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AN INTRODUCTION TO QUANTUM ANNEALING

Diego de Falco
1

and Dario Tamascelli
1

Abstract. Quantum annealing, or quantum stochastic optimization,
is a classical randomized algorithm which provides good heuristics for
the solution of hard optimization problems. The algorithm, suggested
by the behaviour of quantum systems, is an example of proficuous
cross contamination between classical and quantum computer science.
In this survey paper we illustrate how hard combinatorial problems are
tackled by quantum computation and present some examples of the
heuristics provided by quantum annealing. We also present preliminary
results about the application of quantum dissipation (as an alternative
to imaginary time evolution) to the task of driving a quantum system
toward its state of lowest energy.
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1. Introduction

Quantum computation stems from a simple observation [19,23]: any compu-
tation is ultimately performed on a physical device; to any input-output relation
there must correspond a change in the state of the device. If the device is micro-
scopic, then its evolution is ruled by the laws of quantum mechanics.

The question of whether the change of evolution rules can lead to a breakthrough
in computational complexity theory is still unanswered [11,34,40]. What is known
is that a quantum computer would outperform a classical one in specific tasks such
as integer factorization [47] and searching an unordered database [28,29]. In fact,
Grover’s algorithm can search a keyword quadratically faster than any classical
algorithm, whereas in the case of Shor’s factorization the speedup is exponential.
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However, since factorization is in NP1 but not believed to be NP-complete, the
success of factorization does not extend to the whole NP class.

Nonetheless, quantum computation is nowadays an active research field and rep-
resents a fascinating example of two way communication between computer science
and quantum physics. On one side, computer science used quantum mechanics to
define a new computational model, on the other the language of information and
complexity theory has allowed a sharper understanding of some aspects of quan-
tum mechanics.

Moreover, it is clear that quantum mechanics will sooner or later force its way
into our classical computing devices: Intel r© has recently (Feb. 20102) announced
the first 25 nm NAND logical gate: 500 Bohr radii.

In this paper we present an introduction to quantum adiabatic computation
and quantum annealing, or quantum stochastic optimization, representing, respec-
tively, a quantum and a quantum-inspired optimization algorithm. In Section 2 we
introduce the class of problems that are hard for a quantum computer. We con-
sider the problem 3-SAT, its mapping into a quantum problem and the quantum
adiabatic technique. In Section 3 we describe quantum annealing, a classical algo-
rithm which captures the features of the quantum ground state process to provide
good heuristics for combinatorial problems. Section 4 is devoted to dissipative
quantum annealing and to the presentation of preliminary heuristic results on the
dynamics of a dissipative system. Concluding remarks and possible lines of future
research are presented in the last section.

2. Transition to the quantum world

The need of considering the features of quantum computing devices led to the
definition of the quantum counterpart of some classical complexity classes. Quan-
tum algorithms are intrinsically probabilistic, since the result of the measurement
of an observable of a quantum system is a random variable. Not surprisingly, the
quantum correspondent of P is BQP (bounded-error quantum polynomial-time),
the class of decision problems solvable in polynomial time by a quantum Turing
machine, with error probability at most 1/3.

QMA (Quantum Merlin Arthur) is the quantum counterpart of the class NP [50].
It is defined as the class of decision problems such that a “yes” answer can be ver-
ified by a 1-message quantum interactive proof. That is: a quantum state (the
“proof”) is given to a BQP (i.e. quantum polynomial-time) verifier. We require
that if the answer to the decision problem is “yes” then there exists a state such
that the verifier accepts with probability at least 2/3; if the answer is “no” then
for all states the verifier rejects with probability at least 2/3.

1To be more precise, factorization is in FNP, the function problem extension of NP. The
decision problem version of factorization (given an integer N and an integer M with 1 ≤ M ≤ N ,
does N have a factor d with 1 < d < M?) is in NP.

