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ON THE STRUCTURE OF (−β)-INTEGERS

WOLFGANG STEINER

Abstract. The (−β)-integers are natural generalisations of the β-integers, and thus of
the integers, for negative real bases. When β is the analogue of a Parry number, we
describe the structure of the set of (−β)-integers by a fixed point of an anti-morphism.

1. Introduction

The aim of this paper is to study the structure of the set of real numbers having a digital
expansion of the form

n−1∑

k=0

ak (−β)k ,

where (−β) is a negative real base with β > 1, the digits ak ∈ Z satisfy certain conditions
specified below, and n ≥ 0. These numbers are called (−β)-integers, and have been recently
studied by Ambrož, Dombek, Masáková and Pelantová [1].

Before dealing with these numbers, we recall some facts about β-integers, which are the
real numbers of the form

±
n−1∑

k=0

ak β
k such that 0 ≤

m−1∑

k=0

ak β
k < βm for all 1 ≤ m ≤ n ,

i.e.,
∑n−1

k=0 ak β
k is a greedy β-expansion. Equivalently, we can define the set of β-integers as

Zβ = Z
+
β ∪ (−Z

+
β ) with Z

+
β =

⋃

n≥0

βn T−n
β (0) ,

where Tβ is the β-transformation, defined by

Tβ : [0, 1) → [0, 1) , x 7→ βx− ⌊βx⌋ .
This map and the corresponding β-expansions were first studied by Rényi [20].

The notion of β-integers was introduced in the domain of quasicrystallography, see for
instance [6], and the structure of the β-integers is very well understood now. We have
β Zβ ⊆ Zβ, the set of distances between consecutive elements of Zβ is

∆β = {T nβ (1−) | n ≥ 0} ,
where T nβ (x

−) = limy→x− T
n
β (y), and the sequence of distances between consecutive ele-

ments of Z+
β is coded by the fixed point of a substition, see [9] for the case when ∆β is a

finite set, that is when β is a Parry number. We give short proofs of these facts in Section 2.
More detailed properties of this sequence can be found e.g. in [2, 3, 4, 11, 16].
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Closely related to Z
+
β are the sets

Sβ(x) =
⋃

n≥0

βn T−n
β (x) (x ∈ [0, 1)),

which were used by Thurston [21] to define (fractal) tilings of Rd−1 when β is a Pisot
number of degree d, i.e., a root > 1 of a polynomial xd+ p1x

d−1+ · · ·+ pd ∈ Z[x] such that
all other roots have modulus < 1, and an algebraic unit, i.e., pd = ±1. These tilings allow
e.g. to determine the k-th digit ak of a number without knowing the other digits, see [15].

It is widely agreed that the greedy β-expansions are the natural representations of real
numbers in a real base β > 1. For the case of negative bases, the situation is not so clear.
Ito and Sadahiro [14] proposed recently to use the (−β)-transformation defined by

T−β :
[ −β
β+1

, 1
β+1

)
, x 7→ −βx−

⌊
β
β+1

− βx
⌋
,

see also [10]. This transformation has the important property that T−β(−x/β) = x for all

x ∈
( −β
β+1

, 1
β+1

)
. Some instances are depicted in Figures 1, 3, 4 and 5.

0

0−2/3
−2/3

1/3

1/3

−1/6

0

0−1/β
−1/β

1/β2

1/β2

−1/β3

0

0−β
β+1

−β
β+1 1

β+1

1
β+1

−β−1

β+1

Figure 1. The (−β)-transformation for β = 2 (left), β = 1+
√
5

2
≈ 1.618

(middle), and β = 1
β
+ 1

β2 ≈ 1.325 (right).

The set of (−β)-integers is therefore defined by

Z−β =
⋃

n≥0

(−β)n T−n
−β (0) .

These are the numbers
n−1∑

k=0

ak (−β)k such that
−β
β + 1

≤
m−1∑

k=0

ak (−β)k−m <
1

β + 1
for all 1 ≤ m ≤ n .

Note that, in the case of β-integers, we have to add −Z
+
β to Z

+
β in order to obtain a set

resembling Z. In the case of (−β)-integers, this is not necessary because the (−β)-trans-
formation allows to represent positive and negative numbers.
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It is not difficult to see that Z−β = Z = Zβ when β ∈ Z, β ≥ 2. Some other properties of

Z−β can be found in [1], mainly for the case when T n−β
( −β
β+1

)
≤ 0 and T 2n−1

−β
( −β
β+1

)
≥ 1−⌊β⌋

β

for all n ≥ 1. (Note that T n−β
( −β
β+1

)
∈
(

1
β+1

− ⌊β⌋
β
, 1−⌊β⌋

β

)
∪
(−β−1

β+1
, 0
)
implies T n+1

−β
( −β
β+1

)
> 0.)

The set

Vβ =
{
T n−β

( −β
β+1

)
| n ≥ 0

}

plays a similar role for (−β)-expansions as the set {T nβ (1−) | n ≥ 0} for β-expansions. If
Vβ is a finite set, then we call β > 1 an Yrrap number. Note that these numbers are called
Ito–Sadahiro numbers in [18], in reference to [14]. However, as the generalised β-transfor-
mations in [13] with E = (1, . . . , 1) are, up to conjugation by the map x 7→ 1

β+1
− x, the

same as our (−β)-transformations, these numbers were already considered by Góra and
perhaps by other authors. Therefore, the neutral but intricate name (−β)-numbers was
chosen in [17], referring to the original name β-numbers for Parry numbers [19]. The name
Yrrap number, used in the present paper, refers to the connection with Parry numbers and
to the fact that T−β is (locally) orientation-reversing.

For any Yrrap number β ≥ (1 +
√
5)/2, we describe the sequence of (−β)-integers in

terms of a two-sided infinite word on a finite alphabet which is a fixed point of an anti-
morphism (Theorem 3). Note that the orientation-reversing property of the map x 7→ −βx
imposes the use of an anti-morphism instead of a morphism, and that anti-morphisms were
considered in a similar context by Enomoto [8].

For 1 < β < 1+
√
5

2
, we have Z−β = {0}, as already proved in [1]. However, our study

still makes sense for these bases (−β) because we can also describe the sets

S−β(x) = lim
n→∞

(−β)n T−n
−β (x)

(
x ∈

[ −β
β+1

, 1
β+1

))
,

where the limit set consists of the numbers lying in all but finitely many sets (−β)n T−n
−β (x),

n ≥ 0. Taking the limit instead of the union over all n ≥ 0 implies that every y ∈ R lies in

exactly one set S−β(x), x ∈
[ −β
β+1

, 1
β+1

)
, see Lemma 2. Note that T 2

−β
(−β−1

β+1

)
6= −β

β+1
when

β 6∈ Z. Other properties of the (−β)-transformation for 1 < β < 1+
√
5

2
are exhibited in [17].

2. β-integers

In this section, we consider the structure of β-integers. The results are not new, but it is
useful to state and prove them in order to understand the differences with (−β)-integers.

Recall that ∆β = {T nβ (1−) | n ≥ 0}, and let ∆∗
β be the free monoid generated by ∆β .

Elements of ∆∗
β will be considered as words on the alphabet ∆β, and the operation is the

concatenation of words. The β-substitution is the morphism ϕβ : ∆∗
β → ∆∗

β, defined by

ϕβ(x) = 11 · · ·1︸ ︷︷ ︸
⌈βx⌉−1 times

Tβ(x
−) (x ∈ ∆β).

Here, 1 is an element of ∆β and not the identity element of ∆∗
β (which is the empty word).

Recall that, as ϕβ is a morphism, we have ϕβ(uv) = ϕβ(u)ϕβ(v) for all u, v ∈ ∆∗
β. Since

ϕn+1
β (1) = ϕnβ(ϕβ(1)) and ϕβ(1) starts with 1, ϕnβ(1) is a prefix of ϕn+1

β (1) for every n ≥ 0.
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Theorem 1. For any β > 1, the set of non-negative β-integers takes the form

Z
+
β = {zk | k ≥ 0} with zk =

k∑

j=1

uj ,

where u1u2 · · · is the infinite word with letters in ∆β which has ϕnβ(1) as prefix for all n ≥ 0.
The set of differences between consecutive β-integers is ∆β.

The main observation for the proof of the theorem is the following. We use the notation
|v| = k and L(v) =

∑k
j=1 vj for any v = v1 · · · vk ∈ ∆k

β , k ≥ 0.

Lemma 1. For any n ≥ 0, 1 ≤ k ≤ |ϕnβ(1)|, we have

T nβ

([zk−1

βn
,
zk
βn

))
= [0, uk) ,

and z|ϕn
β
(1)| = L(ϕnβ(1)) = βn.

Proof. For n = 0, we have |ϕ0
β(1)| = 1, z0 = 0, z1 = 1, u1 = 1, thus the statements are

true. Suppose that they hold for n, and consider

u1u2 · · ·u|ϕn+1
β

(1)| = ϕn+1
β (1) = ϕβ(ϕ

n
β(1)) = ϕβ(u1)ϕβ(u2) · · · ϕβ(u|ϕn

β
(1)|) .

Let 1 ≤ k ≤ |ϕn+1
β (1)|, and write u1 · · ·uk = ϕβ(u1 · · ·uj−1) v1 · · · vi with 1 ≤ j ≤ |ϕnβ(1)|,

1 ≤ i ≤ |ϕβ(uj)|, i.e., v1 · · · vi is a non-empty prefix of ϕβ(uj).
For any x ∈ (0, 1], we have Tβ(x

−) = βx− ⌈βx⌉ + 1, hence L(ϕβ(x)) = βx for x ∈ ∆β .
This yields that

zk = L(u1 · · ·uk) = β L(u1 · · ·uj−1) + L(v1 · · · vi) = βzj−1 + i− 1 + vi

and zk−1 = βzj−1 + i− 1, hence
[zk−1

β
,
zk
β

)
=

[
zj−1 +

i− 1

β
, zj−1 +

i− 1 + vi
β

)
⊆ [zj−1, zj−1 + uj) = [zj−1, zj) ,

T n+1
β

([ zk−1

βn+1
,
zk
βn+1

))
= Tβ

([i− 1

β
,
i− 1 + vi

β

))
= [0, vi) = [0, uk) .

Moreover, we have L(ϕn+1
β (1)) = β L(ϕnβ(1)) = βn+1, thus the statements hold for n+1. �

Proof of Theorem 1. By Lemma 1, we have z|ϕn
β
(1)| = βn for all n ≥ 0, thus [0, 1) is split

into the intervals [zk−1/β
n, zk/β

n), 1 ≤ k ≤ |ϕnβ(1)|. Therefore, Lemma 1 yields that

T−n
β (0) = {zk−1/β

n | 1 ≤ k ≤ |ϕnβ(1)|} ,
hence ⋃

n≥0

βn T−n
β (0) = {zk | k ≥ 0} .

Since uk ∈ ∆β for all k ≥ 1 and u|ϕn(1)| = T nβ (1
−) for all n ≥ 0, we have

{zk − zk−1 | k ≥ 1} = {uk | k ≥ 1} = ∆β . �

For the sets Sβ(x), Lemma 1 gives the following corollary.
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Corollary 1. For any x ∈ [0, 1), we have

Sβ(x) = {zk + x | k ≥ 0, uk+1 > x} ⊆ x+ Sβ(0) .

In particular, we have Sβ(x) − x = Sβ(y) − y for all x, y ∈ [0, 1) with (x, y] ∩ ∆β = ∅.
From the definition of Sβ(x) and since x ∈ β T−1

β (x), we also get that

Sβ(x) =
⋃

y∈T−1
β

(x)

β Sβ(y)
(
x ∈ [0, 1)

)
.

This shows that Sβ(x) is the solution of a graph-directed iterated function system (GIFS)
when β is a Parry number, cf. [15, Section 3.2].

3. (−β)-integers
We now turn to the discussion of (−β)-integers and sets S−β(x), x ∈

[ −β
β+1

, 1
β+1

)
.

Lemma 2. For any β > 1, x ∈
[ −β
β+1

, 1
β+1

)
, we have

S−β(x) =
⋃

n≥0

(−β)n
(
T−n
−β (x) \

{ −β
β+1

})
=

⋃

y∈T−1
−β

(x)

(−β)S−β(y) .

For any y ∈ R, there exists a unique x ∈
[ −β
β+1

, 1
β+1

)
such that y ∈ S−β(x).

If T−β(x) = x, then S−β(x) =
⋃
n≥0(−β)n T−n

−β (x), in particular S−β(0) = Z−β.

Proof. If y ∈ S−β(x), then we have y
(−β)n ∈ T−n

−β (x) for all sufficiently large n, thus y ∈
(−β)n

(
T−n
−β (x) \

{ −β
β+1

})
for some n ≥ 0. On the other hand, y ∈ (−β)n

(
T−n
−β (x) \

{ −β
β+1

})

for some n ≥ 0 implies that Tm−β(
y

(−β)m ) = T n−β(
y

(−β)n ) = x for all m ≥ n, thus y ∈ S−β(x).

This shows the first equation. Since x ∈
( −β
β+1

, 1
β+1

)
implies that x ∈ (−β)

(
T−1
−β (x)\

{ −β
β+1

})
,

we obtain that S−β(x) =
⋃
y∈T−1

−β
(x)(−β)S−β(y) for all x ∈

[ −β
β+1

, 1
β+1

)
.

For any y ∈ R, we have y ∈ S−β
(
T n−β

(
y

(−β)n
))

for all n ≥ 0 such that y
(−β)n ∈

( −β
β+1

, 1
β+1

)
,

thus y ∈ S−β(x) for some x ∈
[ −β
β+1

, 1
β+1

)
. To show that this x is unique, let y ∈ S−β(x) and

y ∈ S−β(x
′) for some x, x′ ∈

[ −β
β+1

, 1
β+1

)
. Then we have y ∈ (−β)n

(
T−n
−β (x) \

{ −β
β+1

})
and

y ∈ (−β)m
(
T−m
−β (x′) \

{ −β
β+1

})
for some m,n ≥ 0, thus x = T n−β

(
y

(−β)n
)
= Tm−β

(
y

(−β)m
)
= x′.

If T n−β
( −β
β+1

)
= x = T−β(x), then T n+2

−β
(−β−1

β+1

)
= T n+1

−β
( −β
β+1

)
= T−β(x) = x yields that

(−β)n −β
β+1

∈ S−β(x), which shows that S−β(x) =
⋃
n≥0(−β)n T−n

−β (x) when T−β(x) = x. �

The first two statements of the following proposition can also be found in [1].

Proposition 1. For any β > 1, we have (−β)Z−β ⊆ Z−β.

If β < (1 +
√
5)/2, then Z−β = {0}.

If β ≥ (1 +
√
5)/2, then

Z−β ∩ (−β)n [−β, 1] =
{
(−β)n, (−β)n+1

}
∪ (−β)n+2

(
T−n−2
−β (0) ∩

(−1
β
, 1
β2

))
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for all n ≥ 0, in particular

Z−β ∩ [−β, 1] =
{

{−β,−β + 1, . . . ,−β + ⌊β⌋, 0, 1} if β2 ≥ ⌊β⌋(β + 1),

{−β,−β + 1, . . . ,−β + ⌊β⌋ − 1, 0, 1} if β2 < ⌊β⌋(β + 1).

Proof. The inclusion (−β)Z−β ⊆ Z−β is a consequence of Lemma 2 and 0 ∈ T−1
−β (0).

If β < 1+
√
5

2
, then −1

β
< −β

β+1
, hence T−1

−β (0) = {0} and Z−β = {0}, see Figure 1 (right).

If β ≥ 1+
√
5

2
, then −1

β
∈ T−1

−β (0) implies 1 ∈ Z−β , thus (−β)n ∈ Z−β for all n ≥ 0. Clearly,

(−β)n+2
(
T−n−2
−β (0) ∩

(−1
β
, 1
β2

))
⊆ Z−β ∩ (−β)n (−β, 1) .

To show the other inclusion, let z ∈ (−β)m T−m
−β (0) ∩ (−β)n (−β, 1) for some m ≥ 0. If

z 6= (−β)m −β
β+1

, then z
(−β)m ∈

( −β
β+1

, 1
β+1

)
and z

(−β)n+2 ∈
(−1
β
, 1
β2

)
⊆

( −β
β+1

, 1
β+1

)
imply that

T n+2
−β

(
z

(−β)n+2

)
= Tm−β

(
z

(−β)m
)
= 0. If z = (−β)m −β

β+1
, then

T n+2
−β

(
z

(−β)n+2

)
= T n+2

−β
(
(−β)m−n−1

β+1

)
= Tm+2

−β
(−β−1

β+1

)
= Tm+1

−β
( −β
β+1

)
= T−β(0) = 0 ,

where we have used that z
(−β)n+2 ∈

( −β
β+1

, 1
β+1

)
implies m ≤ n. Therefore, we have z ∈

(−β)n+2 T−n−2
−β (0) for all z ∈ Z−β ∩ (−β)n (−β, 1).

Consider now n = 0, then

Z−β ∩ [−β, 1] = {−β, 1} ∪ {z ∈ (−β, 1) | T 2
−β(z/β

2) = 0} .
Since −⌊β⌋

β
≥ −β

β+1
if and only if β2 ≥ ⌊β⌋(β + 1), we obtain that

(−β) T−1
−β (0) =

{
{0, 1, . . . , ⌊β⌋} if β2 ≥ ⌊β⌋(β + 1),

{0, 1, . . . , ⌊β⌋ − 1} if β2 < ⌊β⌋(β + 1).

If T 2
−β(z/β

2) = 0, then z = −a1β + a0 with a0 ∈ (−β) T−1
−β (0), a1 ∈ {0, 1, . . . , ⌊β⌋}, and

Z−β ∩ [−β, 1] consists of those numbers −a1β + a0 lying in [−β, 1]. �

Proposition 1 shows that the maximal difference between consecutive (−β)-integers ex-
ceeds 1 whenever β2 < ⌊β⌋(β+1), i.e., T−β

( −β
β+1

)
< 0. For an example, this was also proved

in [1]. In Examples 3 and 4, we see that the distance between two consecutive (−β)-integers
can be even greater than 2, and the structure of Z−β can be quite complicated. Therefore,
we adapt a slightly different strategy as for Zβ .

In the following, we always assume that the set

V ′
β = Vβ ∪ {0} =

{
T n−β

( −β
β+1

)
| n ≥ 0

}
∪ {0}

is finite, i.e., β is an Yrrap number, and let β be fixed. For x ∈ V ′
β, let

rx = min
{
y ∈ V ′

β ∪
{

1
β+1

}
| y > x

}
, x̂ = x+rx

2
, Jx = {x} and Jx̂ = (x, rx) .

Then {Ja | a ∈ Aβ} forms a partition of
[ −β
β+1

, 1
β+1

)
, where

Aβ = V ′
β ∪ V̂ ′

β , with V̂ ′
β = {x̂ | x ∈ V ′

β} .
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We have T−β(Jx) = JT−β(x) for every x ∈ V ′
β, and the following lemma shows that the image

of every Jx̂, x ∈ V ′
β, is a union of intervals Ja, a ∈ Aβ.

Lemma 3. Let x ∈ V ′
β and write

Jx̂ ∩ T−1
−β (V

′
β) = {y1, . . . , ym} , with x = y0 < y1 < · · · < ym < ym+1 = rx .

For any 0 ≤ i ≤ m, we have

T−β
(
(yi, yi+1)

)
= Jx̂i with xi = lim

y→yi+1−
T−β(y) , i.e., x̂i = T−β

(yi+yi+1

2

)
,

and β(yi+1 − yi) = λ(Jx̂i), where λ denotes the Lebesgue measure.

Proof. Since T−β maps no point in (yi, yi+1) to −β
β+1

∈ V ′
β, the map is continuous on this

interval and λ(T−β((yi, yi+1))) = β(yi+1−yi). We have xi ∈ V ′
β since xi = T−β(yi+1) in case

yi+1 <
1

β+1
, and xi =

−β
β+1

in case yi+1 =
1

β+1
. Since yi = max{y ∈ T−1

−β (V
′
β) | y < yi+1}, we

obtain that rxi = limy→yi+ T−β(y), thus T−β((yi, yi+1)) = (xi, rxi). �

In view of Lemma 3, we define an anti-morphism ψβ : A∗
β → A∗

β by

ψβ(x) = T−β(x) and ψβ(x̂) = x̂m T−β(ym) · · · x̂1 T−β(y1) x̂0 (x ∈ V ′
β),

with m, xi and yi as in Lemma 3. Here, anti-morphism means that ψβ(uv) = ψβ(v)ψβ(u)

for all u, v ∈ A∗
β . Now, the last letter of ψβ(0̂) is t̂, with t = max{x ∈ Vβ | x < 0}, and

the first letter of ψβ(t̂ ) is 0̂. Therefore, ψ2n
β (0̂) is a prefix of ψ2n+2

β (0̂) = ψ2n
β (ψ2

β(0̂)) and

ψ2n+1
β (0̂) is a suffix of ψ2n+3

β (0̂) for every n ≥ 0.

Theorem 2. For any Yrrap number β ≥ (1 +
√
5)/2, we have

Z−β = {zk | k ∈ Z, u2k = 0} with zk =

{ ∑k
j=1 λ(Ju2j−1

) if k ≥ 0 ,

−∑|k|
j=1 λ(Ju−2j+1

) if k ≤ 0 ,

where · · ·u−1u0u1 · · · is the two-sided infinite word on the finite alphabet Aβ such that

u0 = 0, ψ2n
β (0̂) is a prefix of u1u2 · · · and ψ2n+1

β (0̂) is a suffix of · · ·u−2u−1 for all n ≥ 0.

Note that · · ·u−1u0u1 · · · is a fixed point of ψβ , with u0 being mapped to u0.
The following lemma is the analogue of Lemma 1. We use the notation

L(v) =
k∑

j=1

λ(Jvj ) if v = v1 · · · vk ∈ Akβ .

Note that u2k ∈ V ′
β and u2k+1 ∈ V̂ ′

β for all k ∈ Z, thus λ(Ju2k) = 0 for all k ∈ Z.

Lemma 4. For any n ≥ 0, 0 ≤ k < |ψnβ (0̂)|/2, we have

T n−β

(z(−1)nk

(−β)n
)
= u(−1)n2k , T n−β

((z(−1)nk

(−β)n ,
z(−1)n(k+1)

(−β)n
))

= Ju(−1)n(2k+1)
,

and z(−1)n(|ψn
β
(0̂)|+1)/2 = (−1)n L

(
ψnβ (0̂)

)
= λ(J0̂) (−β)n = r0 (−β)n.
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Proof. The statements are true for n = 0 since |ψ0
β(0̂)| = 1, z0 = 0, z1 = λ(J0̂) = r0.

Suppose that they hold for even n, and consider

u−|ψn+1
β

(0̂)| · · ·u−2u−1 = ψn+1
β (0̂) = ψβ

(
ψnβ (0̂)

)
= ψβ(u|ψn

β
(0̂)|) · · ·ψβ(u2)ψβ(u1) .

Let 0 ≤ k < |ψn+1
β (0̂)|/2, and write

u−2k−1 · · ·u−1 = v−2i−1 · · · v−1 ψβ(u1 · · ·u2j)
with 0 ≤ j < |ψnβ (0̂)|/2, 0 ≤ i < |ψβ(u2j+1)|/2, i.e., u−2i−1 · · ·u−1 is a suffix of ψβ(u2j+1).

By Lemma 3, we have L(ψβ(x̂)) = β λ(Jx̂) for any x ∈ V ′
β. This yields that

−z−k−1 = β L(u1 · · ·u2j) + L(v−2i−1 · · · v−1) = β zj + L(v−2i−1 · · · v−1)

and −z−k = β zj + L(v−2i · · · v−1). By the induction hypothesis, we obtain that

T n+1
−β

( z−k
(−β)n+1

)
= T n+1

−β

(
zj

(−β)n − L(v−2i · · · v−1)

(−β)n+1

)

=

{
T−β(u2j) = ψβ(u2j) = u−2k if i = 0,

T−β
(
x+ L(v−2i · · · v−1)/β

)
= T−β(yi) = v−2i = u−2k if i ≥ 1,

where the yi’s are the numbers from Lemma 3 for x̂ = u2j+1, and

T n+1
−β

(( z−k
(−β)n+1

,
z−k−1

(−β)n+1

))
= T−β

(
(yi, yi+1)

)
= Jv−2i−1

= Ju−2k−1
.

Moreover, we have L(ψn+1
β (0̂)) = β L(ψnβ (0̂)) = r0β

n+1, thus the statements hold for n+1.
The proof for odd n runs along the same lines and is therefore omitted. �

Proof of Theorem 2. By Lemma 4, we have z(−1)n(|ψn
β
(0̂)|+1)/2 = r0 (−β)n for all n ≥ 0, thus

[0, r0) splits into the intervals
(
z(−1)nk(−β)−n, z(−1)n(k+1)(−β)−n

)
and points z(−1)nk(−β)−n,

0 ≤ k < |ψnβ (0̂)|/2, hence
T−n
−β (0) ∩ [0, r0) =

{
z(−1)nk(−β)−n | 0 ≤ k < |ψnβ (0̂)|/2, u(−1)n2k = 0

}
.

Let m ≥ 1 be such that β2mr0 ≥ 1
β+1

. Then we have
( −β
β+1

, 1
β+1

)
⊆ (−β2m+1r0, β

2mr0), and

T−n
−β (0) \

{ −β
β+1

}
⊆ (−β)2m

(
T−n−2m
−β (0) ∩ [0, r0)

)
∪ (−β)2m+1

(
T−n−2m−1
−β (0) ∩ [0, r0)

)
,

thus⋃

n≥0

(−β)n
(
T−n
−β (0) \

{ −β
β+1

})
=

⋃

n≥0

(−β)n
(
T−n
−β (0) ∩ [0, r0)

)
= {zk | k ∈ Z, u2k = 0} .

Together with Lemma 2, this proves the theorem. �

As in the case of positive bases, the word · · ·u−1u0u1 · · · also describes the sets S−β(x).
Theorem 2 and Lemma 4 give the following corollary.

Corollary 2. For any x ∈ V ′
β, y ∈ Jx̂, we have

S−β(x) = {zk | k ∈ Z, u2k = x} and S−β(y) = {zk + y − x | k ∈ Z, u2k+1 = x̂} .
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Lemma 2 and Corollary 2 imply that S−β(x) is the solution of a GIFS for any Yrrap

number β ≥ (1 +
√
5)/2, x ∈

[ −β
β+1

, 1
β+1

)
, cf. the end of Section 2.

Recall that our main goal is to understand the structure of Z−β (in case β ≥ (1+
√
5)/2),

i.e., to describe the occurrences of 0 in the word · · ·u−1u0u1 · · · defined in Theorem 2 and
the words between two successive occurrences. Let

Rβ = {u2ku2k+1 · · ·u2s(k)−1 | k ∈ Z, u2k = 0} with s(k) = min{j ∈ Z | u2j = 0, j > k}
be the set of return words of 0 in · · ·u−1u0u1 · · · . Note that s(k) is defined for all k ∈ Z

since (−β)n ∈ Z−β for all n ≥ 0 by Proposition 1.
For any w ∈ Rβ, the word ψβ(w0) is a factor of · · ·u−1u0u1 · · · starting and ending

with 0, thus we can write ψβ(w0) = w1 · · ·wm0 with wj ∈ Rβ , 1 ≤ j ≤ m, and set

ϕ−β(w) = w1 · · ·wm .
This defines an anti-morphism ϕ−β : R∗

β → R∗
β, which plays the role of the β-substitution.

Since · · ·u−1u0u1 · · · is generated by u1 = 0̂, as described in Theorem 2, we consider
wβ = u0u1 · · ·u2s(0)−1. We have

[0, 1] =
[
0, 1

β+1

)
∪
[

1
β+1

, 1
]
, T−β

(
(−β)−1

[
1

β+1
, 1
])

=
[ −β
β+1

, 0
]
,

thus L(wβ) = 1 and

wβ = 0 0̂x1 x̂1 · · · xm x̂m x−ℓ x̂−ℓ · · ·x−1 x̂−1 ,

where the xj are defined by V ′
β = {x−ℓ, . . . , x−1, 0, x1, . . . , xm}, x−ℓ < · · · < x−1 < 0 <

x1 < · · · < xm.

Theorem 3. For any Yrrap number β ≥ (1 +
√
5)/2, we have

Z−β = {z′k | k ∈ Z} with z′k =

{ ∑k
j=1L(u

′
j) if k ≥ 0 ,

−∑|k|
j=1 L(u

′
−j) if k ≤ 0 ,

where · · ·u′−2u
′
−1u

′
1u

′
2 · · · is the two-sided infinite word on the finite alphabet Rβ such that

ϕ2n
−β(wβ) is a prefix of u′1u

′
2 · · · and ϕ2n+1

−β (wβ) is a suffix of · · ·u′−2u
′
−1 for all n ≥ 0.

The set of distances between consecutive (−β)-integers is
∆−β = {z′k+1 − z′k | k ∈ Z} = {L(w) | w ∈ Rβ} .

Note that the index 0 is omitted in · · ·u′−2u
′
−1u

′
1u

′
2 · · · for reasons of symmetry.

Proof. The definitions of · · ·u−1u0u1 · · · in Theorem 2 and of ϕ−β imply that · · ·u′−2u
′
−1

u′1u
′
2 · · · is the derived word of · · ·u−1u0u1 · · · with respect to Rβ , that is

u′k = u|u′1···u′k−1| · · ·u|u′1···u′k|−1 , u′−k = u−|u′
−k

···u′
−1| · · ·u−|u′1−k

···u′
−1|−1 (k ≥ 1)

with

{|u′1 · · ·u′k−1| | k ≥ 1} ∪ {−|u′−k · · ·u′−1| | k ≥ 1} = {k ∈ Z | uk = 0} .
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Here, for any v ∈ R∗
β , |v| denotes the length of v as a word in A∗

β, not in R
∗
β . Since

z′k =
k∑

j=1

L(u′j) =

|u′1···u′k|−1∑

j=0

λ(Juj) =

|u′1···u′k|∑

j=1

λ(Juj ) , z′−k = −
k∑

j=1

L(u′−j) = −
|u′

−k
···u′

−1|∑

j=1

λ(Ju−j
)

for all k ≥ 0, Theorem 2 yields that {z′k | k ∈ Z} = Z−β.
It follows from the definition of Rβ that ∆−β = {L(w) | w ∈ Rβ}.
It remains to show that Rβ is a finite set. We first show that the restriction of ψβ to V̂ ′

β

is primitive, which means that there exists some m ≥ 1 such that, for every x ∈ V ′
β, ψ

m
β (x̂)

contains all elements of V̂ ′
β. The proof is taken from [13, Proposition 8]. If β > 2, then the

largest connected pieces of images of Jx̂ under T−β grow until they cover two consecutive
discontinuity points 1

β+1
− a+1

β
, 1
β+1

− a
β
of T−β, and the next image covers all intervals Jŷ,

y ∈ V ′
β. If 1+

√
5

2
< β ≤ 2, then β2 > 2 implies that the largest connected pieces of images

of Jx̂ under T 2
−β grow until they cover two consecutive discontinuity points of T 2

−β . Since

T 2
−β

(( −β
β+1

, β
−2

β+1
− 1

β

))
=

(−β3+β2+β
β+1

, 1
β+1

)
, T 2

−β
((

β−2

β+1
− 1

β
, −β

−1

β+1

))
=

( −β
β+1

, β
2−β−1
β+1

)
,

T 2
−β

((−β−1

β+1
, β

−2

β+1

))
=

( −β
β+1

, 1
β+1

)
, T 2

−β
((

β−2

β+1
, 1
β+1

))
=

( −β
β+1

, β
2−β−1
β+1

)
,

the next image covers the fixed point 0, and further images grow until after a finite number

of steps they cover all intervals Jŷ, y ∈ V ′
β. The case β = 1+

√
5

2
is treated in Example 1.

If T n−β
( −β
β+1

)
6= 0 for all n ≥ 0, then T n−β is continuous at all points x ∈

( −β
β+1

, 1
β+1

)
with

T n−β(x) = 0, thus u2k = 0 is equivalent to u2k+1 = 0̂ (see also Proposition 2 below). Hence

we can consider the return words of 0̂ in · · ·u−1u0u1 · · · instead of the return words of 0.
Since ψmβ (x̂0 x1 x̂2) has at least two occurrences of 0̂ for all x0, x1, x2 ∈ V ′

β, there are only

finitely many such return words. If T n−β
( −β
β+1

)
= 0, then ψnβ (x0 x̂1 x2) starts and ends with 0

for all x0, x1, x2 ∈ V ′
β, hence Rβ is finite as well. �

For details on derived words of primitive substitutive words, we refer to [7].
We remark that, for practical reasons, the set Rβ can be obtained from the set R = {wβ}

by adding to R iteratively all return words of 0 which appear in ψβ(w0) for some w ∈ R
until R stabilises. The final set R is equal to Rβ .

Now, we apply the theorems in the case of two quadratic examples.

Example 1. Let β = 1+
√
5

2
, i.e., β2 = β+1, and t = −β

β+1
= −1

β
, then Vβ = V ′

β = {t, 0}. Since
Jt̂ = (t, 0) =

(
t, −1

β3

)
∪
{−1
β3

}
∪
(−1
β3 , 0

)
, J0̂ =

(
0, 1

β2

)
,

see Figure 1 (middle), the anti-morphism ψβ on A∗
β is defined by

ψβ : t 7→ 0 , t̂ 7→ 0̂ t t̂ , 0 7→ 0 , 0̂ 7→ t̂ .

Its two-sided fixed point · · ·u−1u0u1 · · · is

· · · 0︸︷︷︸
ψβ(0)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(t)

t̂︸︷︷︸
ψβ(0̂)

0︸︷︷︸
ψβ(0)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(t)

t̂︸︷︷︸
ψβ(0̂)

0̇︸︷︷︸
ψβ(0̇)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(0)

0̂ t t̂︸︷︷︸
ψβ(t̂ )

0︸︷︷︸
ψβ(t)

t̂︸︷︷︸
ψβ(0̂)

0︸︷︷︸
ψβ(0)

t̂︸︷︷︸
ψβ(0̂)

0︸︷︷︸
ψβ(0)

· · · ,
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where 0̇ marks the central letter u0. The return word of 0 starting at u0 is wβ = 0 0̂ t t̂. The

image ψβ(wβ0) = 0 0̂ t t̂ 0 t̂ 0 contains the return words wβ and 0 t̂. Since ψβ(0 t̂ 0) = 0 0̂ t t̂ 0,

there are no other return words of 0, i.e., Rβ = {A,B} with A = 0 0̂ t t̂, B = 0 t̂. Therefore,
· · ·u′−2u

′
−1u

′
1u

′
2 · · · is a two-sided fixed point of the anti-morphism

ϕ−β : A 7→ AB , B 7→ A ,

with

u′−13 · · ·u′−1 u
′
1 · · ·u′21 = AABAABABAABAB AABAABABAABAABABAABAB .

We have λ(J0̂) =
1
β2 , λ(Jt̂) =

1
β
, thus L(A) = 1, L(B) = 1

β
= β−1, and some (−β)-integers

are shown in Figure 2. Note that (−β)n can also be represented as (−β)n+2 + (−β)n+1.

−β3 −β3+β2−β
−β3+β2−β+1

−β −β+1 0 1 β2−β+1
β2
β4−β3+β2−β

β4−β3+β2−β+1
β4−β3+β2

β4−β+1
β4

A A B A B A A B A A B A B

Figure 2. The (−β)-integers in [−β3, β4], β = (1 +
√
5)/2.

Example 2. Let β = 3+
√
5

2
, i.e., β2 = 3β − 1, then the (−β)-transformation is depicted

in Figure 3, where t0 = −β
β+1

, t1 = T−β(t0) = β2

β+1
− 2 = −β−1

β+1
, T−β(t1) = 1

β+1
− 1 = t0.

Therefore, V ′
β = {t0, t1, 0} and the anti-morphism ψβ : A∗

β → A∗
β is defined by

ψβ : t0 7→ t1 , t̂0 7→ t̂0 t1t̂1 0 0̂ t0 t̂0 , t1 7→ t0 , t̂1 7→ 0̂ , 0 7→ 0 , 0̂ 7→ t̂0 t1 t̂1 ,

which has the two-sided fixed point

· · · 0︸︷︷︸
ψβ(0)

0̂︸︷︷︸
ψβ(t̂1)

t0︸︷︷︸
ψβ(t1)

t̂0 t1t̂1 0 0̂ t0 t̂0︸ ︷︷ ︸
ψβ(t̂0)

t1︸︷︷︸
ψβ(t0)

t̂0 t1 t̂1︸ ︷︷ ︸
ψβ(0̂)

0̇︸︷︷︸
ψβ(0)

0̂︸︷︷︸
ψβ(t̂1)

t0︸︷︷︸
ψβ(t1)

t̂0 t1t̂1 0 0̂ t0 t̂0︸ ︷︷ ︸
ψβ(t̂0)

· · · ,

where 0̇ marks the central letter u0. We have wβ = 0 0̂ t0 t̂0 t1 t̂1 and

ψβ : 0 0̂ t0 t̂0 t1 t̂1 0 7→ 0 0̂ t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 ,

0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 7→ 0 0̂ t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 ,

0 0̂ t0 t̂0 t0 t̂0 t1 t̂1 0 7→ 0 0̂ t0 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 0 .

Note that 0 0̂ t0 t̂0 t1 t̂0 t1 t̂1 and 0 0̂ t0 t̂0 t0 t̂0 t1 t̂1 differ only by a letter in V ′
β, and correspond

therefore to intervals of the same length. Since the letters t0 and t1 are never mapped to 0,
we identify these two return words. This means that Rβ = {A,B} with A = 0 0̂ t0 t̂0 t1 t̂1,

B = 0 0̂ t0 t̂0 {t0, t1} t̂0 t1 t̂1, and
· · ·u′−2u

′
−1 u

′
1u

′
2 · · · = · · ·ABBABABBABBAB ABBABABBABBAB · · ·

is a two-sided fixed point of the anti-morphism

ϕ−β : A 7→ AB , B 7→ ABB .
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We have L(A) = 1, L(B) = β − 1 > 1, and some (−β)-integers are shown in Figure 3.

0

0t0
t0 1

β+1

1
β+1

t1

t1

Jt̂0 Jt̂1 J0̂

−β3

−β3+1
−β3+β2−2β+1

−β3+β2−β

−β3+β2−β+1
−β3+β2
−β3+β2+1

−β3+2β2−2β+1
−β3+2β2−β
−β3+2β2−β+1

−2β+1
−β
−β+1 0 1 β2−2β+1

β2−β
β2−β+1

β2

A B B A B A B B A B B A B A B B A B

Figure 3. The (−β)-transformation and Z−β ∩ [−β3, β2], β = (3 +
√
5)/2.

We remark that it is sufficient to consider the elements of V̂ ′
β when one is only interested

in Z−β. This is made precise in the following proposition.

Proposition 2. Let β and · · ·u−1u0u1 · · · be as in Theorem 2, t = max{x ∈ Vβ | x < 0}.
For any k ∈ Z, u2k = 0 is equivalent to u2k−1 = t̂ or u2k+1 = 0̂.

If 0 6∈ Vβ or the size of Vβ is even, then u2k = 0 is equivalent to u2k−1 = t̂.

If 0 6∈ Vβ or the size of Vβ is odd, then u2k = 0 is equivalent to u2k+1 = 0̂.

Proof. Let k ∈ Z and m ≥ 0 such that zk/β
2m ∈

( −β
β+1

, 1
β+1

)
. Then we have

• u2k = 0 if and only if T 2m
−β (zk/β

2m) = 0,

• u2k−1 = t̂ if and only if limy→zk− T
2m
−β (y/β

2m) = 0,

• u2k+1 = 0̂ if and only if limy→zk+ T
2m
−β (y/β

2m) = 0.

Thus u2k = 0, u2k−1 = t̂ and u2k+1 = 0̂ are equivalent when T 2m
−β is continuous at zk/β

2m.

Assume from now on that zk/β
2m is a discontinuity point of T 2m

−β . Then T
ℓ
−β(zk/β

2m) = −β
β+1

for some 1 ≤ ℓ ≤ 2m and, if ℓ is minimal with this property,

lim
y→zk−

T
2⌊ℓ/2⌋+1
−β (y/β2m) = −β

β+1
and lim

y→zk+
T

2⌈ℓ/2⌉
−β (y/β2m) = −β

β+1
.

Hence, if 0 6∈ Vβ, we cannot have u2k = 0, u2k−1 = t̂ or u2k+1 = 0̂ at a discontinuity point,

which proves the proposition in this case. If 0 ∈ Vβ, then T
#Vβ−1
−β

( −β
β+1

)
= 0, thus
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• T j−β(zk/β
2m) = 0 if and only if j ≥ ℓ+#Vβ − 1,

• limy→zk− T
j
−β(y/β

2m) = 0 if and only if j ≥ 2⌊ℓ/2⌋+#Vβ,

• limy→zk+ T
j
−β(y/β

2m) = 0 if and only if j ≥ 2⌈ℓ/2⌉+#Vβ − 1.

Since 2⌊ℓ/2⌋ ≥ ℓ− 1 and 2⌈ℓ/2⌉ ≥ ℓ, we obtain u2k = 0 whenever u2k−1 = t̂ or u2k+1 = 0̂.
If #Vβ is even, then u2k = 0 implies that u2k−1 = t̂ since 2m ≥ ℓ + #Vβ − 1 implies

that 2m ≥ 2⌊ℓ/2⌋ + #Vβ. If #Vβ is odd, then u2k = 0 implies that u2k+1 = 0̂ since
2m ≥ ℓ+#Vβ − 1 implies that 2m ≥ 2⌈ℓ/2⌉+#Vβ − 1. This proves the proposition. �

By Proposition 2, it suffices to consider the anti-morphism ψ̂β : V̂ ′
β
∗ → V̂ ′

β
∗ defined by

ψ̂β(x̂) = x̂m · · · x̂1 x̂0 when ψβ(x̂) = x̂m T−β(ym) · · · x̂1 T−β(y1) x̂0 (x ∈ V ′
β).

Then ∆−β is given by the set R̂β which consists of the return words of 0̂ when 0 6∈ Vβ or

the size of Vβ is odd. When 0 ∈ Vβ and the size of Vβ is even, as in Example 1, then R̂β

consists of the words w t̂ such that t̂ w is a return word of t̂.

Example 3. Let β > 1 with β3 = 2β2 +1, i.e., β ≈ 2.206, and let tn = T n−β
( −β
β+1

)
for n ≥ 0.

Then we have

t0 =
−β
β+1

, t1 =
β2

β+1
− 2 = β−1−2

β+1
, t2 =

2β−1
β+1

− 1 = β−2

β+1
, t3 =

−β−1

β+1
, t4 =

1
β+1

− 1 = t0,

see Figure 4. The anti-morphism ψ̂β : V̂ ′
β
∗ → V̂ ′

β
∗ is therefore defined by

ψ̂β : t̂0 7→ t̂2 t̂0 , t̂1 7→ t̂0 t̂1 t̂3 0̂ , t̂3 7→ 0̂ t̂2 , 0̂ 7→ t̂3 , t̂2 7→ t̂0 t̂1 .

Since 0 6∈ Vβ, we consider return words of 0̂ in the ψ̂β-images of ŵβ = 0̂ t̂2 t̂0 t̂1 t̂3:

0̂ t̂2 t̂0 t̂1 t̂3 7→ 0̂ t̂2 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂0 t̂1 t̂3 ,

0̂ t̂2 t̂0 t̂0 t̂1 t̂3 7→ 0̂ t̂2 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂3 ,

0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂3 7→ 0̂ t̂2 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂2 t̂0 t̂0 t̂1 t̂3 ,

0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂2 t̂0 t̂0 t̂1 t̂3 7→ 0̂ t̂2 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂2 t̂0 t̂0 t̂1 t̂3 ,

0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂0 t̂1 t̂3 7→ 0̂ t̂2 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂0 t̂1 t̂3 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂2 t̂0 t̂0 t̂1 t̂3 .

Hence R̂β = {A,B,C,D,E} with A = 0̂ t̂2 t̂0 t̂1 t̂3, B = 0̂ t̂2 t̂0 t̂0 t̂1 t̂3, C = 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂3,

D = 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂2 t̂0 t̂0 t̂1 t̂3, E = 0̂ t̂2 t̂0 t̂2 t̂0 t̂0 t̂1 t̂0 t̂1 t̂3, and Z−β is described by the

anti-morphism ϕ̂−β : R̂∗
β → R̂∗

β given by

ϕ̂−β : A 7→ AB , B 7→ AC , C 7→ AD , D 7→ AED , E 7→ ABD .

The (−β)-integers in [−β3, β4] are represented in Figure 4, and we have

L(A) = 1, L(B) = β − 1, L(C) = β2 − β − 1, L(D) = β2 − β ≈ 2.659, L(E) = β.

Note that L(D) > β > 2. Moreover, the cardinality of ∆−β is larger than that of Vβ, which
in turn is larger than the algebraic degree d of β (#∆−β = 5, #Vβ = 4, d = 3).
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0

0t0
t0 1

β+1

1
β+1

t3

t1

t1

t2

t2

t3

Jt̂0 Jt̂1 Jt̂3 J0̂ Jt̂2

−β3

−β3+1
−β3+β2−β
−β3+β2−β+1

−β3+β2

−β3+β2+1

−β
−β+1

0 1
β2−β
β2−β+1

β2

β2+1
β4−2β3+β2+1

β4−β3−β
β4−β3−β+1

β4−β3

β4−β3+1
β4−β3+β2−β
β4−β3+β2−β+1

β4−β3+β2

β4−β3+β2+1
β4−β
β4−β+1

β4

A C A B A D A B A C A B A E D A B A C A B A D A B

Figure 4. The (−β)-transformation and Z−β ∩ [−β3, β4] from Example 3.

Example 4. Let β > 1 with β6 = 3β5 + 2β4 + 2β3 + β2 − 2β − 1, i.e., β ≈ 3.695, then the
(−β)-transformation is depicted in Figure 5, where tn = T n−β

( −β
β+1

)
. We have t5 =

−1
β+1

= t6.

The anti-morphism ψ̂β : V̂ ′
β
∗ → V̂ ′

β
∗ is therefore given by

ψ̂β : t̂0 7→ t̂3 t̂5 , t̂2 7→ t̂4 t̂0 t̂2 , t̂3 7→ t̂5 t̂1 0̂ t̂4 t̂0 t̂2 t̂3 t̂5 t̂1 0̂ ,

t̂5 7→ t̂2 t̂3 , t̂1 7→ 0̂ t̂4 t̂0 , 0̂ 7→ t̂5 t̂1 , t̂4 7→ t̂0 t̂2 t̂3 .

In order to deal with shorter words, we group the letters forming the words

a = 0̂ t̂4, b = t̂0 t̂2 t̂3 t̂5 t̂1, c = t̂0 t̂2 t̂3 t̂5, d = t̂2 t̂3 t̂5 t̂1, e = t̂0 t̂2, f= t̂4, g = t̂0 t̂2 t̂3, h = t̂5 t̂1,

which correspond to the intervals Ja =
(
0, 1

β+1

)
, Jb = (t0, 0), Jc = (t0, t1), Jd = (t2, 0),

Je = (t0, t3), Jf =
(
t4,

1
β+1

)
, Jg = (t0, t5), Jh = (t5, 0), occurring in iterated images of Ja.

The anti-morphism ψ̂β acts on these words by

ψ̂β : a 7→ b , b 7→ ababac , c 7→ dabac , d 7→ ababae ,

e 7→ fc , f 7→ g , g 7→ habac , h 7→ ag .
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Since 0̂ only occurs at the beginning of a, the return words of 0̂ with their ψ̂β-images are

ab 7→ ab ab acb , aed 7→ ab ab aefcb ,

acb 7→ ab ab acd ab acb , aefcb 7→ ab ab acd ab acgfcb ,

acd 7→ ab ab aed ab acb , acgfcb 7→ ab ab acd ab acgh︸︷︷︸
=acb

ab acd ab acb .

Therefore, Z−β is described by the anti-morphism ϕ̂−β : R̂∗
β → R̂∗

β which is defined by

ϕ̂−β : A 7→ AAB , L(A) = 1 ,

B 7→ AACAB , L(B) = β − 2 ≈ 1.695 ,

C 7→ AADAB , L(C) = β2 − 3β − 1 ≈ 1.569 ,

D 7→ AAE , L(D) = β3 − 3β2 − 2β − 1 ≈ 1.104 ,

E 7→ AACAF , L(E) = β4 − 3β3 − 2β2 − β − 2 ≈ 2.081 ,

F 7→ AACABACAB , L(F ) = β5 − 3β4 − 2β3 − 2β2 + β − 2 ≈ 3.12 .

0

0t0
t0 1

β+1

1
β+1

t1

t1

t2

t2

t3

t3

t4

t4

t5

t5

Jt̂0 Jt̂2 Jt̂3 Jt̂5 Jt̂1J0̂ Jt̂4

−β
−β+1

−β+2 0 1 2 β2−3β+1
β2−3β+2

β2−2β
β2−2β+1

β2−2β+2
β2−β

β2−β+1
β2−β+2

β2

A A B A A C A B A A B A A B

Figure 5. The (−β)-transformation and Z−β ∩ [−β, β2] from Example 4.
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4. Conclusions

With every Yrrap number β ≥ (1 +
√
5)/2, we have associated an anti-morphism ϕ−β

on a finite alphabet. The distances between consecutive (−β)-integers are described by a
fixed point of ϕ−β. In [1], the anti-morphism is described explicitely for each β > 1 such

that T n−β
( −β
β+1

)
≤ 0 and T 2n−1

−β
( −β
β+1

)
≥ 1−⌊β⌋

β
for all n ≥ 1. Examples 3 and 4 show that the

situation can be quite complicated when this condition is not fulfilled. Although ϕ−β can
be obtained by a simple algorithm, it seems to be difficult to find a priori bounds for the
number of different distances between consecutive (−β)-integers or for their maximal value.
Only the case of quadratic Pisot numbers β is completely solved; here, we know from [14, 1]
that #Vβ = #∆−β = 2.

Recall that the maximal distance between consecutive β-integers is 1, and the number
of different distances is equal to the cardinality of the set {T nβ (1−) | n ≥ 0}. Example 3
shows that the (−β)-integers do not satisfy similar properties. By generalising Example 4
to β > 1 with β6 = (m+1)β5+mβ4+mβ3+β2−mβ−1, m ≥ 2, one sees that the maximal
distance can be arbitrarily close to 4 for algebraic integers of degree 6 and #Vβ = 6.

In a forthcoming paper, we associate anti-morphisms ϕ−β on infinite alphabets with
non-Yrrap numbers β, by considering the intervals occurring in the iterated T−β-images of(
0, 1

β+1

)
, cf. Example 4, and we show that the distances between consecutive (−β)-integers

can be unbounded, e.g. for β > 1 satisfying −β
β+1

=
∑∞

k=1 ak(−β)−k where a1a2 · · · =

31232 1 2 31232 2 · · · is a fixed point of the morphism 3 7→ 31232, 2 7→ 2, 1 7→ 1. For
Yrrap numbers β, this implies that there is no bound for the distance between consecutive
(−β)-integers which is independent of β. However, large distances occur probably only far
away from 0 and when #Vβ is large, and it would be interesting to quantify these relations.

Another topic that is worth investigating is the structure of the sets S−β(x) for x 6= 0,
and of the corresponding tilings when β is a Pisot unit. A related question is whether Z−β
can be given by a cut and project scheme, cf. [5, 12].
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