively. Note that |Qa| = |Qb| = 2n−1 = N/2,
where N is the number of the states of Aτw . We choose to push in the waiting set
W the pair (Qb, 0) and then (Qb, 1). Then the pair (Qb, 1) is extracted. It splits Qb

into Qba and Qbb with |Qba| = |Qbb| = 2n−2. We replace (Qb, 0) with (Qba, 0) and
we push (Qbb, 0) and (Qbb, 1). More in general, when Qu is split and halved into
Qua and Qub and (Qu, 0) belongs to the waiting set, we choose to substitute (Qu, 0)
with (Qua, 0) and add (Qub, 0) and (Qub, 1) to the stack. Then, after the first split
the waiting set is W = {(Qba, 0), (Qbb, 0), (Qbb, 1)} and the partial running time is
t(n) = 2n−1. Since w is any de Brujin word of order n, (Qbb, 1) splits Qbb into Qbba

and Qbbb with |Qbba| = |Qbbb| = 2n−3. As before we substitute the pair (Qbb, 0)
with (Qbba, 0) and we push (Qbbb, 0) and (Qbbb, 1). By iterating such a process, at
i-th iteration the pair (Qbi , 1) is extracted and the class Qbi is split and halved
into Qbia and Qbi+1 with 1 ≤ i ≤ n − 1. Note that Qbn is a singleton and since
w is any de Brujin word (Qbn , 1) does not produce any split. Then the running
time up to now is t(n) = 2n−1 + 2n−2 + · · · + 2n−(n−1) + 2n−n = N − 1 and W =
{(Qba, 0), (Qbba, 0), . . . , (Qbn−1a, 0), (Qbn , 0)}. Note that Qbn is a singleton and
(Qbn , 0) splits Qa into a singleton Qabn−1 and its complement. Then t(n) = N −
1 + 1 = N and W = {(Qba, 0), (Qbba, 0), . . . , (Qbn−1a, 0), (Qabn−1 , 0), (Qabn−1 , 1)}.
The sum of the cardinality of the sets in W except the last two is |W | = 2n−2 +
2n−3 + · · ·+ 1 = N/2− 1. Note that from this step on, each class of the partition
will be split into two subsets one of which is a singleton. If a subset of Qa is
split by a pair ({p}, 0), a singleton paired with both 0 and 1 will be pushed in
the waiting set. This involves to add two pair of the form ({s}, 0) and ({s}, 1)
after each split, as for (Qabn−1 , 0) and (Qabn−1 , 1), so the running time increases
by 2(N/2 − 1). Instead, if a subset of Qb is split by a pair ({p}, 1), a class of the
form Qbia will be split into a singleton {s} and its complement {s}c. So, the pair
(Qbia, 0) will be substituted by ({s}c, 0) in loco and ({s}, 0) and ({s}, 0) will be
pushed into the stack. In this way, each split of a subset of Qb leads to add 1
to the running time until all singletons are obtained. Then the running time is
increased by 2n−2 − 1 + 2n−3 − 1 + · · · + 2 − 1 = 2n−1 − n = N/2 − log N , then
t(n) = N + N/2 − 1 + 2(N/2 − 1) + N/2 − log N = 3N + 1 − log N = Θ(N). �

The strategy used in the proof of the previous theorem can be easily adapted to
the unary case, leading to a linear execution that uses a stack implementation of
Hopcroft’s algorithm applied to the unary cyclic automata associated to de Brujin
words. See for instance Figure 3. Indeed, the sequence of splits and refinements
is the same. The substantial difference is that each class C that is added to the
stack is paired only with a letter of the alphabet, i.e. only the pair (C, a) is inserted
instead of the two pairs (C, a) and (C, b). It is easy to see that whereas in binary
case the pairs (C, a) and (C, b) one class for each, in the unary case, the pair (C, a)
splits both the classes.

74 G. CASTIGLIONE, A. RESTIVO AND M. SCIORTINO

Theorem 2.13. Let w be any de Brujin word of order n and let Aτw be the
associated tree-like automaton. Then, there exists an execution that uses a queue
implementation of the waiting set such that

t(N) = N log N,

where N = 2n is the number of states of Aτw .

Proof. To prove the statement we adapt to the binary case the strategy used in [1]
to prove that the unary cyclic automata associated to the de Brujin words of order
n are a worst case of the algorithm with running time N

2 log N . In [14] it is proved
that such a strategy can be realized by implementing the waiting set as a queue
and it represents the absolute worst case of the algorithm. We consider a sequence
(Pk,Sk), with k = 1 . . . , n, where Pk and Sk are the partition and the waiting set
given by

Pk = {Qu|u ∈ Ak} and Sk = {(Qv, x)|v ∈ Ak−1b, x ∈ Σ}.

In particular, P1 = {Qa, Qb} and S1 = {(Qb, 0), (Qb, 1)}. For each class C that
will be enqueued to the waiting set we choose to enqueue (C, 0) and then (C, 1)
so (C, 0) will be processed before than (C, 1). Note that, differently from the
unary case, each pair splits exactly one class of the partition. The configuration
(Pk+1,Sk+1) is obtained from (Pk,Sk) after 2k iterations of the main loop of the
algorithm. During each iteration a pair (Qub, x) is removed from the queue Sk

and splits one class that either does not belong yet to Sk or it is no longer in Sk.
Note that, the pair (Qub, 0) does not split Qub and (Qub, 1) could split Qub but,
when this split occurs, neither (Qub, 0) nor (Qub, 1) are in the waiting set anymore.
To compute the running time of such an execution we sum the sizes of all sets in
the waiting set. If (Qv, x) ∈ Sk then |Qv| = 2n−k and v = ub is a factor of w of
length k. Hence we have that t(n) = 2

∑n
k=1 2k−12n−k = n2n. �

References

[1] J. Berstel and O. Carton, On the complexity of Hopcroft’s state minimization algorithm, in
CIAA. Lecture Notes in Computer Science 3317 (2004) 35–44.

[2] J. Berstel, L. Boasson and O. Carton, Continuant polynomials and worst-case behavior of
Hopcrofts minimization algorithm. Theoret. Comput. Sci. 410 (2009) 2811–2822.

[3] J. Berstel, L. Boasson, O. Carton and I. Fagnot, Sturmian trees. Theor. Comput. Syst. 46
(2010) 443–478.

[4] J.P. Borel and C. Reutenauer, On Christoffel classes. RAIRO-Theor. Inf. Appl. 450 (2006)
15–28.

[5] G. Castiglione, A. Restivo and M. Sciortino, Hopcroft’s algorithm and cyclic automata, in
LATA. Lecture Notes in Computer Science 5196 (2008) 172–183.

[6] G. Castiglione, A. Restivo and M. Sciortino, On extremal cases of hopcroft’s algorithm, in
CIAA. Lecture Notes in Computer Science 5642 (2009) 14–23.

[7] G. Castiglione, A. Restivo and M. Sciortino, On extremal cases of hopcroft’s algorithm.
Theoret. Comput. Sci. 411 (2010) 3414–3422 .

HOPCROFT’S ALGORITHM AND TREE-LIKE AUTOMATA 75

[8] J.E. Hopcroft, An n log n algorithm for mimimizing the states in a finite automaton, in
Theory of machines and computations (Proc. Internat. Sympos. Technion, Haifa, 1971).
Academic Press, New York (1971), 189–196.

[9] T. Knuutila, Re-describing an algorithm by Hopcroft. Theoret. Comput. Sci. 250 (2001)
333–363.

[10] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Ap-
plications 90. Cambridge University Press (2002).

[11] E.F. Moore, Gedaken experiments on sequential, in Automata Studies. Annals of Mathe-
matical Studies 34 (1956) 129–153.

[12] R. Paige, R.E. Tarjan and R. Bonic, A linear time solution to the single function coarsest
partition problem. Theoret. Comput. Sci. 40 (1985) 67–84 .

[13] A. Paun, M. Paun and A. Rodŕıguez-Patón, Hopcroft’s minimization technique: Queues or
stacks? in CIAA. Lecture Notes in Computer Science 5148 (2008) 78–91.

[14] A. Paun, M. Paun and A. Rodŕıguez-Patón, On the hopcroft’s minimization technique for
dfa and dfca. Theoret. Comput. Sci. 410 (2009) 2424–2430.

[15] B. Watson, A taxonomy of finite automata minimization algorithms. Technical Report
93/44, Eindhoven University of Technology, Faculty of Mathematics and Computing Sci-
ence (1994).

Communicated by A. Cherubini.
Received January 22, 2010. Accepted November 18, 2010.

	Introduction
	Hopcroft's algorithm
	The algorithm
	Unary worst case

	Word trees and tree-like automata
	References