2http://www.intel.com/pressroom/archive/releases/2010/20100201comp.htm

http://www.intel.com/pressroom/archive/releases/2010/20100201comp.htm
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All the known complete problems for the class QMA are promise problems,
i.e. decision problems where the input is promised to belong to a subset of all
possible inputs. An example of QMA-complete problem is the k-local Hamiltonian
problem:
INSTANCE: a collection {H1, H2, . . . , Hn} of Hamiltonians each of which acts on
at most k qubits; real numbers a, b such that b− a = O(1/poly(n)).
QUESTION: is the smallest eigenvalue of

∑n
j=1Hj less than a or greater than b,

promised that this is the case?
It has been shown that this decision problem is complete for the class QMA

even in the case of 2-local Hamiltonians [34].
The well known problems k-SAT, which are complete for NP for k ≥ 3, can be

encoded in a k-local Hamiltonian problem.
For instance, let us consider a given boolean formula:

C1 ∧C2 ∧ . . . ∧CM

over the variables x1, x2, . . . , xN ; each Ci is the disjunction (bi1 ∨ bi2 ∨ . . . ∨ bik
)

and bi is either xi or its negation ¬xi. Our problem is to decide whether there is
an assignment to the boolean variables x1, x2, . . . , xN that satisfies all the clauses
simultaneously.

Given a clause Ci = (bi1 ∨ bi2 ∨ . . . ∨ bik
) we define the local function:

fCi(x1, x2, . . . , xN ) =
∏

ij∈Λi
+

(1− xij ) ·
∏

ij∈Λi
−

xij

Λi
−, Λi

+ containing all the indices of the variables that compare negated or not
negated in the clause Ci respectively. Given an assignment (x1, x2, . . . , xN ), the
function fCi will return 0 if the clause Ci is satisfied, 1 otherwise.

The cost V (x1, x2, . . . , xN ) of an assignment can be defined therefore in terms
of the functions fCi as:

V (x1, x2, . . . , xN ) =
M∑
i=1

fCi(x1, x2, . . . , xN ),

that is the total number of violated clauses. An instance of k-SAT is therefore
satisfiable if there exists a configuration of zero cost.

The translation of a k-SAT problem to the corresponding k-local Hamiltonian,
problem is straightforward.

To each variable xi we assign a qubit, i.e. a 2-level quantum system. For the
sake of definiteness we will consider spins (σ1(i), σ2(i), σ3(i)), i = 1, 2, . . . , N and
their component σ3(i) along the z axis of a given reference frame as computational
direction. Furthermore, we decide that if an assignment assigns the value 1 (true)
to the variable xi then the corresponding qubit is in the state σ3(i) = +1 (spin
up) and in the state σ3(i) = −1 otherwise.
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To each clause we associate the Hamiltonian term:

Hi =
∏

ij∈Λi
+

1− σ3(ij)
2

×
∏

ij∈Λi
−

1 + σ3(ij)
2

, (2.1)

which acts non trivially only on k qubits. The total Hamiltonian:

H =
M∑
i=1

Hi (2.2)

is k-local and plays the role of a cost function: if an assignment satisfies all the
clauses simultaneously then the corresponding energy is zero. Otherwise the energy
would be equal to the number of violated clauses, thus > 0.

The k-local Hamiltonian problem associated to k-SAT is a particular case of
the k-QSAT problem, which is formulated as follows:
INSTANCE: Hamiltonian H =

∑M
j=1 Pj acting on N qubits, where each Pj is

projector on a 2k dimensional subspace of the whole (2N ) dimensional Hilbert
space.
QUESTION: Is the ground state energy E0 of H zero, promised that either E0 = 0
or E0 > 1/poly(N)?

If each Pj projects on an element of the computational basis, we obtain the
k-local Hamiltonian associated to k-SAT by the construction described above.

Interestingly enough it is proved that 4-QSAT is QMA complete whereas 2-
QSAT is in P [14]. For 3-QSAT the answer is not known.

Quantum adiabatic computation [22] was welcomed by the quantum computing
community due to the preliminary good results produced when applied to small
random instances of NP-complete problems [21,22,51] and its equivalence to the
quantum circuital model [1].

The computational paradigm is based on the well known adiabatic
theorem [5,13]. Given a time T > 0 and two Hamiltonians HI and HT we consider
the time dependent Hamiltonian:

H(t) = tHT + (T − t)HI , 0 ≤ t ≤ T, (2.3)

or, equivalently,

H̃(s) = H

(
t

T

)
, 0 ≤ s ≤ 1.

