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CD-SYSTEMS OF STATELESS DETERMINISTIC
R(1)-AUTOMATA GOVERNED BY AN EXTERNAL

PUSHDOWN STORE ∗, ∗∗

Benedek Nagy1 and Friedrich Otto2

Abstract. We study cooperating distributed systems (CD-systems) of
stateless deterministic restarting automata with window size 1 that are
equipped with an external pushdown store. In this way we obtain an
automata-theoretical characterization for the class of word languages
that are linearizations of context-free trace languages.
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1. Introduction

Starting with Mazurkiewicz’s seminal paper [18], the theory of traces has be-
come an important part of the theory of concurrent systems. A trace is an equiva-
lence class of words over a given alphabet with respect to a partial commutativity
relation [6]. Informally speaking, if the letters of an alphabet Σ are interpreted
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as atomic actions, then a word w over Σ stands for a finite sequence of such
actions. If some of these atomic actions, say a and b, are independent of each
other, then it does not matter in which order they are executed, that is, the
sequences of actions ab and ba yield the same result. If D is a reflexive and sym-
metric dependency relation on Σ, and I = (Σ × Σ) � D is the corresponding
independence relation, then the equivalence relation ≡D is induced by the pairs
{ (xaby, xbay) | (a, b) ∈ I, x, y ∈ Σ∗ }. By collecting all words (sequences) that are
equivalent to a given word w into a class [w]D = { z ∈ Σ∗ | z ≡D w }, one abstracts
from the order between independent actions. These equivalence classes are called
traces, and the set { [w]D | w ∈ Σ∗ } of all traces is the trace monoid M(D). A
set of traces S ⊆M(D) is called a trace language, and the set of all words w such
that [w]D belongs to S is called the linearization of this trace language. A trace
language S ⊆ M(D) is called recognizable (context-free) if there exists a regular
(context-free) language R ⊆ Σ∗ such that S = { [w]D | w ∈ R }, and it is called
rational if it is empty or if it can be obtained from singleton sets by a finite num-
ber of unions, products, and star operations. However, in contrast to the situation
for words (that is, free monoids), the recognizable trace languages are a proper
subclass of the rational trace languages (unless I = ∅). For a detailed presentation
of trace theory and a long list of references, see the monograph by Diekert and
Rozenberg [9], which serves as our main reference on this topic.

In [26] Zielonka introduced asynchronous automata for accepting recognizable
trace languages. Actually he presented a construction that, starting from a regu-
lar I-closed word language that is either given through a homomorphism into a
finite monoid, or by an I-diamond automaton, yields a deterministic asynchronous
automaton for the corresponding trace language. Interestingly, these automata
process traces, not linearizations thereof, in this way reflecting the concurrent
aspect of traces. In [8] finite automata are studied that work on multisets, that
is, they accept recognizable sets of traces over a commutative alphabet (that is,
I = (Σ×Σ)� { (a, a) | a ∈ Σ }), and this approach has been extended to multiset
pushdown automata in [15]. However, so far no automata-theoretical characteriza-
tion has been obtained for rational or context-free trace languages.

Here we make a step into this direction by studying systems of automata that
accept linearizations of context-free trace languages. In [21] it is shown that lin-
earizations of rational trace languages are accepted by cooperating distributed sys-
tems (CD-systems) of a particular type of stateless deterministic restarting auto-
mata. Restarting automata were invented by Jančar et al. to model the linguistic
technique of analysis by reduction [13] (see also [25]). These automata can be
interpreted as generalizations of finite-state acceptors that work in cycles. They
have a finite-state control and a read/write window of a fixed size k ≥ 1 that
works on a flexible tape. In each cycle they execute a single rewrite operation that
strictly shortens the actual tape. CD-systems of restarting automata have been
defined in [19], and in [20] various types of deterministic CD-systems of restarting
automata have been studied. In such a system the component automata coop-
erate in processing a given input word: at each moment exactly one component
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automaton is active. It executes one or more cycles, depending on the chosen
mode of operation, and then another component automaton becomes active. As
expected, CD-systems are much more expressive than their component automata
themselves. On the other hand, stateless restarting automata, that is, restarting
automata with only a single state, have been introduced and studied in [16,17]. In
the monotone case and in the deterministic case, they are just as expressive as the
corresponding restarting automata with states, provided that auxiliary symbols
are available. Without the latter, however, stateless restarting automata are in
general much less expressive than their corresponding counterparts with states.

In [21] CD-systems of stateless deterministic restarting automata that have a
read/write window of size 1 only are considered. Working in mode = 1, these
systems accept a class of semi-linear languages that properly contains the lin-
earizations of all rational trace languages. In fact, even a characterization of the
linearizations of rational trace languages in terms of a particular type of these
CD-systems was obtained.

Here we extend these CD-systems by an external pushdown store that is used
to determine the successor of the current automaton, in this way obtaining the so-
called pushdown CD-systems of stateless deterministic R(1)-automata, abbreviated
as PD-CD-R(1)-systems. When the active automaton of such a system performs a
cycle, then its successor automaton is chosen based on both, the symbol deleted in
this cycle and the topmost symbol on the pushdown store. In this process also the
pushdown content is modified by either erasing the topmost symbol, or by replacing
it by a word of length at most 2. Essentially such a system can be interpreted as
a traditional pushdown automaton, in which the operation of reading an input
symbol has been replaced by a stateless deterministic R(1)-automaton. Hence, not
the first symbol is necessarily read, but some symbol that can be reached by this
automaton by moving across a prefix of the current input word. In this way our
CD-systems can be interpreted as pushdown automata with translucent letters.
Analogously, the CD-systems of stateless deterministic restarting automata with
window size 1 studied in [21] can be interpreted as finite-state acceptors with
translucent letters (see [24]). Also other variants of pushdown automata that do
not simply read their input sequentially from left to right have been studied before.
For example, in [5] pushdown automata are considered that can reverse their input.

