
RAIRO-Theor. Inf. Appl. 45 (2011) 249–267 Available online at:

DOI: 10.1051/ita/2011105 www.rairo-ita.org

ADVICE COMPLEXITY AND BARELY RANDOM
ALGORITHMS ∗

Dennis Komm1 and Richard Královič1

Abstract. Recently, a new measurement – the advice complexity –
was introduced for measuring the information content of online prob-
lems. The aim is to measure the bitwise information that online al-
gorithms lack, causing them to perform worse than offline algorithms.
Among a large number of problems, a well-known scheduling problem,
job shop scheduling with unit length tasks, and the paging problem were
analyzed within this model. We observe some connections between ad-
vice complexity and randomization. Our special focus goes to barely
random algorithms, i.e., randomized algorithms that use only a con-
stant number of random bits, regardless of the input size. We adapt
the results on advice complexity to obtain efficient barely random al-
gorithms for both the job shop scheduling and the paging problem.
Furthermore, so far, it has not yet been investigated for job shop sched-
uling how good an online algorithm may perform when only using a
very small (e.g., constant) number of advice bits. In this paper, we
answer this question by giving both lower and upper bounds, and also
improve the best known upper bound for optimal algorithms.

Mathematics Subject Classification. 68Q25, 68Q30, 68Q87.

1. Introduction

In classical algorithmics, one is interested in designing fast algorithms that cre-
ate high-quality solutions for a large set of instances of specific problems. More-
over, in many practical applications, another challenge arises for the algorithm
designer: often, not the whole input is known at once, but it arrives piecewise in

Keywords and phrases. Barely random algorithms, advice complexity, information content,
online problems.

∗ This work was partially supported by ETH grant TH 18 07-3 and SNF grant 200020-120073.
An extended abstract of this paper appeared in [11].
1 Department of Computer Science, ETH Zurich, Switzerland. dennis.komm@inf.ethz.ch

Article published by EDP Sciences c© EDP Sciences 2011

http://dx.doi.org/10.1051/ita/2011105
http://www.rairo-ita.org
http://www.edpsciences.org

250 D. KOMM AND R. KRÁLOVIČ

consecutive time steps. After every such time step, a piece of output has to be
created which must not be changed afterwards, i.e., the algorithm has to compute
the output without knowing the whole input. We call such situations online sce-
narios and the according strategies to cope with them online algorithms. We do
not give a detailed introduction, but point the reader to the standard literature,
e.g., [4,8].

Classically, the output quality of an online algorithm is measured by the compet-
itive ratio [4,8], i.e., the quotient of the cost of the solution the online algorithm
computes for a particular problem instance and the cost of an optimal (offline)
solution for this instance.

Here, we are dealing with online algorithms that have access to an additional
advice tape thought of as being written by an oracle O that sees the whole input
in advance and has unlimited computational power. The motivation behind this
setup is that O can give some information about the future parts of the input to
the algorithm. This allows us to measure the amount of such information that is
necessary/sufficient to obtain an online algorithm with a certain competitive ratio,
i.e., we can measure how much information about the future the online algorithm
is really missing. We can use this approach to measure the information content
of online problems, as proposed in [9]. In some sense, we can see this setup as a
generalization of randomized online algorithms where the algorithm has access to
another tape with random bits written on it. The concept of online algorithms
with advice was introduced in [6] and since then revised and applied to several
online problems in [2,7].

In the following, we use the same notation as in [2].

Definition 1.1. A minimization online problem consists of a set I of inputs and
a cost function. Every input I ∈ I is a sequence of requests I = (x1, . . . , xn).
Furthermore, a set of feasible outputs (or solutions) is associated with every I;
every output is a sequence of answers O = (y1, . . . , yn). The cost function assigns
a positive real value cost(I, O) to every input I and any feasible output O. If the
input is clear from the context, we omit I and denote the cost of O as cost(O).
For every input I, we call any output O that is feasible for I and has smallest
possible cost an optimal solution of I, denoted by Opt(I).

We are now ready to define online algorithms with advice, which solve mini-
mization online problems, and their competitive ratios.

Definition 1.2. Consider an input I of a minimization online problem. An online
algorithm A with advice computes the output sequence Aφ = Aφ(I) = (y1, . . . , yn)
such that yi is computed from φ, x1, . . . , xi, where φ is the content of the advice
tape, i.e., an infinite binary sequence. We denote the costs of the computed output
by cost(Aφ(I)). A is c-competitive with advice complexity s(n) if there exists a
constant α such that, for every n and for each I of length at most n, there exists

ADVICE COMPLEXITY AND RANDOM ALGORITHMS 251

some φ such that cost(Aφ(I)) ≤ c · cost(Opt(I)) + α and at most the first s(n) bits
of φ have been accessed during the computation of Aφ(I).

Although φ is infinitely long, A only accesses a finite number of bits of φ. Since
A has no random access to the tape, it reads these bits sequentially, hence the
accessed bits form a finite prefix of φ. The length of this prefix is, however,
determined by the computation performed by A.

Moreover, in this paper we are also dealing with randomized online algorithms,
i.e., online algorithms that are allowed to base some of their calculations on random
decisions.

Definition 1.3. As above, consider any input I of a minimization online problem.
A randomized online algorithm R computes the output sequence Rφ = Rφ(I) =
(y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is the content
of the random tape, i.e., an infinite binary sequence where every bit is chosen
uniformly at random and independently of all the others. By cost(R(I)) we denote
the random variable expressing the cost of the solution computed by R on I.
Algorithm R is c-competitive if there exists a constant α such that, for every input
sequence I, E[cost(R(I))] ≤ c · cost(Opt(I)) + α.

Generating random numbers might be expensive. Hence, we are interested in
designing good randomized algorithms that use as few random bits as possible. It is
possible to measure the amount of random bits needed by a randomized algorithm
as a function of the input length, in a similar way as the time complexity, space
complexity, or advice complexity is measured. Randomized algorithms that use
only a constant number of random bits, regardless of the input size, are called
barely random algorithms [4], introduced in [13]. The number of random bits used
by these algorithms is asymptotically minimal, hence they can be considered the
best algorithms with respect to the amount of randomness used.

It is very simple to observe that, if there is a c-competitive randomized algorithm
R solving some online problem P using r(n) random bits, where n is the length
of the input instance, there also exists a c-competitive algorithm with advice A
solving P with advice complexity s(n) = r(n). Indeed, it is sufficient to provide,
for every input, the best possible choice of random bits as an advice for A, which
then simulates R in a straightforward way. This result can be used for propagating
the lower bounds on advice complexity to lower bounds on randomized algorithms
using a restricted number of random bits:

Observation 1.4. Assume that there is no c-competitive algorithm with advice
that solves an online problem P with advice complexity s(n). Then there is no
c-competitive randomized algorithm that solves P with r(n) = s(n) random bits.

Hence, problems with high information content cannot be efficiently solved by
randomized algorithms that use a small number of random bits. The opposite
direction does not hold, i.e., it is not always possible to transform an efficient
algorithm with advice into an efficient randomized algorithm. For example, con-
sider a (very artificial) problem of guessing a single bit: the first request is always

252 D. KOMM AND R. KRÁLOVIČ

a symbol ‘?’, the second request is a symbol ‘0’ or ‘1’, and all remaining requests
are ‘*’. The algorithm must answer the request ‘?’ by a symbol ‘0’ or ‘1’ and all
subsequent requests by symbols ‘*’. The total cost of a solution is the sum of the
partial costs induced by individual requests, as described below. The answer to ‘?’
always induces costs of 1. Furthermore, if the reply is equal to the second request,
all subsequent requests induce costs 0, otherwise they induce costs 1. Easily, an
optimal solution has costs of 1, and it can be reached with a single bit of advice.
On the other hand, any randomized algorithm, regardless of the number of ran-
dom bits used, cannot gain expected costs better than n/2 for inputs of n requests,
which yields an expected competitive ratio of n/2. Thus, even problems with in-
formation content of 1 bit only might not be efficiently solvable by randomized
algorithms.

Nevertheless, the proofs used to construct efficient algorithms with advice may
sometimes be adapted to the randomized settings as well. In this way, we obtain
some interesting results about barely random algorithms.

Throughout this paper, by log x we denote the logarithm of x with base 2.
We are now ready to define the two problems we investigate in the following.

1.1. Job shop scheduling

First, we are dealing with the following problem called job shop scheduling or
Jss for short (see [2,5,8,10,12] for a more detailed introduction and description).
Let there be two so-called jobs A and B, each of which consists of m tasks. The
tasks must be executed in sequential order and each task needs to be processed
on a specific machine. There are exactly m machines identified by their indices
1, 2, . . . , m and each job has exactly one task for every machine. Processing one
task takes exactly 1 time unit and, since both jobs need every machine exactly
once, we may represent them as permutations PA = (p1, p2, . . . , pm) and PB =
(q1, q2, . . . , qm), where pi, qj ∈ {1, 2, . . . , m} for every i, j ∈ {1, 2, . . . , m}. The
meaning of such a permutation is that the tasks must be performed in the order
specified by it and that, for every machine, the kth task must be finished before
one may start with task k + 1. If, at one time step, both jobs A and B ask for
the same machine, one of them has to be delayed. The costs of a solution are
measured as the total time needed by both jobs to finish all tasks. The goal is to
minimize this time, which we also call the makespan.

In an online scenario, the permutations PA and PB arrive successively, i.e., only
p1 and q1 are known at the beginning and pi+1 [qj+1] is revealed after pi [qj] has
been processed.

We use the following graphical representation, which was introduced in [5].
Consider an (m × m)-grid where we label the x-axis with PA and the y-axis with
PB . The cell (pi, qj) models that, in the corresponding time step, A processes a
task on machine pi while B processes a task on qj . A feasible schedule for the
induced instance of Jss is a path that starts at the upper left vertex of the grid
and leads to the bottom right vertex. It may use diagonal edges whenever pi �= qj .
However, if pi = qj , both A and B ask for the same machine at the same time and

ADVICE COMPLEXITY AND RANDOM ALGORITHMS 253

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������������������������

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

Figure 1. An example input with two jobs each of size 20 and
the strategies D−3 and D2. Obstacles are marked by filled cells.

therefore, one of them has to be delayed. In this case, we say that A and B collide
and call the corresponding cells in the grid obstacles (see Fig. 1). If the algorithm
has to delay a job, we say that it hits an obstacle and may therefore not make a
diagonal move, but either a horizontal or a vertical one. In the first case, B gets
delayed, in the second case, A gets delayed.

Observation 1.5. The following facts are immediate [2,8].

(i) Since PA and PB are permutations, there is exactly one obstacle per row
and exactly one obstacle per column for every instance.

(ii) There are exactly m obstacles overall for any instance.
(iii) Every optimal solution has cost of at least m and therefore every online

algorithm is 2-competitive or better.
(iv) Every feasible solution makes exactly as many horizontal moves as it makes

vertical ones. We call the number of horizontal [vertical] moves the delay
of the solution.

(v) The cost of a solution is equal to m plus the delay of the solution.
(vi) Hitting an obstacle causes additional costs of at most 1 (in certain situa-

tions even none) since one diagonal move can be simulated by exactly one
vertical and one horizontal move.

254 D. KOMM AND R. KRÁLOVIČ

Let diag0 be the main diagonal (from (1, 1) to (m, m)) in the grid. The diagonal
that has a distance of i from diag0 and lies below [above] it, is called diag−i [diagi].
Similar to [10], for any odd d, we consider a certain set of strategies

Dd =
{

Di

∣∣∣∣ i ∈
{
−d − 1

2
, . . . ,

d − 1
2

}}

where Dj is the strategy to move to the starting point of diagj with j steps, to
follow it when possible, and to avoid any obstacle by making a horizontal step
directly followed by a vertical one (thus returning to diagj).

Please note that it is crucial for our analysis that the algorithm returns to the
diagonal even though there might be situations where it is an advantage not to
take the vertical step after the horizontal one.

1.2. Paging

The second problem we focus on is among the most-studied online problems
with great practical relevance. The paging problem, Paging for short, is motivated
by the following circumstance: the performance of today’s computers is limited
by the fact that the physical memory is a lot slower than the CPU (this fact
is known as the von Neumann bottleneck). Hence, the concept of a very fast
(and therefore more expensive and consequently smaller) cache is used to store as
much of the content of the physical memory as possible. We aim at maximizing
the communication between the CPU and the cache and thereby minimizing the
more costly communication between the CPU and the physical memory. A similar
situation occurs between the physical memory and the much slower hard disc.
Formally, we deal with the following problem.

Definition 1.6 (paging problem). The input is a sequence of integers representing
requests to logical pages I = (x1, . . . , xn), xi > 0. An online algorithm A maintains
a buffer (content of the cache) B = {b1, . . . , bK} of K integers, where K is a fixed
constant known to A. Before processing the first request, the buffer gets initialized
as B = {1, . . . , K}. Upon receiving a request xi, if xi ∈ B, then A creates the
partial output yi = 0. If xi �∈ B, then a so-called page fault occurs, and the
algorithm has to find some victim bj , set B := (B \ {bj}) ∪ {xi}, and output
yi = bj. The cost of the solution A = A(I) is the number of page faults, i.e.,
cost(A) = |{yi | yi > 0}|.

A more complete description of Paging can be found in [4]. Furthermore,
in [2,6], the problem was examined within the scope of advice complexity.

1.3. Organization of this paper

This paper is organized as follows. In Section 2, we deal with the advice com-
plexity of Jss. In Section 2.1, we improve the best so far known upper bound
on the advice complexity for achieving optimality. In Section 2.2, we construct
an algorithm for any constant d which achieves a competitive ratio tending to

ADVICE COMPLEXITY AND RANDOM ALGORITHMS 255

1 + 1/d for large m, using only �log d� bits of advice. We prove that this bound is
almost tight, in particular, that no algorithm with �log d	 bits of advice can reach
a competitive ratio better than 1 + 1/(3d). Finally, Section 3 deals with barely
random algorithms. In Section 3.1, we give a barely random algorithm for Jss
which achieves an expected competitive ratio that also tends to 1 + 1/d. Using
Observation 1.4 and the results about advice complexity, we obtain lower bounds
for barely random algorithms for Jss as well. In Section 3.2, we give a barely
random algorithm for Paging which achieves an expected competitive ratio of
O(log K), what is asymptotically optimal for any randomized algorithm.

2. Advice complexity of job shop scheduling

At first, we consider the advice complexity of Jss, that is, we give lower and
upper bounds on the number of advice bits needed to achieve a certain output
quality. Doing so, we improve and generalize some of the results obtained in [2].

2.1. Optimality

We quickly discuss the amount of information needed for an online algorithm
to produce an optimal output for Jss. In [10], the following lemma was proven.

Lemma 2.1. For every instance of Jss, there is an optimal solution which has
costs of at most m + �√m �.

Using this lemma, in [2], an optimal algorithm for Jss has been proposed with
advice complexity s(m) = 2�√m �. The strategy is to get one bit of advice for
every obstacle that is hit indicating whether to move horizontally or vertically to
bypass it. Since we know that there always is an algorithm which makes at most
�√m � vertical and �√m � horizontal moves by hitting at most 2�√m � obstacles,
the claim follows easily. We improve this upper bound on the information content
of Jss by compressing the advice strings.

Theorem 2.2. There exists an optimal online algorithm A (i.e., an algorithm
that always outputs an optimal solution) with advice complexity s(m) ≤ 2�√m �−
1
4 log m for any instance of Jss.

Proof. Indeed, there are 22�√m � possible strings of length 2�√m � out of which
the oracle provides one to the online algorithm A thus using 2�√m � bits in the
proof mentioned above. Recall that A knows m and therefore �√m �. The crucial
part is that all of these strings have a very nice structural property: due to Ob-
servation 1.5 (iv), they contain as many ones as they contain zeros. For a fixed m,
there exist exactly (

2�√m �
�√m �

)
=

(2�√m �)!
(�√m �!)2

256 D. KOMM AND R. KRÁLOVIČ

such strings. Applying Stirling’s approximation, we get

(2�√m �)!
(�√m �!)2 <

4�
√

m �√
π�√m � ·

Enumerating all possible strings in canonical order and then merely communicating
the index of the specific string gives that it suffices to send

log

(
4�

√
m �√

π�√m �

)
= �√m � · log 4 − log

(√
π�√m �

)
≤ 2�√m � − 1

4
log m

bits. �

2.2. Competitive ratio

Intuitively speaking, we now show that there always exists a solution with low
costs close to the main diagonal which implies that only a few bits are needed to
achieve a good result. In what follows, d is always a small odd constant which is
independent of the input size. Furthermore, let δ := d2/4 − d (please note that
δ > −1). Before we continue, we need the following lemma.

Recall that we call the number of horizontal [vertical] moves of a solution its
delay; the costs (makespan) of the solution is always equal to m plus its delay.
The delay of a diagonal strategy Di is always |i| plus the number of obstacles on
diagi. If i ≥ 0, the strategy Di makes i horizontal moves to reach diagi and then
a single horizontal move for every obstacle on diagi. The argument for i ≤ 0 is
similar, but using vertical moves.

Lemma 2.3. There exists a diagonal in Dd such that the corresponding diagonal
strategy has a delay of at most � δ+m

d �·
Proof. As we have seen in Observation 1.5 (ii), there are exactly m obstacles in
the whole grid which represents the instance at hand.

Towards contradiction, suppose that the claim is wrong. Therefore, each of the
considered strategies has costs of at least m+ � δ+m

d �+1. This means that at least
� δ+m

d � + 1 obstacles are on the main diagonal, at least � δ+m
d � obstacles are on

D−1 and D1, in general at least

⌈
δ + m

d

⌉
+ 1 − i

obstacles have to be on D−i and Di, and finally

⌈
δ + m

d

⌉
− d − 3

2

ADVICE COMPLEXITY AND RANDOM ALGORITHMS 257

obstacles are on D−(d−1)/2 and D(d−1)/2. If we now sum up all obstacles, we
immediately get a total of

⌈
δ + m

d

⌉
+ 1 + 2

(d−1)/2∑
i=1

(⌈
δ + m

d

⌉
+ 1 − i

)

≥ δ + m

d
+ 1 +

(
δ + m

d
+ 1
)

(d − 1) − 2
(d−1)/2∑

i=1

i

=
(

δ + m

d
+ 1
)

d − d2 − 1
4

= m + d +
d2

4
− d − d2 − 1

4

obstacles which is strictly more than m and therefore directly contradicts our
assumption. �

We can now prove the following theorem.

Theorem 2.4. For every d, there exists an online algorithm Ad that reads �log d�
bits of advice and achieves a competitive ratio of

1 +
1
d

+
d

4(m + 1)
− d + 1

d(m + 1)
·

Proof. Let Ad know d and receive �log d� bits in total that tell the algorithm which
out of the diagonals from Dd to follow using the aforementioned strategy. As
we have shown in Lemma 2.3, one out of these strategies has a delay of at most
� δ+m

d �. Note that, if the optimal solution has cost m, this solution must take
the main diagonal. But in this case, A is always optimal, because there are no
obstacles on diag0 and the corresponding delay is therefore 0. Hence, without loss
of generality, we may assume a lower bound of m + 1 for the optimal solution.
Putting this together, we get a competitive ratio of A of at most

m +
⌈

d2/4−d+m
d

⌉
m + 1

≤ m + d2/4−d+m
d + 1

m + 1
=

m + m
d + d

4

m + 1

= 1 +
1
d

+
d

4(m + 1)
− d + 1

d(m + 1)

as we claimed. �

Figure 2 shows how the competitive ratio of Ad behaves depending on the num-
ber of advice bits. In [10], it was shown that, for any ε > 0, any deterministic
online algorithm without advice cannot be better than (1 + 1/3− ε)-competitive.
On the other hand, the competitive ratio of Ad tends to (1 + 1/7) (recall that d is
odd) with only 3 bits of advice for m tending to infinity. Hence, we can beat de-
terministic strategies with only very little additional information. A similar result
was shown for the paging problem in [2].

258 D. KOMM AND R. KRÁLOVIČ

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1 2 3 4 5 6 7 8 9 10

Number of bits

C
om

pe
ti

ti
ve

ra
ti
o

Figure 2. The competitive ratio of Ad depending on log d for m
tending to infinity.

In Theorem 2.4, we did not care about the uniformity of Ad for different values
of d. It is, however, not difficult to avoid the non-uniformity, i.e., to define a single
algorithm A that reaches a competitive ratio tending to 1+1/d for any d, depending
on the advice received. To do so, the oracle first writes 2�log �log d�� bits on the
advice tape. Bits at odd positions give the number �log d� in binary, bits at even
positions are zero while the next bit still belongs to the first 2�log �log d�� bits and
one otherwise (therefore, this string is self-delimiting). After reading the first bit
of value one at an even position, A knows how many bits to read afterwards telling
it what strategy to choose.

Corollary 2.5. There exists an online algorithm with advice complexity �log d�+
2�log �log d�� that achieves a competitive ratio tending to 1 + 1/d with growing m.

It is not difficult to see that the analysis of algorithm Ad is almost tight for
every d. To show this, we give a construction that blocks all diagonals the algorithm
chooses from. Following any of the blocked diagonals causes the algorithm to have
costs of at least m+m/d, whereas an optimal solution has costs of exactly m + 1.

Lemma 2.6. For any d and any ε > 0, the competitive ratio of the algorithm Ad

is not better than 1 + 1/d− ε for infinitely many m.

Proof. Let m be even. We now describe how to sufficiently delay every possible
diagonal strategy. Suppose we want to make sure that every strategy has a delay
of at least l (where l is divisible by 2). At first, we place l obstacles in the
center of the main diagonal, i.e., in the cells (m/2 − l/2 + 1, m/2 − l/2 + 1) to
(m/2+ l/2, m/2+ l/2). For now, let us focus on the cells which are in the bottom-
right quadrant of the (m × m)-grid. For each i ∈ {1, 2, . . . , (d − 1)/2}, we create

ADVICE COMPLEXITY AND RANDOM ALGORITHMS 259

one block of obstacles. The block corresponding to i consists of l− i obstacles. All
of these obstacles are put on the ith diagonal above the main one, in consecutive
rows, just below the rows used by the block i − 1. In particular, the obstacles of
block 1 are located on(

m + l

2
+ 1,

m + l

2
+ 2
)

, . . . ,

(
m + l

2
+ l − 1,

m + l

2
+ l

)
,

the obstacles of block 2 are located on(
m + l

2
+ l,

m + l

2
+ l + 2

)
, . . . ,

(
m + l

2
+ 2l − 3,

m + l

2
+ 2l − 1

)
,

etc. Hence, we need to use l − i rows and l − i + 1 columns to build the block
i (the first column of the block is empty, since block i is on a different diagonal
than block i − 1).

To be able to successfully build all of the blocks, we need at least

l

2
+ 1 + (l − 1) + 1 + (l − 2) + 1 + . . . +

(
l − d − 1

2

)

columns (clearly, if there are enough columns available, there are enough rows as
well). Since we have exactly m/2 columns, we have to make sure that

l

2
+

(d−1)/2∑
i=1

1 + l − i ≤ m

2

⇐⇒ l

2
+

d − 1
2

(1 + l) − d2 − 1
8

≤ m

2

⇐⇒ l ≤ m + d2+3
4 − d

d
·

We can ensure this by taking l to be the smallest even integer such that

l ≥ m + d2+3
4 − d

d
− 2.

The same construction can be performed in the top-left quadrant in a symmetric
way. In every block, there is one free column. It remains to use the rows not used
by any block (nor the obstacles in the main diagonal) to put a single obstacle to
every such free column. To do so, we use the top-right and bottom-left quadrant.
It is straightforward to observe that this is always possible, even without using
any diagonal neighboring the main one.

An example of this construction for m = 20, l = 4, and D5 is shown in Figure 3.
It is immediately clear that any optimal solution has costs of exactly m + 1: an
optimal solution follows the main diagonal until the first obstacle is hit. After-
wards, the solution makes one vertical step and follows the first diagonal below
the main one (i.e., diag−1).

260 D. KOMM AND R. KRÁLOVIČ

��

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

Figure 3. A hard instance for D5.

Ad calculates a solution with delay at least l, i.e., with costs at least

m + l ≥ m +
m + d2+3

4 − d

d
− 2 ≥ (m + 1)(1 +

1
d
) − 4 − 1

d
+

d2 + 3
4d

·

Therefore, the competitive ratio of Ad on this instance is at least

(m + 1)(1 + 1
d) − 4 − 1

d + d2+3
4d

m + 1
= 1 +

1
d

+
d2 − 16d − 1
4d(m + 1)

≥ 1 +
1
d
− ε

if m is large enough, which we can assume for infinitely many m. Note that if
d ≥ 17, the inequality always holds even if ε = 0. �

Up to this point, we have shown that, with a small constant number of advice
bits, it is possible to perform very well. In [2], it was shown that the information
content of Jss is at least ⌊√

16m + 9 − 11
8

⌋
,

i.e., at least that many advice bits are needed for any online algorithm with advice
to be optimal.

A naturally arising question is whether we can be (1 + Θ(1/m))-competitive
with reading a constant number of advice bits, i.e., if it suffices to use a constant

ADVICE COMPLEXITY AND RANDOM ALGORITHMS 261

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1 2 6 8 94 5 10 11 13 14 15 17 183 7 12 16 19 20

2
6
4
7

8

5
3
1

12

14

16
10
19
11
13
15

9

17
20
18

Figure 4. An example of how to place the obstacles in such a way
that any deterministic algorithm cannot make two consecutive
diagonal moves as presented in [8].

number of bits to get arbitrarily close to the optimal solution. In the following,
we disprove this.

Theorem 2.7. For any ε > 0, any online algorithm with advice that reads b bits
of advice cannot be better than(

1 +
1

3 × 2b
− ε

)
-competitive.

Proof. In [10], it was shown that any deterministic online algorithm A for Jss has
a competitive ratio of at least 4/3. There always exists an adversary that can
make sure that every second move of A is not a diagonal move: the intuitive idea
is that, after every diagonal move of A, the algorithm reaches a column and a
row in which the adversary has not yet placed an obstacle. This idea is shown in
Figure 4. Recall that we already know that there always exists an optimal solution
with costs of at most m + �√m � (Lem. 2.1).

For any algorithm that reads b bits of advice and any ε > 0, we find some
(arbitrarily large) m and construct an input instance of size m× m such that the
algorithm has a delay of at least m

3×2b . Hence, the makespan of the algorithm is

at least m
(
1 + 1

3×2b

)
and, since the optimal solution has a makespan of at most

262 D. KOMM AND R. KRÁLOVIČ

A1

A2

A3

︸︷︷︸
δ

Figure 5. A hard instance for Ab as used in the proof of Theo-
rem 2.7, which uses the construction of [8] (Fig. 4) 2b times.

m + �√m �, the competitive ratio of the algorithm cannot be better than

m
(
1 + 1

3×2b

)
m + �√m � ≥ 1 +

1
3 × 2b

− ε

for any large enough m.
In the following, let m be a multiple of 2b. Suppose that we are now dealing

with any algorithm Ab that reads b bits of advice while processing an input of size
m. We impose another virtual grid on the (m × m)-grid, where each virtual cell
consists of m′ := m/2b original cells. Let us now consider the 2b virtual cells on
the main diagonal (as shown in Fig. 5). We call these cells blocks and label them
S1, S2, . . . , S2b .

Furthermore, we call all original cells that have a deviation of less than m′ from
the main diagonal the active zone (marked grey in Fig. 5). Any algorithm that
leaves this zone at any point makes at least m′ horizontal [vertical] moves and

ADVICE COMPLEXITY AND RANDOM ALGORITHMS 263

thus has a delay of at least m′ > m
3×2b . We may therefore assume that the given

algorithm never leaves the active zone.
Observe that we may think of Ab as 2b deterministic algorithms we have to deal

with. Without loss of generality, we may assume that each of these algorithms
makes a diagonal move when possible [2], Lemma 2. We may label the algorithms
A1, A2, . . . , A2b by sorting the corresponding advice in canonical order and assign
each deterministic algorithm Ai to exactly one block Si.

We now construct the input instance sequentially in such a way that all obstacles
are located in some block Si. Note that Si spans the rows and the columns
m′i + 1, . . . , m′i + m′. Recall that pi denotes the ith task of the first job and
qi denotes the i-th task of the second job. We thus construct the input such
that pm′i+1, . . . , pm′i+m′ , as well as qm′i+1, . . . , qm′i+m′ , are permutations of the
numbers m′i + 1 . . . , m′i + m′.

Assume that, so far, we have constructed S1, . . . , Si−1. Now we construct Si

in such a way that Ai has delay at least m
3×2b , regardless of the content of any Sj

for j > i. Without loss of generality, assume that Ai reaches the right border of
Si−1 at distance δ above the main diagonal; the case when Ai reaches the bottom
border of Si−1 is analogous. If i = 1, we define δ := 0, since the first algorithm
starts at the top left point of the main diagonal.

Since there are no obstacles outside the blocks and we assume that Ai makes
a diagonal move whenever possible, Ai makes δ diagonal moves after leaving Si−1

until it reaches the top border of Si, i.e., the top left corner of the cell (m′i +
δ + 1, m′i + 1). We assign the first δ tasks to the first job sequentially, i.e.,
pm′i+j = m′i + j for all j ∈ {1, . . . , δ}.

After Ai reaches the cell (m′i + x, m′i + y), the first m′i + x tasks of the first
job and first m′i + y tasks of the second job must be assigned. In the sequel, we
maintain the invariant that, in such a situation, only numbers up to m′i+max(x, y)
are used in both jobs. This invariant holds before Ai reaches (m′i+ δ +1, m′i+1).

After Ai reaches Si, we employ the strategy of [10] to ensure that every second
move of Ai is non-diagonal: at first, we assign

pm′i+δ+1 = qm′i+1 := m′i + δ + 1,

thus creating an obstacle and the next move of Ai will be a non-diagonal one. Every
time Ai makes a horizontal [vertical] move, we assign the smallest possible task
as the next task of the first [second] job. When Ai makes a diagonal move at cell
(m′i+x, m′i+y) (thus reaching the top-left corner of cell (m′i+x+1, m′i+y+1)),
we assign

pm′i+x+1 = qm′i+y+1 := m′i + max(x, y) + 1,

thus creating an obstacle and forcing Ai to make another non-diagonal move. It
is easy to verify that we can always follow this strategy due to the validity of the
invariant and that the invariant is never violated.

We follow this strategy until Ai reaches the right or bottom border of Si. As-
sume that Ai makes h horizontal moves, v vertical moves, and d diagonal moves in
this part of the computation (that is, in Si). Since every diagonal move is followed

264 D. KOMM AND R. KRÁLOVIČ

by a non-diagonal one and the first move is non-diagonal, we have h + v ≥ d. We
estimate the lower bound on the total delay D of Ai on the constructed input
instance. Even though we have not constructed Sj for j > i yet, we can proceed,
since our bound will not depend on them. Since the total number of horizontal
and vertical moves of Ai over the whole input must be equal, D is equal to the
total number of horizontal [vertical] moves of Ai. We distinguish two cases:

(1) h ≥ v: in this case, Ai reaches the right border of Si. Since Ai entered Si

in column m′i + δ + 1, there were m′ − δ non-vertical moves, hence

m′ − δ = h + d ≤ 2h + v ≤ 3h.

Therefore, h ≥ (m′ − δ)/3. Since Ai leaves Si−1 at distance δ above the
main diagonal, it made at least δ horizontal steps before it entered Si.
Thus, we can bound the total number of horizontal steps of Ai, which is
equal to D, as

D ≥ δ + h ≥ m′ + 2δ

3
≥ m′

3
·

(2) h < v: assume that Ai leaves Si at distance δ′ above the bottom border
of Si; if Ai reaches the bottom border, δ′ = 0, otherwise δ′ > 0. Since Ai

made m′ − δ′ non-horizontal moves in Si, we have

m′ − δ′ = v + d ≤ 2v + h ≤ 3v

and v ≥ (m′ − δ′)/3. After leaving Si, algorithm Ai must make at least
δ′ vertical moves to end at the main diagonal. Hence, the total number of
vertical steps of Ai, which is equal to D, can be bounded as

D ≥ δ′ + v ≥ m′ + 2δ′

3
≥ m′

3
·

In both cases, Ai has delay at least m′/3. Therefore, after constructing all Si in
the described way, we obtain an input instance where every Ai has makespan at
least m + m

3×2b . �
Using this result, an easy calculation gives that the bound from Theorem 2.4 is

tight up to a multiplicative constant of

3 × 2b + 3
3 × 2b + 1

which tends to 1 for an increasing b.

3. Barely random algorithms

At first, we again consider Jss and make use of ideas we have already considered
within the advice complexity framework in Section 2.

ADVICE COMPLEXITY AND RANDOM ALGORITHMS 265

3.1. Job shop scheduling

As above, we consider the class Dd of diagonal strategies as introduced in Sec-
tion 1 for some odd constant d ≥ 1. Consider a barely random algorithm Rd which
randomly chooses a strategy from this class using at most �log d� random bits to
do so. Our results from Section 2.2, together with Observation 1.4, imply that
we cannot hope for anything significantly better than the competitive ratio Ad

achieves. However, the following theorem holds.

Theorem 3.1. The algorithm Rd achieves an expected competitive ratio of

1 +
1
d

+
d2 − 1
4dm

·

Proof. For every odd d, consider the following random variables X1, X2, X, Y :
Dd → �, where X1(Di) is the delay caused by the initial horizontal [vertical]
steps made by the strategy Di, X2(Di) is the delay caused by Di hitting obstacles,
X(Di) = X1(Di) + X2(Di) is Di’s overall delay, and Y (Di) = m + X(Di) is Di’s
overall cost. Recall that D−j and Dj make the same amount of vertical [horizontal]
moves at the beginning. Since there are exactly m obstacles in total for every
instance, we immediately get

E[X2] =
1
d

⎛
⎝X2(D0) + 2

(d−1)/2∑
i=1

X2(Di)

⎞
⎠ ≤ m

d

and since X1(D0) = 0, we get

E[X1] =
1
d

⎛
⎝X1(D0) + 2

(d−1)/2∑
i=1

X1(Di)

⎞
⎠ =

2
d

(d−1)/2∑
i=1

i =
d2 − 1

4d
·

Due to the linearity of expectation, it follows that

E[Y] = m + E[X] = m + E[X2] + E[X1] ≤ m +
m

d
+

d2 − 1
4d

·

Therefore, the expected competitive ratio of Rd is at most

(d+1)m
d + d2−1

4d

m
= 1 +

1
d

+
d2 − 1
4dm

which, for increasing m, tends to 1 + 1/d. �
Please note that this bound is very close to the one shown for the corresponding

online algorithm with advice in Theorem 2.4, but slightly worse. In fact, we can
use the proof of Theorem 3.1 as a probabilistic proof of the upper bound on the
advice complexity of Jss. On the other hand, we can apply Theorem 2.7 and

266 D. KOMM AND R. KRÁLOVIČ

Observation 1.4 to obtain that, for any ε > 0, no randomized algorithm that
uses at most b random bits can obtain a competitive ratio of 1 + 1/(3 × 2b) − ε.
Hence, barely random algorithms for Jss cannot have a competitive ratio that
tends to 1 with growing m. This means they perform worse than the randomized
algorithms from [10] (using an unrestricted number of random bits), which can
reach a competitive ratio that tends to 1 with growing m.

3.2. Paging

Next, we look at Paging and show the existence of a barely random algorithm
that achieves a low competitive ratio. It is well known that no deterministic
algorithm for Paging can be better than K-competitive, where K is the size of
the cache, and that there exists an O(log K)-competitive randomized algorithm
for Paging [4].

More precisely, there is a HK-competitive randomized algorithm for Paging,
where HK =

∑K
i=1 1/i is the Kth harmonic number, and this bound is tight [1].

To the best of our knowledge, however, all randomized algorithms for Paging
known so far that reach a competitive ratio O(log K) use Ω(n) random bits for
inputs of length n, and no efficient barely random algorithm for Paging is known
up to now.

In [2,3], it was shown that there exists an online algorithm with advice A that
reads log b bits of advice and has a competitive ratio of at most

3 log b +
2(K + 1)

b
+ 1,

where K is the buffer size of A and b is a power of 2. This result can be easily
adapted for the randomized case:

Theorem 3.2. Consider Paging with buffer size K, and let b < K be a power
of 2. There exists a barely random algorithm for Paging that uses log b random
bits, regardless of the input size, and achieves a competitive ratio of

r ≤ 3 log b +
2(K + 1)

b
+ 1.

Proof. The proof is almost identical to the proof of Theorem 5 in [3]. The core
idea of this proof is to construct b deterministic algorithms A1, . . . , Ab such that,
for any input instance, the total number of page faults generated by all algorithms
together is limited. In particular, the proof of Theorem 5 in [3] describes a set of
b algorithms such that, for any input instance I, the total number of page faults
is bounded by

m
b

2
(3 log b + 1) + m(K + 1),

where m is a certain parameter depending on I. Furthermore, any algorithm makes
at least m/2 page faults on I. Hence, selecting one of the b algorithms uniformly

ADVICE COMPLEXITY AND RANDOM ALGORITHMS 267

at random and running it yields a randomized algorithm with an expected number
of page faults

m

(
K + 1

b
+

3
2

log b +
1
2

)
·

Thus, the expected competitive ratio of such randomized algorithm will be at most

m
(

K+1
b + 3

2 log b + 1
2

)
m
2

=
2(K + 1)

b
+ 3 log b + 1.

Obviously selecting the algorithm can be done with log b bits. �
The previous theorem shows that there exists a barely random algorithm for

Paging that uses only �log K	 bits and reaches a competitive ratio of O(log K),
which is asymptotically equivalent to the best possible randomized algorithm (and
this bound is furthermore known to be tight).

References

[1] D. Achlioptas, M. Chrobak and J. Noga, Competitive analysis of randomized paging algo-
rithms. Theoret. Comput. Sci. 234 (2000) 203–218.

[2] H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič and T. Mömke, On the advice

complexity of online problems, in 20th International Symposium on Algorithms and Com-
putation (ISAAC 2009) Lect. Notes Comput. Sci. 5878 (2009) 331–340.

[3] H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič and T. Mömke, Online algorithms
with advice. To appear.

[4] A. Borodin and R. El-Yaniv, Online computation and competitive analysis. Cambridge Uni-
versity Press, New York (1998).

[5] P. Brucker, An efficient algorithm for the job-shop problem with two jobs. Computing 40
(1988) 353–359.

[6] S. Dobrev, R. Královič and D. Pardubská, How much information about the future is
needed?, in 34th International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM) (2008) 247–258.

[7] Y. Emek, P. Fraigniaud, A. Korman and A. Rosén, Online computation with advice. Theoret.
Comput. Sci. 412 (2010) 2642–2656.

[8] J. Hromkovič, Design and analysis of randomized algorithms: Introduction to design
paradigms. Springer-Verlag, New York (2006).

[9] J. Hromkovič, R. Královič and R. Královič, Information complexity of online problems,
in 35th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2010). Lect. Notes Comput. Sci. 6281 (2010) 24–36.

[10] J. Hromkovič, T. Mömke, K. Steinhöfel and P. Widmayer, Job shop scheduling with unit
length tasks: bounds and algorithms. Algorithmic Operations Research 2 (2007) 1–14.

[11] D. Komm and R. Královič, Advice complexity and barely random algorithms, in 37th In-
ternational Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM 2011). Lect. Notes Comput. Sci. 6543 (2011) 332–343.

[12] T. Mömke, On the power of randomization for job shop scheduling with k-units length tasks.
RAIRO-Theor. Inf. Appl. 43 (2009) 189–207.

[13] N. Reingold, J. Westbrook and D. Sleator, Randomized competitive algorithms for the list
update problem. Algorithmica 11 (1994) 15–32.

Communicated by J. Hromkovic.
Received December 21, 2010. Accepted March 23, 2011.

	Introduction
	Job shop scheduling
	Paging
	Organization of this paper

	Advice complexity of job shop scheduling
	Optimality
	Competitive ratio

	Barely random algorithms
	Job shop scheduling
	Paging

	References