Let us indicate with |s; ek(s)〉 the instantaneous eigenvector of H̃(s) corresponding
to the instantaneous eigenvalue ek(s) with e0(s) ≤ e1(s) ≤ . . . ≤ en(s), 0 ≤ s ≤ 1
and by | ψ(s) 〉 the solution of the Cauchy problem:

⎧⎨
⎩
i d
ds | ψ(s) 〉 = H̃(s)| ψ(s) 〉
| ψ(0) 〉 = | 0; e0(0) 〉.
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The adiabatic theorem states that, if the time T satisfies

T � ξ

g2
min

, (2.4)

where gmin is the minimum gap

gmin = min
0≤s≤1

(e1(s)− e0(s))

and

ξ = max
0≤s≤1

∣∣∣∣∣〈 s; e1(s) |
dH̃
ds
| s; e0(s) 〉

∣∣∣∣∣ ,
then |〈 1; e0(1) | ψ(1) 〉| can be made arbitrarily close to 1. In other words if we
start in the state | 0; e0(0) 〉 we will end up in the ground state | T ; e0(T ) 〉 of
the target Hamiltonian HT . In practical cases ξ is not too large; thus the size
of T is governed by g−2

min: the smaller gmin the slower must be the change rate
of the Hamiltonian if we want to avoid transitions (the so called Landau-Zener
transitions [53]) from the ground state to excited states.

The adiabatic method can be used to find the unknown ground state of an
Hamiltonian HT . We can start from the known (or easy to prepare) ground
state of an auxiliary Hamiltonian HI and consider the time dependent convex
combination (2.3).

For example let us consider the 3-SAT problem [21]: we need to understand if
the ground state of the Hamiltonian (2.2) has energy 0 or not. We set the target
Hamiltonian HT to H . As initial Hamiltonian we consider the Hamiltonian

HI = −
∑

i

σ1(i),

having a ground state easy to prepare (all the spins aligned along positive x di-
rection).

The time T required to fulfill the hypotheses of the adiabatic theorem is then
the cost in time of the algorithm and is determined by the gap gmin.

The results obtained in the seminal paper by Farhi et al. [21] on small random
instances of 3-SAT suggested that the gap gmin scaled polynomially with the
problem size. However, subsequent results [3,6,44,49,54] proved that gmin can be
exponentially small. It has been even shown that adiabatic quantum computation
can perform worse than other heuristic classical and quantum algorithms on some
instance of 3-SAT [30].

Though these results do not prove that 3-SAT is QMA-complete, they hint
nevertheless that 3-SAT is hard for quantum computers as well. Recent studies
focused on determining why 3-QSAT has instances which are hard for adiabatic
quantum computation and what general features they possess. The idea is to use
typical, but not necessarily worst, random cases with a specific density of clauses
α = M

N (M number of clauses, N number of variables) and to investigate how
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gmin varies (on the average) as a function of α. We refer the interested reader
to [6,39,40] and references therein.

3. Quantum annealing

So far we discussed if and how quantum computational devices could be used
to tackle problems which are hard to solve by classical means. In this section we
present a class of classical heuristics (i.e. algorithms meant to be run on classical
computational devices) suggested by the behaviour of quantum systems.

Many well-known heuristic optimization techniques [43] are based on natural
metaphors: genetic algorithm, particle swarm optimization, ant-colony algorithms,
simulated annealing and taboo search. In simulated annealing [35], for example,
the space of admissible solutions to a given optimization problem is visited by
a temperature dependent random walk. The cost function defines the potential
energy profile of the solution space and thermal fluctuations avoid that the ex-
ploration gets stuck in a local minimum. An opportunely scheduled temperature
lowering (annealing), then, stabilizes the walk around a, hopefully global, mini-
mum of the potential profile.

The idea of using quantum, instead of thermal, jumps to explore the solution
space of a given optimization problem was proposed in references [8,9]3. It was
suggested by the behaviour of the stochastic process [2,20] qν associated with the
ground state (state of minimal energy) of a Hamiltonian of the form:

Hν = −ν
2

2
∂2

∂x2
+ V (x), (3.1)

where the potential function V encodes the cost function to be minimized.
For any fixed ν, once given the ground state ψν of Hν , the stochastic process

qν can be built by the ground state transformation [2]: let ψν ∈ L2(R, dx) be the
ground state of the Hamiltonian (3.1). Under quite general hypotheses on the po-
tential V , the ground state ψν can be taken strictly positive. The transformation:

U : ψ → Uψ =
ψ

ψν
,

or ground state transformation, is well defined and unitary from L2(R, dx) to
L2(R,ψ2

νdx). Under this transformation, Hν takes the form:

Hν = UHνU
−1 = −νLν + Eν

where

Lν =
1
2
ν

d2

dx2
+ bν

3For the connection with the QAC of the previous section we refer the reader to [46].
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Figure 1. Thermal jumps, which in SA allow the exploration of
the solution space, are substituted, in QA, by quantum jumps
(tunneling).

has the form of the generator of a diffusion process qν on the real line, with drift

bν(x) =
1
2

d
dx

ln
(
ψ2

ν(x)
)
.

The behaviour of the sample paths of the stationary ground state process qν is
characterized by long sojourns around the stable configurations, i.e. minima of
V (x), interrupted by rare large fluctuations which carry qν from one minimum
to another: qν is thus allowed to “tunnel” away from local minima to the global
minimum of V (x) (see Fig. 2). The diffusive behaviour of qν is determined by the
Laplacian term in (3.1), i.e. the kinetic energy, which is controlled by the parameter
ν. The deep analysis of the semi-classical limit performed in [32] shows, indeed,
that as ν ↘ 0 “the process will behave much like a Markov chain whose state space
is discrete and given by the stable configurations”.

Quantum annealing, or quantum stochastic optimization (QSO), in the original
proposals of references [8,9], did not intend to reproduce the dynamics of a quan-
tum mechanical system (a task computationally untractable [23]), but rather to
simulate the ground state process of the Hamiltonian Hν as ν ↘ 0. The algorithm
is completely classical and intends to capture the features of the quantum process
which can allow an efficient exploration of the solution space described above.

The desired ground state estimation is obtained by means of imaginary time
evolution, that is by letting an arbitrarily chosen normalized initial state ψ(x, 0) of
the system evolve not under the action of e−itHν but under e−tHν . This replace-
ment of the Schrödinger equation by a heat equation has the following property:

lim
t→∞

1
αt

e−t Hν
� | ψ(0) 〉 = | ψν 〉,
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Figure 2. A sample path of the ground state process qν for small
ν. The potential profile is reproduced on the vertical axes. In
the inset we reproduce the potential V (x) (dashed line) and the
ground state for the this example (solid line). For the example
chosen the probability distribution is more concentrated around a
local rather than the global minimum. What matters, however, is
that the process jumps between stable configurations, the absolute
minimum included.

where αt = 〈 φ0 | ψ(0) 〉 exp(−tE0). The proof of this fact is straightforward:
given the eigenstates φ0(= ψν), φ1, . . . , φN ofHν and the corresponding eigenvalues
E0 < E1 < . . . < EN , we have:

lim
t→∞

1
αt

e−t Hν
� | ψ(0) 〉 = lim

t→∞
1

〈 φ0 | ψ(0) 〉
N∑

n=0

e−t Hν
�

e−t
E0
�

| φn 〉〈 φn | ψ(0) 〉

= lim
t→∞

1
〈 φ0 | ψ(0) 〉

N∑
n=0

e−t
En−E0

� | φn 〉〈 φn | ψ(0) 〉

= lim
t→∞ | φ0 〉+ 1

〈 φ0 | ψ(0) 〉
N∑

n=1

e−t
En−E0

� | φn 〉〈 φn | ψ(0) 〉.
(3.2)

The excited states are “projected out” and, asymptotically, only the ground state
survives.

We are nevertheless left with the problem of determining e−tHν . A direct di-
agonalization of Hν is impossible, given the dimensionality of the operator which
scales exponentially with the dimension of the system. However, the Feynman-Kac
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formula [24,33]:

(
e−tHνψ

)
(x) = E

(
exp

(
−

∫ t

0

V (ε(τ))dτ
)
ψ(ε(t))

∣∣∣ε(0) = x

)
, (3.3)

suggests a way to estimate the evolved state e−tHνψ for any initial state ψ: the
component x of the state vector corresponds to the expected value of (the ex-
ponential) of the integral of the potential (cost) function V along the stochastic
trajectories ε(τ). Each trajectory ε(τ) starts at x and, in the time interval (0, t),
makes N(t) transitions toward nearest-neighboburs with uniform probability; the
number of random transition N(t) is a Poisson process of intensity ν. A detailed
description of the sampling and of the ground state estimation process is beyond
the scope of this paper and we refer the interested reader to reference [8]. Here
it suffices to say that once given an estimate of ψν(y) for every neighbour y of
the current solution x, the exploration proceeds with high probability toward the
nearest-neighbour solution having the highest estimated value of ψν . In quantum
stochastic optimization, therefore, each move is local (i.e. to a nearest-neighbour
of the current solution) but the decision rule on which neighbour to accept is based
on the prospection of an ensemble of long chains ε(τ).

When implemented in a working computer program, the procedure described
above requires a variety of approximations. First of all, equation (3.3) reproduces
the ground-state only in the limit t→∞, corresponding to sample paths of infinite
length. The expected value of the right hand side of (3.3), moreover, will be
estimated by means of a finite size sample. Finally, the number of neighbours
of a configuration may be too large to allow the estimation of ψν on the whole
neighbourhood of a given solution. The accuracy of the approximation depends,
for example, on the actual length νt of the sample paths, the number of paths n
per neighbour and the dimension |Neigh| of the subset of the set of neighbours of a
given solution to consider at each move. Some “engineering” is also in order [9] (see
the pseudo-code of quantum stochastic optimization reported here): for example,
we can call a local optimization procedure every tloc quantum transitions. In
addition, if the search looks to be stuck for in a local minimum, we can force a
jump to another local minimum.

In Figure 3 we show the results produced by QSO applied to random instances
of the graph partitioning problem: given a graph G = (V,E), where V denotes the
set of vertices and E the set of edges, partition V into two subsets such that the
subsets have equal size and the number of edges with endpoints in different subsets
is minimized. We extracted our instances from the family G500,0.01 (i.e. random
graph with 500 nodes and an edge between any two nodes with probability 0.01.)
used in reference [31] and compare them with the results obtained on the same
instances by Simulated Annealing. The comparison has been made by letting the
programs implementing SA and QA run for essentially the same (machine) time.
Simulated Annealing performs better than quantum stochastic optimization: it
finds, on the average, better (smaller mean value and variance) approximations of
the best partition. What is interesting is that QSO goes down very fast toward a
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(a) (b)

(c) (d)

Figure 3. Quantum stochastic optimization (QSO) vs. sim-
ulated annealing (SA). Benchmark: 100 random instances of
G500,0.01. Allocated CPU-time: 600 s. Parametrization: QSO:
νt = 20; n = 4; |Neigh| = 5; SA: geometric scheduling: temper-
ature at k-th annealing step: tk = t0(0.99)k; t0 = 3.0; number
of proposed moves per annealing step = 16 · 500. (a) and (b)
distribution of Vmin for QSO and SA respectively. (c), (d) Values
of Vmin reached respectively by QSO and SA on each instance of
graph partitioning after every 50 (machine-time) seconds. In the
inset of (c) and (d): values of vmin along a single search path.

local minimum and then relies on quantum transitions to escape from it. In SA,
on the contrary, a steep descend toward a local minimum could result in a early
freezing of the search. We tested QSO also random satisfiable instances of 3-SAT
with qualitatively similar results.

Recent variants of QSO, as imaginary time quantum Monte Carlo
(ITQMC) [26,38,45,46], introduce a proper annealing schedule in the algorithm:
the control parameter ν(t) is suitably reduced during the algorithm, as the tem-
perature is in reduced in SA. Between each “annealing” step, the ground state ψν

is estimated by the same estimation procedure used in QSO. For some optimiza-
tion problems, such as the graph partitioning described above, ITQMC performs
better than SA, for others, e.g. 3-SAT, it does not. There is therefore no a priori
guarantee that QA will produce better heuristics than SA [10].
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Interestingly enough, it has been shown that ITQMC performs at least as well as
the real time adiabatic approximation [42] described in the previous section. The
intuitive reason behind this result has been clearly stated in [4,48]: the projection
mechanism proper of imaginary time makes the evolution of the initial condition
much more stable than the one determined by the Schrödinger equation. The
adiabatic theorem, in fact, relates the energy gap between the ground state and
the first excited state to the annealing time: the smaller the energy gap, the
slower must be the change of the Hamiltonian HA(t) in order to avoid Landau-
Zener transitions of the system from the ground to excited states (which do not
correspond to the solution we are looking for). Since the projection mechanism
suppresses the amplitude associated to excited states by accidental Landau-Zener
transitions, the interpolation between the initial HamiltonianHA(0) and the target
Hamiltonian HT (the annealing) can be carried out more rapidly.

Procedure 1 Quantum annealing

Input: initial condition init; control parameter ν; duration tmax; tunnel time
tdrill; local opt. time tloc.

t← 0;
ε← init;
vmin = cost(ε);
while t < tmax do
j ← 0;
repeat
i← 0;
repeat
ε← Quantum Transition(ε, ν, tmax);
if cost(ε) < vmin then
vmin ← cost(ε);
i, j ← 0;

else
i← i+ 1;

end if
until i > tloc

epsilon← Local Optimization(ε).
if cost(ε) < vmin then
vmin ← cost(ε);
j ← 0;

end if
until j < tdrill

draw a trajectory of length νtmax and jump there.
Local Optimization(ε)

end while
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Procedure 2 Quantum Transitions

Input: initial condition ε; chain length νt; set of neighbours to estimate Neigh

for all neighbour k ∈ Neigh do
estimate the wave function ψν(k);

end for
best← select a neighbour in Neigh with probability proportional to ψν

return best

Procedure 3 Local optimization

Input: initial condition ε.

return the best solution found by any steepest descent strategy.

4. Dissipative dynamics

It becomes quite natural to ask whether a “projection” mechanism similar to the
one operated by the unphysical imaginary time evolution is available in some real
time quantum dynamics. If it were possible, we could hope to exploit it to speed up
quantum adiabatic computation without worrying too much about Landau-Zener
transitions. Dissipative quantum annealing, a novel model proposed in [17,18],
represents one first step in answering this question.

Given the usual Hamiltonian Hν , we add a non-linear term, the Kostin fric-
tion [36,37], modeling the effective interaction of the quantum system with an
environment which absorbs energy. In the continuous case the Schrödinger-Kostin
equation reads:

i
d
dt
ψ = Hνψ + βK(ψ), (4.1)

where Hν is the Hamiltonian of (3.1) and

K(ψ) =
1
2i

log
(
ψ

ψ∗

)
· (4.2)

By rewriting the state ψ(x) à la de Broglie,

ψ(x) =
√
ρ(x) eiS(x), (4.3)

the nonlinear partK of the Hamiltonian (4.1) assumes the formK(
√
ρ(x) eiS(x)) =

S(x), whose gradient corresponds to the current velocity [41]. This justifies the
names friction for the term K and friction constant for β > 0.

Given a solution ψ(t) of the Schrödinger equation i d
dtψ = (Hν + K)ψ the

following inequality holds:

d
dt
〈 ψ(t) |Hν | ψ(t) 〉 ≤ 0.
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It means that the energy of the system is a monotone non increasing function of
time: the system dissipates energy4.

In reference [17] we showed that friction can play a useful role in suppressing two
genuinely quantum effects which can affect the exploration of the solution space:
Bloch oscillations and Anderson localization. Bloch oscillations [12] are due to the
relation v = sin p between momentum p and velocity v of a particle moving on
a regular lattice: as the momentum of the particle increases monotonically, the
velocity can change sing and the particle starts moving backward along the lattice.
Anderson localization [7], instead, appears when the lattice presents irregularities,
manifesting themselves as a random potential on the sites of the lattice. The state
of a quantum particle moving in a highly irregular potential landscape is spatially
localized and the probability of tunneling through large regions is exponentially
suppressed.

In [17] we considered the simple case of a spin chain of finite size s governed by
an XY Hamiltonian, that is:

HXY =
s−1∑
j=1

λ (σ1(j)σ1(j + 1) + σ2(j)σ2(j + 1)) . (4.4)

We took an initial configuration having a single spin up and all the others down.
The spin up plays the role of a quantum walker and, by a suitable choice of the
initial conditions [16], it behaves as an excitation moving ballistically along the
chain as in Figure 4. We introduce a simple potential/cost function V (x) = −gx.

The motion of the walker is affected as shown in Figure 5a: Bloch oscillations
appear hindering an exhaustive exploration of the solution space. As Figure 5b
shows, the oscillations can be suppressed by adding the frictional term, in the
discretized form:

(Kψ)(x) =
x∑

y=2

sin(S(y)− S(y − 1)), (4.5)

to the system Hamiltonian. Here the phase function S is defined as in equa-
tion (4.3).

Moreover, the convergence toward the ground state is witnessed by a progressive
concentration of the probability mass at the end of the chain were the ground state
is localized.

4We point out that the full interaction with the environment would include a random force
describing the back action of the environment onto the system. We are then well aware of the
fact that we are considering just the dissipative part of a fluctuating-dissipating system. Indeed,
the complete Kostin equation was the correspondent in the Schrödinger representation of the
quantum Langevin equation, that is the equation for the observables of an harmonic oscillator
coupled to a bath of oscillators [25] in the thermodynamic limit. The proper language to describe
such an interaction would be the theory of open quantum systems [15]. We decided, however,
to adopt a phenomenological approach such as the one used in [27] and more recently, in the
context of time dependent density functional theory, in [52]. A proper analysis of the complete
system-environment interaction is currently under study.
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Figure 4. s = 100, λ = 1. The excitation, initially localized at
the beginning of the chain, moves ballistically forth and back.

(a) (b)

Figure 5. s = 100, 0 ≤ t ≤ 20s. (a) g = 6/s, β = 0: the wave
packet gets confined due to Bloch reflection. (b) g = 6/s, β = 8/s:
Bloch reflections are suppressed by friction.

Potential profiles determined by optimization problems are usually quite irreg-
ular. Figures 6a shows the consequence of the addition of a random potential to
the free Hamiltonian (4.4): the probability amplitude remains trapped in the first
half of the chain, because of Anderson localization. Figure 6b shows how dissipa-
tion can contrast Anderson localization: the probability mass percolates through
irregularities and concentrates in the region where we chose to localize the ground
state by adding a linear potential V (x) = −gx as in the previous example.
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(a) (b)

Figure 6. s = 100, 0 ≤ t ≤ 20s. Frame (a) g = 0, β = 0:
The wavepacket is localized due to Anderson localization (b) for
g = 6/s, β = 8/s: friction suppresses Anderson localization: the
probability mass percolates through the imperfections (additional
random potential extracted from a normal population of mean 0
and standard deviation σ = 0.06) of the spin chain.

5. Conclusion and outlook

Quantum annealing is an example of cross contamination between two different
research areas: computer science and physics. The “constructive interference”
goes in two ways: on one side, a genuinely quantum effect, tunneling, suggested
a completely classical approximation algorithm which provides good heuristics to
hard combinatorial problems. In this paper we presented in details the earliest
version of quantum annealing, quantum stochastic optimization.

On the other side, a trick used to estimate the state of minimal energy of a
quantum system by classical means, imaginary time evolution (3.2), suggested the
idea of exploiting dissipation to stabilize the evolution of quantum systems.

A mechanism able to suppress Anderson localization would be most welcome in
quantum adiabatic computation. In fact, Altshuler et al. in reference [3] advanced
the conjecture that “Anderson localization casts clouds over adiabatic quantum op-
timization”. The preliminary results presented here on the effects Kostin friction
on simple toy models are promising: Anderson localization is suppressed. Still,
whether an analogous mechanism can be of some use when solving hard optimiza-
tion problems, together with a quantitative assessment of the results presented in
[18], is an open research problem.
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