We show that the class L(PD-CD-R(1)) of languages that are accepted by PD-
CD-R(1)-systems is a proper subclass of the class of languages with semi-linear
Parikh image, and that it includes the linearizations of all context-free trace
languages. Actually, from a context-free word language R ⊆ Σ∗ that is given
through a context-free grammar and a dependency relation D on Σ, we con-
struct a PD-CD-R(1)-system for the linearization of the context-free trace language
S = { [w]D | w ∈ R }. On the other hand, from a given PD-CD-R(1)-system M,
we can extract a pushdown automaton A such that the language L(A) is a sublan-
guage of L(M) that is letter-equivalent to L(M). Finally, we present a character-
ization of the class of linearizations of context-free trace languages in terms of a
particular type of PD-CD-R(1)-systems. In fact, from a PD-CD-R(1)-system M of
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this type, one can construct a pushdown automaton B such that the language
L(M) accepted by M is the linearization of the context-free trace language
S = { [w]D | w ∈ L(B) }.

This paper is structured as follows. In Section 2 we restate in short the defi-
nition of the CD-systems of stateless deterministic R(1)-automata and their main
properties from [21], and in Section 3, we define the PD-CD-R(1)-systems. We also
consider the special case of these CD-systems where the pushdown is a counter
(the so-called OC-CD-R(1)-systems), that is, there is only a single pushdown sym-
bol in addition to the bottom marker. We illustrate these definitions by some
examples and compare the resulting language classes to each other and to the
class CFL of context-free languages, the class OCL of one-counter languages, and
the class L=1(stl-det-local-CD-R(1)) of languages that are accepted by CD-systems
of stateless deterministic R(1)-automata. Then in Section 4, we study the classes of
linearizations of one-counter and context-free trace languages. We will see that our
PD-CD-R(1)-systems accept a proper superclass of the linearizations of context-
free trace languages, and the OC-CD-R(1)-systems accept a proper superclass of
the linearizations of one-counter trace languages, and we present characterizations
of these classes of linearizations of trace languages in terms of our CD-systems.
Finally, in Section 5 we state some preliminary closure and non-closure results
and several open problems. The paper closes with some concluding remarks in
Section 6.
Notation. For a finite alphabet Σ, we use Σ+ to denote the set of all non-empty
words over Σ, while Σ∗ denotes the set of all words over Σ including the empty
word ε. For a word w ∈ Σ∗ and a letter a ∈ Σ, |w| denotes the length of w, and
|w|a denotes the a-length of w, that is, the number of occurrences of the letter a
in w. Further, wR denotes the reversal (or mirror image) of w.

If Σ = {a1, . . . , an}, then the corresponding Parikh mapping is the morphism
ψ : Σ∗ → Nn from the set of words over Σ into the set of vectors of dimension
n over N that is defined by mapping ai to the vector (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

) for all

1 ≤ i ≤ n. Two languages L1, L2 ⊆ Σ∗ are called letter-equivalent if ψ(L1) =
ψ(L2) holds. A language L ⊆ Σ∗ is called semi-linear if its Parikh image ψ(L)
is a semi-linear subset of Nn, that is, if ψ(L) is the union of finitely many linear
subsets of Nn (see e.g., [11]).

We use REG, LIN, DCFL, and CFL to denote the classes of regular, linear, deter-
ministic context-free and context-free languages. The monographs [11,12] are our
main references on formal language and automata theory.

2. Stateless deterministic R(1)-automata

Stateless types of restarting automata were introduced in [16]. Here we are
only interested in the most restricted form of them, the stateless deterministic
R-automaton of window size 1. A stateless deterministic R(1)-automaton is a one-
tape machine that is described by a 5-tuple M = (Σ, c, $, 1, δ), where Σ is a finite
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alphabet, the symbols c, $ 	∈ Σ serve as markers for the left and right border
of the work space, respectively, the size of the read/write window is 1, and δ :
Σ ∪{c, $} → {MVR,Accept, ε} is the (partial) transition function. There are three
types of transition steps: move-right steps (MVR), which shift the window one
step to the right, combined rewrite/restart steps (denoted by ε), which delete the
content a of the window, thereby shortening the tape, and place the window over
the left end of the tape, and accept steps (Accept), which cause the automaton to
halt and accept. In addition, we use the notation δ(a) = ∅ to express the fact that
the function δ is undefined for the symbol a. Some restrictions apply in that the
sentinels c and $ must not be deleted, and that the window must not move right
on seeing the $-symbol.

A configuration of M is described by a pair (α, β), where either α = ε (the
empty word) and β ∈ {c} ·Σ∗ · {$} or α ∈ {c} ·Σ∗ and β ∈ Σ∗ · {$}; here αβ is the
current content of the tape, and it is understood that the window contains the first
symbol of β. A restarting configuration is of the form (ε, cw$), where w ∈ Σ∗; to
simplify the notation a restarting configuration (ε, cw$) is usually simply written
as cw$. By �M we denote the single-step computation relation of M , and �∗

M

denotes the reflexive transitive closure of �M .
The automaton M proceeds as follows. Starting from an initial configuration

cw$, the window moves right until a configuration of the form (cx, ay$) is reached
such that δ(a) = ε. Now the latter configuration is transformed into the restart-
ing configuration cxy$. This computation, which is called a cycle, is expressed as
w �c

M xy. A computation of M now consists of a finite sequence of cycles that
is followed by a tail computation, which consists of a sequence of move-right op-
erations possibly followed by an accept step. An input word w ∈ Σ∗ is accepted
by M , if the computation of M which starts with the initial configuration cw$
finishes by executing an accept step. By L(M) we denote the language consisting
of all words accepted by M .

If M = (Σ, c, $, 1, δ) is a stateless deterministic R(1)-automaton, then we can
partition its alphabet Σ into four disjoint subalphabets:

ΣM = { a ∈ Σ | δ(a) = MVR }, ΣA = { a ∈ Σ | δ(a) = Accept },
Σε = { a ∈ Σ | δ(a) = ε }, Σ∅ = { a ∈ Σ | δ(a) = ∅ }.

Thus, ΣM is the set of letters that M just moves across, Σε is the set of letters
that M deletes, ΣA is the set of letters which cause M to accept, and Σ∅ is the set
of letters on which M will get stuck. It has been shown in [21] that the language
L(M) can be characterized as

L(M) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅, if δ(c) = ∅,
Σ∗, if δ(c) = Accept,

(ΣM ∪Σε)∗ ·ΣA ·Σ∗, if δ(c) = MVR and δ($) 	= Accept,

(ΣM ∪Σε)∗ · ((ΣA ·Σ∗) ∪ {ε}), if δ(c) = MVR and δ($) = Accept.

Let M = (Σ, c, $, 1, δ) be a stateless deterministic R(1)-automaton. If δ(c)
is undefined, then L(M) = ∅. Define a stateless deterministic R(1)-automaton
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M− = (Σ, c, $, 1, δ−) by taking δ−(c) = δ−(a) = MVR for all a ∈ Σ and δ−($) = ∅.
Then M− scans its tape contents completely and halts (and rejects) on the right
delimiter $, that is, L(M−) = ∅. Similarly, if δ(c) = Accept, then L(M) = Σ∗.
Define a stateless deterministic R(1)-automaton M+ = (Σ, c, $, 1, δ+) by taking
δ+(c) = δ+(a) = MVR for all a ∈ Σ and δ+($) = Accept. Then M+ scans its
tape contents completely and halts (and accepts) on the right delimiter $, that is,
L(M+) = Σ∗. Thus, the automaton M is equivalent to M− (in the first case) or
to M+ (in the second case). Accordingly, we assume in the following that for all
stateless deterministic R(1)-automata M = (Σ, c, $, 1, δ) considered, δ(c) = MVR
holds.

Cooperating distributed systems of restarting automata were introduced and
studied in [19]. Here we only consider cooperating distributed systems of stateless
deterministic R(1)-automata (or stl-det-local-CD-R(1)-systems for short). Such a
system consists of a finite collection M = ((Mi, σi)i∈I , I0) of stateless deterministic
R(1)-automata Mi = (Σ, c, $, 1, δi) (i ∈ I), successor relations σi ⊆ I (i ∈ I), and
a subset I0 ⊆ I of initial indices. Here it is required that I0 	= ∅, and that σi 	= ∅
for all i ∈ I. These systems are called locally deterministic in accordance with the
notation coined in [20], since their computations are not deterministic as we will
see below, although all their component automata Mi (i ∈ I) are deterministic.
Actually, in [21] it is required additionally that i 	∈ σi for all i ∈ I, but as we are
only interested in mode = 1 computations (see below), this requirement is actually
irrelevant. In fact, by simply adding a copy for each component automaton Mi

(i ∈ I), we could easily enforce it, but this would just make the systems larger and
harder to describe.

The cooperating distributed systems of restarting automata can be seen as
an adaptation of the notion of a CD-grammar system with external control (see
e.g. [7]) to restarting automata. Accordingly various modes of operation have been
defined and studied for them [19], but here we concentrate on mode = 1 compu-
tations only.

A computation of M in mode = 1 on an input word w proceeds as follows. First
an index i0 ∈ I0 is chosen nondeterministically. Then the R-automaton Mi0 starts
the computation with the initial configuration cw$, and executes a single cycle.
Thereafter an index i1 ∈ σi0 is chosen nondeterministically, and Mi1 continues
the computation by executing a single cycle. This continues until, for some l ≥ 0,
the automaton Mil

accepts. Should at some stage the chosen automaton Mil
be

unable to execute a cycle or to accept, then the computation fails. By L=1(M)
we denote the language that the system M accepts in mode = 1. It consists of
all words w ∈ Σ∗ that are accepted by M in mode = 1 as described above. By
L=1(stl-det-local-CD-R(1)) we denote the class of languages that are accepted by
mode = 1 computations of stl-det-local-CD-R(1)-systems.

Example 2.1. Let M = ((Mi, σi)i∈I , I0), where I = {a, b, c,+}, I0 = {a}, σa =
{b}, σb = {c}, σc = {a,+}, σ+ = {a}, and Ma, Mb, Mc, and M+ are the stateless
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deterministic R(1)-automata that are given by the following transition functions:

Ma : δa(c) = MVR, δa(b) = MVR, δa(c) = MVR, δa(a) = ε,

Mb : δb(c) = MVR, δb(a) = MVR, δb(c) = MVR, δb(b) = ε,
Mc : δc(c) = MVR, δc(a) = MVR, δc(b) = MVR, δc(c) = ε,

M+ : δ+(c) = MVR, δ+($) = Accept,

and δa($), δb($), δc($) and δ+(a), δ+(b), δ+(c) are undefined.
The automaton M+ accepts the empty word and rejects (that is, it gets stuck

on) all other inputs. The automaton Ma simply deletes the first occurrence of the
letter a from its tape, Mb simply deletes the first occurrence of the letter b, and
Mc simply deletes the first occurrence of the letter c. Accordingly L=1(M) is the
non-context-free language Labc = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c ≥ 1 }.

In [21] the following result was established.

Proposition 2.2. Each language L ∈ L=1(stl-det-local-CD-R(1)) contains a regu-
lar sublanguage E that is letter-equivalent to L. In fact, a finite-state acceptor for
E can be constructed effectively from a stl-det-local-CD-R(1)-system for L.

In particular, it follows that L=1(stl-det-local-CD-R(1)) only contains languages
that are semi-linear. Let DLIN denote the class of deterministic linear languages,
which is the class of languages that are accepted by deterministic one-turn push-
down automata. Further, let DOCL and OCL denote the classes of deterministic
one-counter languages and one-counter languages, which are the classes of lan-
guages that are accepted by (deterministic) one-counter automata (see below).
The language L = { anbn | n ≥ 0 } is accepted by a deterministic one-turn push-
down automaton as well as by a deterministic one-counter automaton, that is, it
belongs to the intersection DLIN ∩ DOCL. However, it does not contain a regu-
lar sublanguage that is letter-equivalent to the language itself. Thus, we see from
Proposition 2.2 that this language is not accepted by any stl-det-local-CD-R(1)-
system working in mode = 1. Together with Example 2.1 this implies that the
language class L=1(stl-det-local-CD-R(1)) is incomparable to the classes DLIN, LIN,
DOCL, OCL, DCFL, and CFL with respect to inclusion.

For technical reasons the following normal form was introduced in [21] for stl-
det-local-CD-R(1)-systems.

Definition 2.3. A stl-det-local-CD-R(1)-system M = ((Mi, σi)i∈I , I0) is in nor-
mal form, if it satisfies the following three conditions for all i ∈ I, where
Σ

(i)
M , Σ

(i)
ε , Σ

(i)
A , Σ

(i)
∅ is the partitioning of alphabet Σ for the automaton Mi as

described above:

(1) |Σ(i)
ε | ≤ 1, (2) δi(c) = MVR and Σ(i)

A = ∅, (3) Σ(i)
ε = ∅ iff δi($) = Accept.
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It is shown in [21] that a given stl-det-local-CD-R(1)-system M can be con-
verted effectively into a stl-det-local-CD-R(1)-system M′ in normal form such
that L=1(M′) = L=1(M). However, the system M′ can have about |Σ| + 1
times as many component automata as the given system M. In [22] clo-
sure properties and algorithmic properties are presented for the language class
L=1(stl-det-local-CD-R(1)).

3. CD-systems with an external pushdown store

A pushdown CD-system of stateless deterministic R(1)-automata, a PD-CD-
R(1)-system for short, consists of a CD-system of stateless deterministic R(1)-
automata and an external pushdown store. Essentially such a system can be in-
terpreted as a traditional pushdown automaton, in which the operation of reading
an input symbol is replaced by a stateless deterministic R(1)-automaton. Hence,
not the first symbol is necessarily read, but some symbol that can be reached by
this automaton by moving across a prefix of the current input word. Formally, a
PD-CD-R(1)-system is defined as a tuple M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ), where

• I is a finite set of indices,
• Σ is a finite input alphabet,
• for all i ∈ I, Mi is a stateless deterministic R(1)-automaton on Σ, and σi ⊆ I

is a non-empty set of possible successors for Mi,
• Γ is a finite pushdown alphabet,
• ⊥ 	∈ Γ is the bottom marker of the pushdown store,
• I0 ⊆ I is the set of initial indices, and
• δ : (I ×Σ× (Γ ∪{⊥})) → 2I×(Γ∪{⊥})∗ is the successor relation. For each i ∈ I,
a ∈ Σ, and A ∈ Γ , δ(i, a, A) is a subset of σi × Γ≤2, and δ(i, a,⊥) is a subset
of σi × (⊥ · Γ≤2). Here Γ≤2 denotes the set of all words over Γ of length at
most 2.

A configuration of M is a triple of the form (i, ω,⊥α), where i ∈ I, ω ∈ (c · Σ∗ ·
$) ∪ {Accept}, and α ∈ Γ ∗. A configuration of the form (i, cw$,⊥α) describes the
situation that the component automaton Mi has just been activated, the word
cw$ is the corresponding restarting configuration of Mi, and the word ⊥α is the
current content of the pushdown store with the last symbol of α at the top. For
w ∈ Σ∗, an initial configuration of M on input w has the form (i0, cw$,⊥) for any
i0 ∈ I0, and an accepting configuration has the form (i,Accept,⊥) for any i ∈ I.

Recall from the discussion in Section 2 that we assume that each component
automaton Mi (i ∈ I) performs a move-right operation on the c-symbol. Further,
for each i ∈ I, let Σ(i)

M , Σ(i)
ε , and Σ

(i)
A denote the subsets of Σ that correspond

to the automaton Mi. Then the single-step computation relation ⇒M that M
induces on the set of configurations is defined by the following three rules, where



PUSHDOWN CD-SYSTEMS OF R(1)-AUTOMATA 421

i ∈ I, w ∈ Σ∗, α ∈ Γ ∗, and A ∈ Γ :

(1) (i, cw$,⊥αA) ⇒M (j, cw′$,⊥αη) if ∃u ∈ Σ
(i)
M

∗
, a ∈ Σ

(i)
ε , v ∈ Σ∗ such that

w = uav, w′ = uv, and (j, η) ∈ δ(i, a, A);
(2) (i, cw$,⊥) ⇒M (j, cw′$,⊥η) if ∃u ∈ Σ

(i)
M

∗
, a ∈ Σ

(i)
ε , v ∈ Σ∗ such that

w = uav, w′ = uv, and (j,⊥η) ∈ δ(i, a,⊥);
(3) (i, cw$,⊥) ⇒M (i,Accept,⊥) if ∃u ∈ Σ

(i)
M

∗
, a ∈ Σ

(i)
A , v ∈ Σ∗ such that

w = uav, or w ∈ Σ
(i)
M

∗
and δi($) = Accept.

Notice that the contents of the pushdown store is always a word of the form ⊥α for
some α ∈ Γ ∗, that is, the bottom marker ⊥ cannot be removed from the pushdown
store. By ⇒∗

M we denote the computation relation of M, which is the reflexive
and transitive closure of the relation ⇒M. The language L(M) accepted by M
consists of all words for which M has an accepting computation, that is,

L(M) = {w ∈ Σ∗ | ∃i0 ∈ I0 ∃i ∈ I : (i0, cw$,⊥) ⇒∗
M (i,Accept,⊥) }.

Remark 3.1. The system M accepts if and when both of the following con-
ditions are satisfied: the currently active component automaton Mi executes an
accepting tail computation starting from the current restarting configuration cw$,
and the pushdown store just contains the bottom marker ⊥. One could relax this
acceptance condition by just requiring that the currently active component au-
tomaton Mi accepts starting from the current restarting configuration. It is not
clear whether that would change the class of languages accepted. However, the
requirement that the pushdown store must just contain the bottom marker at the
end of an accepting computation can be seen as a kind of normalization. Observe
that the contents of the pushdown store of M is manipulated only in steps of the
form (1) and (2), and that during each step of either of these forms a component
automaton of M executes a cycle, that is, an input letter is being erased. Thus,
there is no way that M can manipulate its pushdown store without reading (that
is, deleting) input symbols, that is, if a configuration of the form (i,Accept,⊥α)
were reached for some α 	= ε, then α could not be popped from the pushdown
store.

A PD-CD-R(1)-system M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) is called a one-coun-
ter CD-system of stateless deterministic R(1)-automata, OC-CD-R(1)-system for
short, if |Γ | = 1, that is, if there is only a single pushdown symbol in addition
to the bottom marker ⊥. By L(PD-CD-R(1)) we denote the class of languages
that are accepted by PD-CD-R(1)-systems, and L(OC-CD-R(1)) denotes the class
of languages that are accepted by OC-CD-R(1)-systems.

Example 3.2. We consider the language

L = { anv | v ∈ {b, c}∗, |v|b = |v|c = n, n ≥ 0 }.

As L∩(a∗ · b∗ · c∗) = { anbncn | n ≥ 0 } is not context-free, we see that L itself is not
context-free. Further, there is no regular sublanguage of L that is letter-equivalent
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to L. Hence, by Proposition 2.2, L is not accepted by any stl-det-local-CD-R(1)-
system, either. However, we claim that L is accepted by the OC-CD-R(1)-system
M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) that is defined as follows:

• I = {a, b, c,+}, I0 = {a,+}, Σ = {a, b, c}, and Γ = {C},
• Ma, Mb, Mc, and M+ are defined by the following transition functions:

(1) δa(c) = MVR, (5) δb(c) = MVR, (8) δc(c) = MVR,
(2) δa(a) = ε, (6) δb(b) = ε, (9) δc(c) = ε,
(3) δ+(c) = MVR, (7) δb(c) = MVR, (10) δc(b) = MVR,
(4) δ+($) = Accept,

where δx(y) (x ∈ I, y ∈ Σ ∪ {$}) is undefined for all other cases,
• σa = {a, b}, σb = {c}, σc = {b,+}, and σ+ = {+}, and
• δ is defined as follows:

(1) δ(a, a,⊥) = {(a,⊥C), (b,⊥C)}, (3) δ(b, b, C) = {(c, C)},
(2) δ(a, a, C) = {(a,CC), (b, CC)}, (4) δ(c, c, C) = {(b, ε), (+, ε)},

and for all other tripels, δ yields the empty set.
The component automaton M+ just accepts the empty word, and it gets stuck

on all other words. The component Ma just deletes the first letter, if it is an a,
otherwise, it gets stuck. The component Mb reads across c’s and deletes the first b
it encounters, and analogously, the component Mc reads across b’s and deletes the
first c it encounters. Thus, we see from the form of the successor sets that M can
only accept certain words of the form amv such that v ∈ {b, c}∗. However, when
Ma deletes an a, then a symbol C is pushed onto the pushdown store, and when
Mc deletes a c, then a symbol C is popped from the pushdown store. As Mb and
Mc work alternatingly, this means that the same number of b’s and c’s are deleted.
Thus, if M is to accept, then |v|b = |v|c = n holds for some n ≥ 0.

If m < n, then after deleting the first m occurrences of b and c, the pushdown
store only contains the bottom marker ⊥, and then M gets stuck as seen from
the definition of δ. On the other hand, if m > n, then the pushdown still contains
some occurrences of the symbol C when the word amv has been erased completely.
Hence, in this situation M does not accept, either. Finally, if m = n, then after
erasing the last occurrence of c, also the last occurrence of the symbol C is popped
from the pushdown store, and then M+ can accept starting from the configuration
(+, c$,⊥). Hence, we see that L(M) = L holds.

Thus, already the language class L(OC-CD-R(1)) contains a language that is
neither context-free nor accepted by any stl-det-local-CD-R(1)-system.
Remark 3.1 (cont.). In the above example we exploit the fact that M accepts
only when its pushdown store contains nothing but the bottom marker. However,
for the language L above an OC-CD-R(1)-system can be designed that accepts with
an arbitrary contents in its pushdown store.

Next we show that OC-CD-R(1)-systems can simulate all stl-det-local-CD-R(1)-
systems.
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Proposition 3.3. L=1(stl-det-local-CD-R(1)) � L(OC-CD-R(1)).

Proof. Let M = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system, and let L =
L=1(M). We obtain a OC-CD-R(1)-system M′ = (I,Σ, (Mi, σi)i∈I , ∅,⊥, I0, δ),
where Σ is the tape alphabet of M, by defining the transition function δ as follows
for all i ∈ I:

δ(i, a,⊥) = { (j,⊥) | j ∈ σi } for all a ∈ Σ
(i)
ε ,

δ(i, a,⊥) = ∅ for all a ∈ Σ �Σ
(i)
ε .

Then there is a one-to-one correspondence between the accepting computations
of M and the accepting computations of M′. Thus, L(M′) = L. This yields the
announced inclusion. Its properness follows from the previous example. �

Further, PD-CD-R(1)-systems accept all context-free languages.

Proposition 3.4. CFL � L(PD-CD-R(1)).

Proof. Let L ⊆ Σ+ be a context-free language. Then there exists a context-free
grammar G = (V,Σ, S, P ) in quadratic Greibach normal form for L, that is, for
each production (A → r) ∈ P , the right-hand side r is of the form r = aα,
where a ∈ Σ and α ∈ V ≤2. In addition, we can assume that the start symbol S
does not occur on the right-hand side of any production. Applied to G, the stan-
dard construction of a pushdown automaton from a context-free grammar yields
a pushdown automaton A without ε-moves that, given a word w ∈ Σ+ as input,
simulates a left-most G-derivation of w from S (see e.g. [12]). In analogy to this
construction we build a PD-CD-R(1)-system M = (I,Σ, (Mi, σi)i∈I , V,⊥, {S}, δ),
where I = V ∪ {+}, the stateless deterministic R(1)-automata MA (A ∈ V ) and
M+ are defined as follows, where a ∈ Σ:

(1) δA(c) = MVR,
(2) δA(a) = ε, if there exists γ ∈ V ≤2 : (A→ aγ) ∈ P,
(3) δA(a) = ∅, otherwise,
(4) δA($) = ∅,
(5) δ+(c) = MVR,
(6) δ+(a) = ∅,
(7) δ+($) = Accept,

the sets of successors are defined by σA = σ+ = I for all A ∈ V , and the successor
relation δ is defined as follows, where A ∈ V and a ∈ Σ:

(1) δ(S, a,⊥) = { (+,⊥) | (S → a) ∈ P }
∪ { (B,⊥B) | (S → aB) ∈ P }
∪ { (B,⊥CB) | (S → aBC) ∈ P },

(2) δ(A, a,A) = { (B, ε) | B ∈ V � {S} and (A→ a) ∈ P }
∪ { (+, ε) | (A→ a) ∈ P }
∪ { (B,B) | (A→ aB) ∈ P }
∪ { (B,CB) | (A→ aBC) ∈ P },

and δ yields the empty set for all other values.
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We claim that L(M) = L holds. For establishing this equality, we prove the
following technical result, where U denotes the set U = V � {S}, and ⇒∗

G denotes
the left-most derivation relation of G.
Claim. For all w ∈ Σ+, all A ∈ U , and all α ∈ U∗,

(A, cw$,⊥αA) ⇒∗
M (+,Accept,⊥) iff AαR ⇒∗

G w.

Proof. “⇒”: Assume that (A, cw$,⊥αA) ⇒∗
M (+,Accept,⊥). We proceed by

induction on |w|. If |w| = 1, then w = a ∈ Σ. We see from the defini-
tion of M that α = ε, and that the above computation of M has the form
(A, cw$,⊥αA) = (A, ca$,⊥A) ⇒M (+, c$,⊥). This implies that (A → a) ∈ P ,
that is, A = AαR ⇒G a = w holds.

If |w| = n+ 1 for some n ≥ 1, then w = aw′ for some a ∈ Σ and some word w′

of length n. It follows that the above computation of M has the form

(A, cw$,⊥αA) = (A, caw′$,⊥αA) ⇒M (B, cw′$,⊥γB) ⇒∗
M (+,Accept,⊥),

where (A → a) ∈ P , and then γB = α, or (A → aB) ∈ P , and then γ = α,
or (A → aBC) ∈ P , and then γ = αC. In each case we obtain the derivation
AαR ⇒G aBγR ⇒∗

G aw′ = w from the induction hypothesis for w′.

“⇐”: Assume that AαR ⇒∗
G w holds. Again, we proceed by induction on |w|. If

|w| = 1, then w = a ∈ Σ, and it follows from the form of the rules of G that α = ε.
Thus, (A→ a) ∈ P , and hence,

(A, cw$,⊥αA) = (A, ca$,⊥A) ⇒M (+, c$,⊥) ⇒M (+,Accept,⊥)

follows. If |w| = n + 1 for some n ≥ 1, then w = aw′ for some a ∈ Σ and some
word w′ of length n. It follows that the above derivation has the form AαR ⇒G

aBγR ⇒∗
G aw′ = w, where in the first step, (A → a) ∈ P is used, and then

α = γB, or (A → aB) ∈ P is used, and then α = γ, or (A → aBC) ∈ P is used,
and then αC = γ. In each case we obtain the following computation from the
induction hypothesis for w′:

(A, cw$,⊥αA) = (A, caw′$,⊥αA) ⇒M (B, cw′$,⊥γB) ⇒∗
M (+,Accept,⊥). �

Let a ∈ Σ. Then a ∈ L iff (S → a) ∈ P iff (S, ca$,⊥) ⇒M (+, c$,⊥) ⇒M
(+,Accept,⊥) iff a ∈ L(M). Finally, for all w ∈ Σ+ and all a ∈ Σ,

aw ∈ L iff S ⇒G aAαR ⇒∗
G aw

iff (S → aAαR) ∈ P and AαR ⇒∗
G w

iff (S, caw$,⊥) ⇒M (A, cw$,⊥αA) ⇒∗
M (+,Accept,⊥).

Hence, it follows that L(M) = L.
If the given context-free language includes the empty word, we can apply the

above construction to the language L�{ε}. Then the resulting PD-CD-R(1)-system
will accept this language. By adding the component + to the set of initial compo-
nents, we obtain a PD-CD-R(1)-system for the language L. This yields the intended
inclusion, which is proper by Example 3.2. �
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Next we consider the so-called one-counter automata and the class of languages
accepted by them. One finds several different non-equivalent definitions for one-
counter automata in the literature. Here we take a definition that is equivalent to
the one used by Jančar et al. in [14] (see also [3]).

A pushdown automaton A = (Q,Σ, Γ, q0,⊥, δ, F ) is called a one-counter au-
tomaton if |Γ | = 1, and if the bottom marker ⊥ cannot be removed from the
pushdown store. Thus, if C is the only symbol in Γ , then the pushdown contents
⊥Cm can be interpreted as the integer m for all m ≥ 0. Accordingly, the pop
operation can be interpreted as the decrement −1. It can be assumed in addition
that the only other pushdown operations leave the value m unchanged or increase
it by 1, that is, the pushdown is not changed or exactly one additional C is pushed
onto it. Finally, A has to read an input symbol in each step, that is, it cannot
make any ε-steps.

A word w ∈ Σ∗ is accepted by A, if (q0, w,⊥) �∗
A (q, ε,⊥) holds for some

final state q ∈ F . Observe that A can only distinguish between two states of its
pushdown store: either the topmost symbol is C, which is interpreted by saying
that the counter is positive, or it is the bottom marker ⊥, which is interpreted as the
counter is zero. By OCL we denote the class of languages accepted by one-counter
automata. It is well-known that REG � OCL � CFL holds (see e.g. [3]).

Proposition 3.5. OCL � L(OC-CD-R(1)).

Proof. Let A = (Q,Σ, {C}, q0,⊥, δA, F ) be a one-counter automaton, and let L =
L(A) ⊆ Σ∗ be the language it accepts. We simulate A through a OC-CD-R(1)-
system M = (I,Σ, (Mi, σi)i∈I , {C},⊥, I0, δ), where I = (Q×{=, >})∪ {+}, I0 =
{(q0,=),+}, σ(q,>) = σ(q,=) = σ+ = I for all q ∈ Q, the stateless deterministic
R(1)-automata M(q,>), M(q,=) (q ∈ Q), and M+ are defined as follows:

(1) δ(q,=)(c) = MVR,

(2) δ(q,=)(a) = ε, if δA(q, a,⊥) is defined,

(3) δ(q,=)(a) = ∅, otherwise,

(4) δ(q,=)($) = ∅,
(5) δ(q,>)(c) = MVR,

(6) δ(q,>)(a) = ε, if δA(q, a, C) is defined,

(7) δ(q,>)(a) = ∅, otherwise,

(8) δ(q,>)($) = ∅,
(9) δ+(c) = MVR,

(10) δ+(a) = ∅,
(11) δ+($) = Accept,
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and the successor relation δ is defined as follows, where q ∈ Q, a ∈ Σ, and
i ∈ {1, 2}:

(1) δ((q,=), a,⊥) = { ((q′,=),⊥) | (q′,⊥) ∈ δA(q, a,⊥) }
∪ { (+,⊥) | ∃q′ ∈ F : (q′,⊥) ∈ δA(q, a,⊥) }
∪ { ((q′, >),⊥C) | (q′,⊥C) ∈ δA(q, a,⊥) },

(2) δ((q,>), a, C) = { ((q′, >), Ci) | (q′, Ci) ∈ δA(q, a, C) }
∪ { ((q′, >), ε), ((q′,=), ε) | (q′, ε) ∈ δA(q, a, C) }
∪ { (+, ε) | ∃q′ ∈ F : (q′, ε) ∈ δA(q, a, C) },

while δ yields the empty set for all other values.
Observe that each time A decreases its counter, M also decreases its counter,

and in addition it has the option of activating the final component M+, if the
state entered is final. However, M+ can only accept, if at that moment the input
has been processed completely, and M only accepts if, in addition, the counter is
zero. It follows that there is a one-to-one correspondence between the accepting
computations of the one-counter automaton A and the system M. Hence, we
have L(M) = L(A) = L. This yields the intended inclusion, which is proper by
Example 3.2. �

Definition 3.6. A PD-CD-R(1)-system M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) is in
strong normal form if it satisfies the following conditions, where, for all i ∈ I,
Σ

(i)
M , Σ

(i)
ε , Σ

(i)
A , Σ

(i)
∅ is the partitioning of alphabet Σ for the automaton Mi as

described in Section 2:

(1) ∃ i+ ∈ I : δi+(c) = MVR, δi+($) = Accept, and Σ(i+)
∅ = Σ;

(2) ∀i ∈ I � {i+} : δi(c) = MVR, |Σ(i)
ε | = 1, Σ(i)

A = ∅, and δi($) = ∅.

Thus, if M is in strong normal form, then it has a unique component Mi+ that
can execute accept instructions, but it only accepts the empty word, while all other
components each delete a single kind of letter. In particular, a word w ∈ L(M)
is first erased completely by executing |w| many cycles, and then the empty word
is accepted by activating component Mi+ . As OC-CD-R(1)-systems are a special
type of PD-CD-R(1)-systems, this definition also applies to them. The following
technical result shows that we can restrict our attention to PD-CD-R(1)-systems
in strong normal form.

Lemma 3.7. From a PD-CD-R(1)-system M one can construct a PD-CD-R(1)-
system M′ in strong normal form such that L(M′) = L(M). In addition, if M is
an OC-CD-R(1)-system, then M′ can be constructed to be an OC-CD-R(1)-system,
too.

Proof. Let M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) be a PD-CD-R(1)-system. As pointed
out in Section 2, we can assume that each of the component automata Mi executes
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a move-right step on seeing the c-symbol, that is, δi(c) = MVR for all i ∈ I, where
δi denotes the transition function of Mi.

First we split every component automaton Mi into |Σ(i)
ε |+ 1 many parts, M (a)

i

for a ∈ Σ
(i)
ε , and M

(+)
i , where the former is responsible for executing the cycles

of Mi in which an occurrence of the letter a is deleted, while the latter takes care
of the accepting tail computations of Mi. In detail, for each a ∈ Σ

(i)
ε ,

δ
(a)
i (c) = MVR and δ

(+)
i (c) = MVR,

δ
(a)
i (a) = ε and δ

(+)
i (a) = ∅,

δ
(a)
i (b) = MVR and δ

(+)
i (b) = MVR for all b ∈ Σ

(i)
M ,

δ
(a)
i (b) = ∅ and δ

(+)
i (b) = Accept for all b ∈ Σ

(i)
A ,

δ
(a)
i (b) = ∅ and δ

(+)
i (b) = ∅ for all b ∈ (Σ(i)

ε � {a}) ∪Σ(i)
∅ ,

δ
(a)
i ($) = ∅, and δ

(+)
i ($) = δi($).

We adjust the successor relations σi (i ∈ I) as

σ
(a)
i = σ

(+)
i = { j(b), j(+) | j ∈ σi, b ∈ Σ(j)

ε },

and we take

M̂ = (Î , Σ, (M (a)
i , σ

(a)
i )

i∈I,a∈Σ
(i)
ε

∪ (M (+)
i , σ

(+)
i )i∈I , Γ,⊥, Î0, δ̂),

where Î = { i(a), i(+) | i ∈ I, a ∈ Σ
(i)
ε } and Î0 = { i(a), i(+) | i ∈ I0, a ∈ Σ

(i)
ε }.

Finally, the successor relation δ̂ : (Î ×Σ × (Γ ∪ {⊥}) → 2Î×(Γ∪{⊥})∗ is defined as
follows, where i ∈ I, a, b ∈ Σ, and A ∈ Γ :

(1) δ̂(i(a), a, A) = { (j(c), α) | (j, α) ∈ δ(i, a, A), c ∈ Σ
(j)
ε }

∪ { (j(+), ε) | (j, ε) ∈ δ(i, a, A) },
(2) δ̂(i(a), a,⊥) = { (j(c),⊥α) | (j,⊥α) ∈ δ(i, a,⊥), c ∈ Σ

(j)
ε }

∪ { (j(+),⊥) | (j,⊥) ∈ δ(j, a,⊥) },

and for all other tripels, δ̂ yields the empty set.
Then M̂ simply simulates the computations of M. Each time a successor auto-

maton Mj is chosen in a computation of M, one has to guess whether another
cycle will be executed, and if so, which rewrite instruction will be applied, or
whether the next component automaton will accept in a tail computation. Then
in the simulating computation of M̂, one must simply choose the corresponding
component M (a)

j or M (+)
j . Observe that a computation of M can succeed only if

the pushdown contents just consists of the bottom marker ⊥ at the moment when
the active component Mj executes an accepting tail computation. Accordingly M̂
only needs to be able to choose an accepting component M (+)

j when the pushdown
content is just ⊥ (see (2)) or when it could just now have been reduced to ⊥ (see
(1)). It follows easily that L(M̂) = L(M).

We now construct the intended system in strong normal form by modifying
the system M̂. Observe that all component automata M (a)

i of M̂ already satisfy
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the conditions stated in part (2) of Definition 3.6. Hence, it remains to modify
the accepting component automata M

(+)
i (i ∈ I). First we introduce a special

component M ′
+ that just accepts the empty word, that is, δ′+(c) = MVR, δ′+($) =

Accept, and δ′+(a) = ∅ for all letters a ∈ Σ. Now we need to distinguish two cases.

Case 1: δ(+)
i ($) = ∅. In this situation M (+)

i accepts all words from the set Σ(i)
M

∗
·

Σ
(i)
A · Σ∗. We now replace M (+)

i by the two components M ′
i
(+) and M ′′

i
(+) that

are defined by the following transition functions:

δ′i
(+)(c) = MVR, δ′′i

(+)(c) = MVR,

δ′i
(+)(a) = MVR for all a ∈ Σ

(i)
M , δ′′i

(+)(a) = ε for all a ∈ Σ,

δ′i
(+)(a) = ∅ for all a ∈ Σ

(i)
ε ∪Σ(i)

∅ , δ′′i
(+)($) = ∅,

δ′i
(+)(a) = ε for all a ∈ Σ

(i)
A ,

δ′i
(+)($) = ∅.

Further, the successor relation δ̂ is modified as follows:

(1) On the right-hand side of δ̂, each occurrence of the component M (+)
i is replaced

by the component M ′
i
(+).

(2) The following transitions are added:

δ̂(i′(+)
, a,⊥) = {(i′′(+)

,⊥), (+′,⊥)} for all a ∈ Σ
(i)
A ,

δ̂(i′′(+)
, a,⊥) = {(i′′(+)

,⊥), (+′,⊥)} for all a ∈ Σ,

where +′ refers to the component automaton M ′
+ introduced above.

This modification of δ̂ ensures that in combination with M ′
+, the component au-

tomata M ′
i
(+) and M ′′

i
(+) accept the words from the set Σ(i)

M

∗
·Σ(i)

A ·Σ∗.

Case 2: δ(+)
i ($) = Accept. In this situation M

(+)
i accepts all words from the set

Σ
(i)
M

∗
·Σ(i)

A ·Σ∗ ∪Σ(i)
M

∗
. We now replace M (+)

i by the two components M ′
i
(+) and

M ′′
i

(+) defined above and an additional component M̂ (+)
i that is defined as follows:

δ̂
(+)
i (c) = MVR, δ̂

(+)
i (a) = ε for all a ∈ Σ

(i)
M ,

δ̂
(+)
i ($) = ∅, δ̂

(+)
i (a) = ∅ for all a ∈ Σ �Σ

(i)
M .

In this case the successor relation δ̂ is modified as follows:

(1) On the right-hand side of δ̂, each occurrence of the component M (+)
i is replaced

by the components M ′
i
(+) and M̂ (+)

i .
(2) The following transitions are added:

δ̂(i′(+)
, a,⊥) = {(i′′(+)

,⊥), (+′,⊥)} for all a ∈ Σ
(i)
A ,

δ̂(i′′(+)
, a,⊥) = {(i′′(+)

,⊥), (+′,⊥)} for all a ∈ Σ,

δ′(̂i(+), a,⊥) = {(̂i(+),⊥), (+′,⊥)} for all a ∈ Σ
(i)
M .
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This modification of δ̂ ensures that in combination with M ′
+, the automata M ′

i
(+),

M ′′
i

(+) and M̂ (+)
i accept the words from the set Σ(i)

M

∗
·Σ(i)

A ·Σ∗ ∪Σ(i)
M

∗
.

In the revised system M̂, the component M ′
+ is the only one that executes

accept instructions, and it satisfies the conditions in part (1) of Definition 3.6. In
order to obtain the intended system M′ in strong normal form it remains to split
each of the component automaton M ′

i
(+), M ′′

i
(+) and M̂

(+)
i that contains more

than one rewrite instruction into several automata, one for each letter that can be
deleted. Then the resulting PD-CD-R(1)-system M′ is in strong normal form, and
it accepts the same language as the original system M.

From the description above we see that the PD-CD-R(1)-system M′ is actu-
ally a OC-CD-R(1)-system, if the given system M is. This completes the proof of
Lemma 3.7. �

We have seen that the language class L(PD-CD-R(1)) contains all context-free
languages and some languages that are not even context-free. Our next result
implies that all languages from this class are semi-linear, that is, if L ⊆ Σ∗ belongs
to this language class, and if |Σ| = n, then the Parikh image ψ(L) of L is a semi-
linear subset of Nn.

Theorem 3.8. Each language L ∈ L(PD-CD-R(1)) contains a context-free sub-
language E such that ψ(L) = ψ(E) holds. In fact, a pushdown automaton for E
can be constructed effectively from a PD-CD-R(1)-system for L.

Proof. Let M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) be a PD-CD-R(1)-system, and let
L = L(M). By Lemma 3.7 we can assume that M is in strong normal form, that
is, there exists a unique index + ∈ I such that M+ accepts the empty word, and
for each other index i ∈ Ir = I�{+}, Mi does not execute any accept instructions
and |Σ(i)

ε | = 1. To simplify the notation in the following we denote the letter
a ∈ Σ

(i)
ε simply by a(i).

From M we construct a pushdown automaton P . Essentially P is obtained
from M by ignoring all move-right operations on letters, that is, each com-
ponent automaton Mi (i ∈ I) is simply modelled by a state of P . Formally,
P = (Q,Σ, Γ, q0,⊥, δP , F ) is defined as follows:

• Q = I ∪ {q0}, where q0 is a new state, F = {+}, and
• the transition relation δP is defined by

(1) δP (q0, ε,⊥) = { (i,⊥) | i ∈ I0 },
(2) δP (i, a,⊥) = { (j,⊥η) | (j,⊥η) ∈ δ(i, a,⊥) },
(3) δP (i, a, A) = { (j, α) | (j, α) ