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THE COMPOSITIONAL CONSTRUCTION
OF MARKOV PROCESSES II
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Abstract. We add sequential operations to the categorical algebra of
weighted and Markov automata introduced in [L. de Francesco Albasini,
N. Sabadini and R.F.C. Walters, arXiv:0909.4136]. The extra expres-
siveness of the algebra permits the description of hierarchical systems,
and ones with evolving geometry. We make a comparison with the
probabilistic automata of Lynch et al. [SIAM J. Comput. 37 (2007)
977-1013].
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1. INTRODUCTION

In [9] we introduced a notion of Markov automaton, together with parallel
operations which permit the compositional description of Markov processes. We
illustrated by showing how to describe a system of n dining philosophers (with
12" states), and we observed that Perron-Frobenius theory yields a proof that
the probability of reaching deadlock tends to one as the number of steps goes
to infinity. In this paper we add sequential operations to the algebra (and the
necessary structure to support them) following analogous developments in [10,19].
The extra operations add considerable expressiveness to the algebra since the
sequential and parallel operations may be alternated to permit the description of
hierarchical systems, and ones with evolving geometry. We illustrate our algebra
by describing a system called Sofia’s Birthday Party, originally introduced in [19],
and a probabilistic fork bomb.
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The introduction of sequential operations to the algebra of [9] requires extra
structure to be added to the automata, namely sequential interfaces. Further,
in [10] weighted automata (where the weighting of a transition is a non-negative
real number) played a subsidiary role. However for sequential composition weighted
automata are more fundamental, since in identifying states of two different au-
tomata it is the relative weight given to decisions which is important rather than
the probabilities. Technically this appears in the fact that normalization is not
compositional with respect to sequential operations, whereas for parallel operations
it is. For a summary of recent work on the various kinds of weighted automata
see [11].

To see how hierarchical and mobile systems may be modelled in this algebra,
using the combined sequential and parallel operations, consider a set of automata
S and let us denote the set of automata given as expressions in terms of parallel
operations in the automata of S as II(S), and given as expressions in terms of
sequential operations as 3(S). Let E be the set of elementary automata with
only one transition. Then any automaton has a representation in X(E). The
dining philosopher problem of [9] is described as an element of II3X(E), that is of
communicating sequential systems. An element of XII3(FE) is one in which the
parallel structure may evolve, and so on. The system Sofia’s Birthday Party is in
I[IXX(FE) but illustrates also the form of systems of type IIXIIX(E). The version
of a fork bomb which we describe belongs to L (IIX)™. There is a close relation
between this aspect of the algebra and the state charts of [13].

1.1. COMPARISON WITH OTHER MODELS

There is a huge literature on probabilistic and weighted automata, transducers,
and process calculi (see for example, [4,11,15,22,25,27,29]). However the model
of [9] and of this paper is distinguished from the others in the following ways:

(i) In many other probabilistic automata models [1,25] the sum of probabil-
ities of actions out of a given state with a given label is 1. This means
that the probabilities are conditional on the existence of the label (or the
“pushing of a button”). Our model is instead generative in the sense of [31]
in that the sum of probabilities of actions out of a given state for all labels
is 1. We explain our intuition in the next point. The intuition of [31] is
perhaps slightly different since they also speak of “pushing buttons”.

(ii) The actual origins of this paper are the work of Eilenberg [12] on weighted
transducers — our operations are variations on those introduced there —
modified by further category theoretic experience, beginning, for example,
with [5,18]. We view the automata and the operations on them rather
differently from [12]. Instead of modelling devices which translate input
to output, the idea is that we model devices with number of parallel inter-
faces, and when a transition occurs in the device this induces a transition
on each of the parallel interfaces (the interfaces are part of the device). In
order to have binary operations of composition the interfaces are divided
into left and right interfaces. The notions of initial and final states are
also generalized in our notion of weighted automaton to become instead
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functions into the state space. These sequential interfaces are not to be
thought of as initial and final states, but hooks into the state space at
which a behaviour may enter or leave the device. The application of our
weighted automata is to concurrent hierarchical and distributed systems
rather than language recognition or processing. In [10] we have shown how
data types and also state on the parallel interfaces (shared variables) may
be added to our model.

For many compositional models the communication is based on process
algebras like CCS [23] and CSP [16], with interleaving semantics and un-
derlying broadcast topology. Instead, our algebra models truly concurrent
systems with explicit network topologies. We have shown in [8] that com-
munication such as that of CCS and of CSP may be modelled in our alge-
bra, but that they correspond to very particular network topologies. One
of the key aspects in our algebra are the connectors: parallel and sequen-
tial “wires”, which give the hierarchical network topology to expressions
in the algebra. Recently, directly inspired by our work, Sobocinski [28] has
introduced our wire calculus, and our parallel composition, into process
algebra.

Our automata with respect to the parallel operations form the arrows
of a compact closed symmetric monoidal category, with other well-known
categorical properties. (This would have been also the case for the sequen-
tial operations if we had not chosen in this paper to make the technical
simplification of not considering state on the parallel interfaces.) The op-
erations are in fact based on the operations available in categories of spans
and cospans [10]. Similar algebras occur in developments in many other
areas of computer science, mathematics and physics. With respect to par-
allel operations our algebra is a fortiori traced monoidal [17], and hence
has close relations with the work of Stefanescu [30] on network algebras,
and the theory of fix point operators studied by many authors including
Bloom and Esik [3] — connections are described in [14]. The diagrams we
introduce are related to those of topological field theory described, for ex-
ample, in [20], and also those of the diagrammatic approach to quantum
mechanics described for example in [6,7].

Other compositional probabilistic automata models admit non-determinism
as well as probabilistic transitions, in order to model concurrent behaviour.
The most natural way to model asynchrony in our algebra is instead
through null (¢) labels on transitions; variation in timing would be repre-
sented by different weights of null transitions in different states. However
we show in this paper that it is also possible to model asynchrony through
non-determinism in our algebra. In particular we show how (finite exam-
ples of) the probabilistic automata of Segala et al. in [22,27] fit naturally
in our context and we give a simplified description of their behaviour in
terms of the operations of our algebra.

In our model, the communicating parallel composition involves conditional
probability. The reason is that communication restricts the possibilities
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of the participants of the composition; in an extreme case communication
may produce deadlock in which all processes must idle. This restriction
of movement in the composite means that the probabilities of acting must
be adjusted to be probabilities given the synchronization. This crucial
aspect of our model is not shared by many other models. Indeed, Segala
in Section 4.3.3 of [27] argues against such a parallel composition.

2. WEIGHTED AUTOMATA WITH PARALLEL AND SEQUENTIAL
INTERFACES

In this section we define weighted and Markov automata with sequential and par-
allel interfaces, which however we shall call just weighted and Markov automata.
The reader should be aware that the definitions of [10] differ in lacking sequential
interfaces. We also do not require here for weighted automata the special symbols
¢ and the condition that the rows of the total matrix are strictly positive: we
reserve those conditions for what we now call positive weighted automata.

The reader is advised in reading the following definition to keep in mind the
explicit example in Section 2.1.1. The main intuition is that in order to develop
a compositional calculus of automata networks each component must be an open
system with communication interfaces. Conventionally we distinguish these par-
allel interfaces into left and right interfaces A and B respectively, and it will be
crucial in the following that A and B may be products of sets. The transitions
between states that are traditionally in automata theory labelled in an alphabet
Y are here instead labelled by pairs of elements in A x B representing the effect
of the transition on the parallel interfaces. Technically we make the definitions
in terms of matrices rather than automata since this follows the tradition in the
theory of Markov chains.

Notice that in order to conserve symbols in the following definitions we shall
use the same symbol for the automaton, its state space and its family of matrices
of transitions, distinguishing the separate parts only by the font.

Definition 2.1. Consider two finite alphabets A and B, and two finite sets X
and Y. A weighted automaton Q with left parallel interface A, right parallel
interface B, top sequential interface X, and bottom sequential interface Y, consists
of a finite set @ of states, and an A x B indexed family Q = (Qa’b)(aeAﬁbeB) of QxQ
matrices with non-negative real coeficients, and two functions, 7o : X — @, and
7 1Y — Q. We denote the elements of the matrix Qa5 by [Qaplq.q (¢,¢ € Q).

We call the matrix O = ZaeA,beB Qq,p the total matriz of the automaton.

We will use a brief notation for the automata Q indicating its interfaces, namely
Q{f; 4. - We shall use the same symbols 7, 71 for the sequential interface functions
of any automata, and we will sometimes refer to these functions as the sequential
interfaces. Notice that the terms ‘left’; ‘right’, ‘top’ and ‘bottom’ for the inter-
faces have no particular semantic significance - they are chosen to be semantically
neutral in order not to suggest input, output, initial or final.
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Definition 2.2. A weighted automaton Q is positive if the parallel interfaces A
and B contain special elements, the symbols €4 and €p, and satisfies the property
that the row sums of the matrix Q., ¢, are strictly positive.

For a positive weighted automaton the total matrix has strictly positive row
sums.

Definition 2.3. A Markov automaton Q with left interface A, right interface B,
top sequential interface X, and bottom sequential interface Y, written briefly
Q{f; A.5» 18 a positive weighted automaton satisfying the extra condition that the
row sums of the total matrix Q are all 1. That is, for all ¢ € @

Z Z [Qa’b]q,q’zl'

q" a€AbeB

For o Markov automaton we call [Qq.plq,q the probability of the transition from ¢
to ¢' with left signal a and right signal b.

The idea is that in a given state various transitions to other states are possible
and occur with various probabilities, the sum of these probabilities being 1. The
transitions that occur have effects, which we may think of a signals, on the two
interfaces of the automaton, which signals are represented by letters in the alpha-
bets. We repeat that it is fundamental not to regard the letters in A and B as
inputs or outputs, but rather signals induced by transitions of the automaton on
the interfaces. For examples see Section 2.1.

When both A and B are one element sets and X =Y = () a Markov automaton
is just a Markov matrix.

Definition 2.4. Consider a weighted automaton Q with parallel interfaces A
and B. A behaviour of length k of Q consists of two words of length k, one
U = aias...ar in A* and the other v = b1by...b; in B* and a sequence of non-
negative row vectors

o, 1 = xOQa17b17 To = z/EIQLLQ,I)27 sy Tk = xk—lQak,bk-
Notice that, even for Markov automata, x; is not generally a distribution of states
even if zq is; for example often x; is the row vector 0.

Definition 2.5. The normalization of a positive weighted automaton Q, denoted
N(Q) is the Markov automaton with the same interfaces and states, but with

[Qa,b]qul [Qa,b]qu/

\ _ _ .
[ (Q)a’b} q,q’ Zq’EQ [Q]q,q’ Zq’EQ ZaeA,beB [Qa,b]qu/

It is obvious that a weighted automaton Q is Markov if and only if Q = N(Q).

Remark 2.6. It is sometimes useful to define the normalization of any weighted
automaton, not necessarily positive, by permitting zero rows in the transition
matrices. The normalization is then not necessarily Markov.
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Definition 2.7. If Q is a weighted automaton and k is a natural number, then
the automaton of k step paths in Q, which we denote as QF is defined as follows:
the states of Q are those of Q; the sequential interfaces are the same; the left
and right interfaces are A¥ and B* respectively. If u = (a1, as,...,a;) € A¥ and
v = (by,ba,...,b) € B¥ then

k
(Q )u,v - Qal,bl Qa27b2 s Qak,bk'

The definition for positive weighted automata requires in addition that e, =
(EA,...,EA),EBk = (EB,...,EB).

If Q is a weighted automaton and u = (a1, as, ..., a) € A¥, v = (by,ba, ..., by) €
B, then [(Q¥)y,]q,q is the sum over all paths from g to ¢’ with left signal sequence
u and right signal sequence v of the weights of paths, where the weight of a path
is the product of the weights of the steps.

2.1. GRAPHICAL REPRESENTATION OF WEIGHTED AUTOMATA

Although the definitions above are mathematically straightforward, in practice
a graphical notation is more intuitive. We may compress the description of an
automaton with parallel interfaces A and B, which requires A x B matrices, into
a single labelled graph, like the ones introduced in [18]. We indicate by describing
some examples.

2.1.1. An example
Consider the automaton with parallel interfaces {a}, {b1,b2} x {c}, sequential

interfaces {z}, {y, z}; with states {1, 2, 3} sequential interface functions x +— 1 and
Y, z — 3; and transition matrices

0 2 0 0 0 O
Qa,(bl,c): 030 aQa,(bg,c): 0 0 1
0 0 O 0 0 O
This information may be put in the diagram:
T
b17b2

1
B =S
0

2

X ﬁ/bg,c;l -
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The following two examples have both sequential interfaces () and hence we will
omit the sequential information.

2.1.2. A philosopher

Consider the alphabet A = {t,r,e}. A philosopher is an automaton Phil
with left interface A and right interfaces A, state space {1,2, 3,4}, both sequential
interfaces ) C {1,2, 3,4}, and transition matrices

1000
0L 00
Phil_ . = ° :
00 % 0
|0 0 0 %
[0 2 0 0] [0 0 0 0
00 00 00 2 0
Phil, . = , Phil., =
00 00 0000
[0 0 0 0| 00 0 0
[0 0 0 0] [0 0 00
000 0 0000
Philne = s Phile,r =
000 % 0000
|0 0 0 0| |3 000

The other four transition matrices are zero matrices.
Notice that the total matrix of Phil is

1 1

110 0
0o+ 10
o0 3 2N
1 1

3 0.0 3

which is clearly stochastic, so Phil is a Markov automaton.

The intention behind these matrices is as follows: in all states the philosopher
does a transition labelled e,e (idle transition) with probability %; in state 1 it
does a transition to state 2 with probability % labelled t,e (take the left fork);
in state 2 it does a transition to state 3 with probability % labelled ¢,t (take the
right fork); in state 3 it does a transition to state 4 with probability % labelled
r,e (release the left fork); and in state 4 it does a transition to state 1 with
probability % labelled e, r (release the right fork). All this information may be put
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in the following diagram:

et T
=t

2.1.3. A fork

Consider again the alphabet A = {¢,r,e}. A fork is an automaton Fork
with left interface A and right interface A, state space {1,2,3}, both sequential
interfaces ) C {1, 2,3}, and transition matrices

00
Fork..=| 0 1 0 |,
[0 0 3
[0 2 0] 00 2]
Forkie=10 0 O |, Fork.x =] 0 0 O
| 0 0 0| 00 0|
[0 0 0] 0 0 0]
Forkje = | 4 0 0 |, Fork., =] 0 0 0
| 0 0 0| 3 0 0|

The other four transition matrices are zero.
Fork is a Markov automaton since its total matrix is

1101
3 3 3
1 1

3 3 0
1 1
3 0 3

The intention behind these matrices is as follows: in all states the fork does a
transition labelled €, e (idle transition) with positive probability (either % or %),
in state 1 it does a transition to state 2 with probability % labelled ¢,e (taken to
the left); in state 1 it does a transition to state 3 with probability % labelled ¢, ¢
(taken to the right); in state 2 it does a transition to state 1 with probability %
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labelled r,e (released to the left); in state 3 it does a transition to state 1 with
probability % labelled e, r (released to the right).
All this information may be put in the following diagram:

Ve efe; %

3. THE ALGEBRA OF WEIGHTED AUTOMATA: OPERATIONS

Now we define operations on weighted automata analogous (in a precise sense)
to those defined in [18,19].

3.1. SEQUENTIAL OPERATIONS

3.1.1. Sum

Definition 3.1. Given weighted automata Q{/(;AAB and R%V;C’D the sum Q4+ R
is the weighted automaton which has set of states the disjoint union Q + R, left
interfaces A + C, right interface B + D, top interface X + Z, bottom interface
Y + W, (all disjoint sums), v0 = 70,@ + Y0,R: 71 = 71,Q + Y1,&. The transition
matrices are

all other values being 0.

3.1.2. Sequential composition

Definition 3.2. Given weighted automata Q{,(;A,B and R‘Z/;C,D7 the sequential
composite of weighted automata Q+y R has set of states the equivalence classes of
@ + R under the equivalence relation generated by the relation vi.q(y) ~ vo.r(v),
(y € Y). The left interface is the disjoint sum A + C| right interface B + D, the
top interface is X, the bottom interface is Z. The interface functions are

W=X2Q—-Q+R—(Q+R)/~, n=ZBR—-Q+R—(Q+R)/~.
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Denoting the equivalence class of a state s by [s] the transition matrices are:

[(Q+yR)aplig1a] = Z [Qab)s,s'

s€lq],s’€[q’]

(Q+YR)e.dlp), ) = Z [Re,als,s

s€lr],s’ €[r’]

all other values being 0.

3.1.3. Sequential constants

Definition 3.3. Given arelation p C X xY and two sets A, B we define a weighted
automaton Seq(p) as follows: it has as state space the set of equivalence classes
of X +Y under the equivalence relation ~ generated by p. The parallel interfaces
are A and B, and all matrices are zero matrices. The sequential interfaces are
Y :X > (X+Y)/ ~ m:Y = (X+Y)/ ~, both functions taking an element
to its equivalence class. Notice that any function f : X — Y induces a relation
on X +Y, namely z is related to f(x) for each € X, and hence any function
induces a weighted automaton as above.

Sequential connectors. Some special cases have particular importance and are
called sequential connectors or wires: (i) the automaton corresponding to the iden-
tity function 1x : X — X is also called 1x; (ii) the automaton corresponding to
the codiagonal function V : X + X — X is called V; the automaton correspond-
ing to the opposite relation of V is called V?; (iii) the automaton corresponding
to the function twist : X +Y — Y + X is called twistx y; (iv) the automaton
corresponding to the function ) C X is called 7; the automaton corresponding
to the opposite relation of the function ) C X is called i°. Notice that we have
overloaded the symbol V and it will be used again in another sense; however the
context should make clear which use we have in mind.
The role of sequential wires is to equate states.

The distributive law. The bijection 6 : X x Y + X x Z — X x (Y + Z) and its
inverse 71 : X x (Y +Z) — X xY + X x Z considered as relations yield weighted
automata which we will refer to with the same names.

3.2. PARALLEL OPERATIONS

3.2.1. Parallel composition

Definition 3.4. Given weighted automata Q{,(;A,B and R%V;QD the parallel com-
posite Q x R is the weighted automaton which has set of states @ x R, left inter-
faces A x C, right interface B x D, top interface X x Z, bottom interface Y x W,
sequential interface functions v9,q X Yo,r, 71,@ X 71,r and transition matrices,

(Q X R)(a,c),(b,d) = Qa,b & Rc,d-

If the automata are positive weighted then eaxc = (€4,2¢), €8xp = (€B,€D)-
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This just says that the weight of a transition from (q,r) to (¢/,7’) with left
signal (a,c) and right signal (b,d) is the product of the weight of the transition
q — ¢ with signals a and b, and the weight of the transition r — r/ with signals ¢
and d. The following simple lemmas were proved in Section 3 of [9].

Lemma 3.5. If Q and R are positive weighted automata then so is Q X R and
N(Q x R) = N(Q) x N(R).

Hence if Q and R are Markov automata then so is Q x R.
Lemma 3.6. If Q and R are Markov automata then (Q X R)k = Q" x R*.

3.2.2. Parallel with communication

Definition 3.7. Given weighted automata Q))f;A,B and R%,;B’C the communicat-
ing parallel composite of weighted automata QxR (or sometimes more briefly
Q||R) has set of states @ x R, left interface A, right interface C, top and bottom
interfaces X x Z, Y x W, sequential interface functions vy, X 70,r, 71,Q X 71,R
and transition matrices

(QXBR)a,c - Z Qa,b & Rb,c-

beB

The following simple lemma was proved in Section 3 of [9].

Lemma 3.8. If Q and R are positive weighted automata then so is Q||R and
N(N(Q)|IN(R)) = N(Q[[R).

3.2.3. Parallel constants

Definition 3.9. Given a relation p C A x B we define a weighted automaton
Par(p) as follows: it has one state * say. Top and bottom interfaces have one ele-
ment. The transition matrices [Par(p), ,] are 1 x 1 matrices, that is, real numbers.
Then Par(p), , = 1if p relates a and b, and Par(p),, , = 0 otherwise. If (ca,e) € p
then Par(p) is also positive weighted.

Parallel connectors. Some special cases, all described in [18], have particular
importance and are called parallel connectors or wires: (i) the automaton corre-
sponding to the identity function 14, considered as a relation on A x A is also called
14; (ii) the automaton corresponding to the diagonal function A : A — A x A
(considered as a relation) is called A 4; the automaton corresponding to the oppo-
site relation of A is called A9; (iii) the automaton corresponding to the function
twist : Ax B — B x A is again called twist 4 p; (iv) the automaton corresponding
to the projection function A — {x} is called p and its opposite p°.
The role of parallel wires is to equate signals.

Parallel codiagonal. The automaton corresponding to the function V: A+ A —
A is called the parallel codiagonal, and is denoted V where there is no confusion.
The automaton corresponding to the opposite relation is written V°.
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3.3. SOME DERIVED OPERATIONS

3.3.1. Local sum

Given weighted automata Q{/(;A#B and R%V;AA’B the local sum Q+j0cR is defined
to be V9||(Q +R)||V . It has top and bottom interfaces X + Z and Y + W, and
left and right interfaces A and B.

3.3.2. Local sequential composition

Given weighted automata Q{f; 4, and RE; a,p the local sequential composite
Q+v.10cR, also denoted briefly as Q;R, is defined to be V4|[(Q+yR)||Vs. It
has top and bottom interfaces X and Z, and left and right interfaces A and B.

3.3.3. Sequential feedback

Given weighted automata Q{fig;AB sequential feedback Sbe(Q{/(ig;A,B) is
defined to be

(1X+lociZ) ; (1X+locv%) 5 (Q+loch) 5 (1Y+loch) 5 (1Y+locioz)-

This formula is easier to understand looking ahead at the graphical representation
in the next section.

3.3.4. Parallel feedback

Given weighted automata Qg, 4, ¢ pxc Parallel feedback Pfbo(Qs. 4,0 pyc)
is defined to be

(1a x pg)l[(1a x Ac)[[(Q x 1o)||(1s x AZ)[|(15 X po).

This formula is also easier to understand looking ahead to the graphical represen-
tation in the next section.

3.4. GRAPHICAL REPRESENTATION OF EXPRESSIONS OF WEIGHTED AUTOMATA

Not only do weighted automata have a graphical representation, as seen above,
but so also do expressions of automata, as described in [18]. We extend the
representation given in that paper to the combination of sequential and parallel
operations and constants. We will see in Section 4.1 that the graphical represen-
tation of single automata is actually a special case of this new representation of
expressions, modulo the equations satisfied by wires (the Frobenius and separable
algebra equations first introduced in [5], see also [26]).
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In general an expression will be represented by a diagram of the following sort:

T Ye

A |
B |
C_|

VP

The multiple lines on the left and right hand sides correspond to parallel in-
terfaces which are products of sets. For example, the component has left inter-
face A x B x C. Instead the multiple lines on the top and bottom correspond

to sequential interfaces which are disjoint sums of sets, so the top interface is
X+Y+Z

3.5. OPERATIONS AND CONSTANTS

3.5.1. Sum

The sum Q{,(;A,B + R‘%V;C’D is represented as:

X 7
A+C| | L] B
i1 Q@ pBa R pBHD
Y’ W

3.5.2. Sequential composition

The sequential composite Q5. 4 p+vRY.. p is represented as:

X
A+ Q B

A+ C— Yy B4D
c4 r FD
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3.5.3. Sequential connectors

The various sequential connectors are represented as:

\Y Ve 7 i° 1 twist

3.5.4. Distributive law

The distributive law §71 : X x (Y + Z) — X x Y + X x Z and its opposite are
represented as:

X(Y +2) Xy, Xz
@
XYé gXZ SX(Y+Z)

3.5.5. Product

The product Q{/(;A#B X R%V;C’D is represented as:

X xZ

: X

Y.xW
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3.5.6. Parallel with communication

The parallel with communication Q3. 4 p||RE .5 - is represented as:

:X><Z
:X | Z
A Q R c
Y W
EE/XW

3.5.7. Parallel connectors

The various parallel connectors are represented as:

SOTTTAS

p° 1 twist

3.5.8. Parallel codiagonal
The parallel codiagonal V : A+ A — A and its opposite V° are represented as:

3.6. SOME DERIVED OPERATIONS AND CONSTANTS

3.6.1. Repeated sequential and repeated parallel operations

When representing repeated sequential operations, frequently we omit all but
the last bounding rectangle. With care this does not lead to ambiguity — differ-
ent interpretations lead to at worst isomorphic automata. We do the same with
repeated parallel operations. It is not possible to remove bounding rectangles for
mixed repeated and parallel operations without serious ambiguity.
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3.6.2. Local sum

The local sum Q{/(;AB +loc R%V;AB is represented by the first diagram below
which includes the parallel codiagonals, but also, since it is such a common derived
operation, more briefly by the second diagram below:

Ay Qg R pPB Ay Qg R p B
Y W Y w

3.6.3. Local sequential

The local sequential Q{/(;A#B +v,loc R;A#B is represented by the first diagram
below which includes the parallel codiagonals, but also, since it is such a common
derived operation, more briefly by the second diagram below:

X X
A4 Q B A4 Q B
Aﬂ» Y B A— Y —B
A4 Rr B A4 Rr B
Z Z

3.6.4. Sequential feedback

The sequential feedback Sfb Z(Q})fig; A, p) is represented by the diagram:
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3.6.5. Parallel feedback
The parallel feedback bec(Q{,(;AXc,Bxc) is represented by the diagram:

A B
C Q C
y

4. EXAMPLES

4.1. ANY AUTOMATON IS IN X(E)

If F is the set of automata with two states with a single transition, then any
automaton may be given as a sequential expression of elements in E (see [26]).
We illustrate by considering the first example of Section 2.1. Let T3, 75,735 be the
three single transition automata as follows: 77 has the single transition labelled
on the left by a and the right by (b1, ¢) with weight 2, T has the single transition
labelled on the left by a and the right by (b1, ¢) with weight 3, and T3 has the single
transition labelled on the left by a and the right by (ba, ¢) with weight 1. Then the
following diagram shows how the automaton may be given as T} +ioc T2 +10c 13
composed sequentially with sequential wires:

b17b2

4.2. THE DINING PHILOSOPHERS SYSTEM

The model of the dining philosophers problem we consider is an expression in
the algebra, involving also the automata Phil and Fork. The system of n dining
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philosophers is
DP,, = Pfb4 (Phil||Fork||Phil||Fork|| ... |/Phil||Fork),

where in this expression there are n philosophers and n forks.
The system is represented by the following diagram, where we abbreviate Phil
to P and Fork to F.

P F P F P F

Let us examine the case when n = 2 with initial state (1,1,1,1). Let Q be
the reachable part of DP5. The states reachable from the initial state are ¢ =
(17 1,1, 1); qz2 = (1a 3,3, 2)7 q3 = (Sa 2,1, 3)7 q4 = (17 1,4, 2); qs = (47 2,1, 1); q6 =
(1,3,2,1), g7 = (2,1,1,3), gs = (2,3,2,3) (gs is the unique deadlock state). The
single matrix of the automaton Q, using this ordering of the states, is

(10000 31 1]
03 02 00 0 0
00 4 0212 000
1004 00 00
£ 000 42 000
0 00 0 % 0 3
00+ 000 5 3
L0 0 00 0 0 0 1|

Calculating powers of this matrix we see that the probability of reaching dead-

e . - 23 - . 341 . . 4415
lock from the initial state in 2 steps is 4%, in 3 steps is £=¢, and in 4 steps is &575-

4.2.1. The probability of deadlock

We describe here briefly the result of [9] in which we apply Perron-Frobenius
theory to the problem of deadlock in the Dining Philosopher problem.

Definition 4.1. Consider a Markov automaton Q with input and output sets
being one element sets {¢}. A state ¢ is called a deadlock if the only transition
out of ¢ with positive probability is a transition from ¢ to ¢ (the probability of the
transition must necessarily be 1).

Proposition 4.2 (Perron-Frobenius). Consider a Markov automaton Q with in-
terfaces being one element sets, with an initial state qo. Suppose that (i) Q has
precisely one reachable deadlock state, (ii) for each reachable state, not a deadlock,
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there is a path with non-zero probability to qo, and (i) for each reachable state q
there is a transition with non-zero probability to itself.

Then the probability of reaching a deadlock from the initial state in k steps tends
to 1 as k tends to infinity.

A sketch of the proof of this proposition was given in Section 4 of [9], as well
as a proof of the following corollary.

Corollary 4.3. In the dining philosopher problem DP,, with qo being the state
(1,1,...,1) the unique reachable deadlock is (3,2,3,2,...,3,2). The initial state
is reachable from all other reachable states. Hence the probability of reaching a
deadlock from the initial state in k steps tends to 1 as k tends to infinity.

Remark. The corollary does not depend on the specific positive probabilities
of the actions of the philosophers and forks. Hence the result is true with any
positive probabilities. In fact, different philosophers and forks may have different
probabilities without affecting the conclusion of the corollary.

Remark. The reader should note that there has been considerable study of (non-
compositional) algorithms for determining properties like deadlock in other au-
tomata models (see [1]) originating in [24,32].

5. SOFIA’S BIRTHDAY PARTY

The example we would like to describe is a variant of the Dining Philosopher
Problem which we call Sofia’s Birthday Party. Instead of a circle of philosophers
around a table with as many forks, we consider a circle of seats around a table
separated by forks on the table. Then there are a number of children (not greater
than the number of seats). The protocol of each child is the same as that of a
philosopher. However in addition, if a child is not holding a fork, and the seat to
the right is empty, the child may change seats — the food may be better there.

To simplify the problem we will assume that all transitions have weight 0 or 1,
so the transitions of components we mention will all have weight 1.

To describe this we need six automata — a child C, an empty seat &, a fork F,
two transition elements £ and R, and the identity 14 of A (a wire). The interface
sets involved are A = {x,¢} and B = {e,t,7}.

The transition elements have left and right interfaces A x B. The graph of the
transition element £ has two vertices p and ¢ and one labelled edge x,e/e,e : ¢ — p.
Its top interface is @ = {q}, and its bottom interface is P = {p}. The graph of
the transition element R also has two vertices p and ¢, and has one labelled edge
g,e/x,e : ¢ — p. Its top interface is also @ = {q¢}, and its bottom interface is
P = {p}. The empty seat £ has left and right interfaces A x B. The graph of
the empty seat has one vertex e and one labelled edge ¢,e/e,e : e — e. Its top
interface is P and its bottom interface is (). The functions vp,y; are uniquely
defined.
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The child C has labelled graph as follows:

g,efe e
g, t/e, e
Cy
g, ele,r
!
g, r/e e
g,e/e e

g,efe, e

7+

g,e/e,t

3

v

g,efe, e

The states have the following interpretation: in state 1 the child has no forks;
in state 2 it has a fork in its left hand; in state 3 it has both forks (and can eat);
in state 4 it has returned it left fork. The child’s top interface is P and its bottom
interface is (. The function -y takes p to 1; the function v, takes ¢ to 1.

The fork F is as in the dining philosopher system (but with all transitions
weighted 1).

Let S =Sfbp(C'; R; E'; L). This automaton has the following interpretation —
it can either be a child (on a seat) or an empty seat. The transition elements R
and L allow the seat to become occupied or vacated. It is straightforward to see
that this automaton is a positive weighted automaton.

Then Sofia’s Birthday Party is given by the normalization of expression

Pfbaxp(S[|(1a x F)IS][(1a x F)[[-..[|S]|(1a x F)).

This automaton has the behaviour as informally described above. Its diagram-
matic representation (in the case of three seats) is:

) ) )
[ R [ R | R
Eiji*fﬁ Ei]i*fﬁ Ei]iﬁfB

A
B

Notice that though Sofia’s Birthday Party belongs to IIXY(E) slight variations
of the system belong instead to IIXIIX(E), for example the system where more
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than one child may occupy a seat (communicating there). If the system starts
in a state with as many children as seats — then movement is impossible and the
system is equivalent to the dining philosophers.

Let us look at a particular case of Sofia’s Birthday Party in more detail. Con-
sider the system with three seats, and two children. There are 36 states reachable
from initial state (5,1,1,1,1,1), where 5 is the state in which the seat is empty,
and there are 141 transitions.

The states are

(5,1,1,1,1,1) (5,1,1,3,2,1) (5,3,2,1,1,1) (5,3,2,3,2,1)
(1,1,1,1,5,1) (1,3,2,1,5,1) (5,1,1,3,3,2) (5,3,2,3,3,2)
(5,3,3,2,1,1) (1,3,3,2,5,1) (1,1,5,1,1,1) (2,1,1,1,5,3)
(2,1,5,1,1,3) (2,3,2,1,5,3) (2,3,3,2,5,3) (5,1,1,1,4,2)
(5,3,2,1,4,2) (5,1,4,2,1,1) (1,1,4,2,5,1) (2,1,4,2,5,3)
(1,1,5,3,2,1) (2,1,5,3,2,3) (3,2,1,1,5,3) (3,2,5,1,1,3)
(3,2,5,3,2,3) (5,3,3,2,4,2) (3,2,4,2,5,3) (1,1,5,3,3,2)
(4,2,1,1,5,1) (4,2,5,1,1,1) (4,2,5,3,2,1) (5,1,4,2,4,2)
(4,2,4,2,5,1) (1,1,5,1,4,2) (4,2,5,3,3,2) (4,2,5,1,4,2).

Then in 12 of these states there is a child eating: only one may eat at a time.
It is straightforward to calculate the 36 x 36 Markov matrix and iterating show
that the probability of a child eating after 1 step from initial state (5,1,1,1,1,1)
is 0, after 2 steps is (1),—(9), after 3 steps is %, after 4 steps is 14098103030, after 5 steps

is égzgggg and after 100 steps is 0.3768058221.

6. A FORK BOMB

We describe in this section a system in 3(II1X)"™, namely a probabilistic version of
a fork bomb; that is, a process which may duplicate, and each of its descendants
may duplicate also, hence leading to an exponential growth in the number of
processes.

In order to consider a finite example, and to model the fact that resources are
in practice limited, we consider a process F,, which, with equal probability, may
decide to idle, or to produce two parallel processes F;,_1, each of which may, with
equal probability, in turn choose to idle or produce two processes Fj, o, and so on.
Processes Fy simply idle.

We would like to model such a system in our algebra, and to calculate the
probability of arriving in the situation of having 2" idling processes after k steps.
The simplest version, in which there is no communication between the processes,
and hence all parallel interfaces may be taken to be trivial, is shown the following
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picture, which may easily be converted into an expression in our algebra:

Fn—l
Fn—l

Of course the full expression for the system involves substituting for F,,_; and
then F;,, o et cetera. Notice that if f,, is the number of states in F;, then f, satisfies
the recurrence relation

fn = 1+f7%—17 f0: ]-a

and hence fo =1, f1 = 2, fo =5, f3 = 27, .... It is straightforward to see that
fn is the number of binary trees of depth at most n. (The recursive equation for
the set B of all finite binary trees is B = 1+ B x B; for an interesting observation
of Lawvere on this equation see [2,21]). In fact the states of F,, may be identified
with such trees. Each state is a tuple of initial states of a number of processes,
which have been created after a number of bifurcations. The trees encode the
sequence of bifurcations which have occurred: vertices indicate bifurcations and
edges indicate which of the two child process has bifurcated next. As an example,

the trees of depth at most 2 are:

(4) (i) (i) (iv) (v)

=
.

The initial state of F» (no bifurcations) corresponds to (i) the empty tree;
the pair of initial states of F; x F; corresponds to (i) the one vertex tree (one
bifurcation); the triple of initial states of (Fy x Fy) X Fy (after a bifurcation then
a further bifurcation to the left) corresponds to the binary tree (iii); the triple of
initial states of Fy x (Fy X Fp) corresponds to the tree (iv); the quadruple of initial
states of (Fop x Fy) x (Fo x Fy) corresponds to tree (v).
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A calculation in our algebra of the states and transitions of F,, with their
probabilities, yields the following Markov automaton:

—
—
= ~.
S~— ~
= N[

=
=
—
—
=

(i) | (i) 2= (v)
! 2 C/
1

from which it is possible to calculate that the probability of reaching the state (v)
in which there are 4 idling processes of type Fy is greater than 99% after 12 steps.

7. THE PROBABILISTIC AUTOMATA OF SEGALA AND LYNCH

We indicate how the finite probabilistic automata of Segala and Lynch [22,27]
(which we shall now refer to as Segala-Lynch automata) and their finite behaviours
can be described in our model. Segala-Lynch automata model systems with non-
deterministic choice of probabilistic actions. A behaviour consists of probabilistic
scheduling of the non-determinism. The parallel operation is based on Hoare
synchronization. Properties of interest are relative to a class of schedulers.

We show that Segala-Lynch automata are equivalent to a certain subclass of
ours, and we then show that their behaviours (so-called finite probabilistic exe-
cutions) are, in our model, the reachable part of a composition of a scheduling
automaton and a weighted automaton. We show also that Hoare synchronization
may be described by an expression in our algebra.

7.1. SEGALA-LYNCH AUTOMATA

A finite Segala-Lynch automaton [22] consists of a finite set @ of states (with a
specified initial state qg), a finite alphabet of actions A (divided into internal and
external actions, though for simplicity we ignore the internal actions here), and a
finite set of probabilistic transitions. By a probabilistic transition we mean a triple
(¢, a, Zq,erqlq’), where a € A, ¢ € @, and py are non-negative real numbers
with 37 copg = 1 (the sum 3 pyq’ is a formal sum). The idea is that the
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probabilistic transition is labelled a and goes from ¢ to a distribution of states
instead of a single state. We write such a transition also as ¢ — Zq,erq/q'.

Given such a Segala-Lynch automaton we construct a weighted automaton as
follows: state set @, top sequential interface gg, bottom sequential interface 0,
left parallel interface A U {¢} and right parallel interface T' the set of (names
of) probabilistic transitions of the Segala-Lynch automaton augmented by the
symbol €. The set T contains the information necessary to schedule the Segala-
Lynch automaton. Finally the matrices of the weighted automaton are defined
as follows: if ¢ = (¢,a, ), coPqeq’) then [Qu,tlqq = py all other values being 0;
further Q. is the identity matrix and all other matrices are zero.

We call the resulting weighted automaton an SL automaton, and it is clear that
from the SL automaton one may recover the Segala-Lynch automaton, since the
non-zero matrices of the SL automaton are exactly the transition matrices of single
probabilistic transitions.

7.2. BEHAVIOUR OF SEGALA-LYNCH AUTOMATA

The type of scheduler that Segala and Lynch have in mind is one which at
any moment remembers the previous states and actions of the scheduling, but not
which probabilistic transitions have occurred, and on that basis makes a proba-
bilistic choice of which of the probabilistic transaction enabled in the current state
to schedule next.

We will describe this in terms of SL automata and our algebra.

For simplicity we will describe first a more general type of scheduler, one which
also remembers the probabilistic transitions carried out. Such a scheduler is a
weighted automaton with the following properties: (i) the left interface is T, the
right interface is trivial; (ii) the graph (of transitions with non-zero weighting) is
a finite tree with root the initial state; (iii) there are no ¢ labelled transitions, and
(iv) out of any state there is at most one transition with non-zero weight with a
given label t € T. That is, in each state the scheduler decides on a weight for
the different probabilistic transitions to execute and passes to a new state which
remembers which of the probabilistic transitions was chosen. It is not difficult,
though a little messy, to modify this notion so that the scheduler remembers only
the action taken rather than the whole probabilistic transition: equate states in
the general scheduler which arise from the same action in a given state. Such a
scheduler we call an SL scheduler. Now consider the parallel (in our sense) of
a SL automaton with an SL scheduler. The normalized reachable part of this
composite is easily seen to be a finite probabilistic execution of the Segala-Lynch
automaton (and all probabilistic executions arise in this way). Normalization is
necessary because the scheduler may attempt to schedule a probabilistic transition
in a state in which the transition is not enabled.

7.3. THE PARALLEL COMPOSITION OF SEGALA-LYNCH AUTOMATA

We describe how CSP synchronization of weighted automata may be modelled
in our algebra (see also [8]). Consider two positive weighted automata Qayp
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and Q'BJFQT, with A, B and C pairwise disjoint, and with A and C' containing &’s.
To define the CSP parallel composition of Q and Q' we need a special component
M a4 B4, (a+B)x(B+c) With one state and non-zero 1 x 1 matrices being My (4 ¢) =
1, Mc,(e,c) =1, Mb,(b,b) =1 and Ms,(e,s) =1, wherea € A;be B,ce C.

The CSP parallel composite is then

M4 o, (a+B)x(B+O)(Qar BT X Qpyc1)-

When applied to the SL automata derived from Segala-Lynch automata it is rou-
tine to check that this gives the SL automaton of their parallel composite as
Segal-Lynch automata.
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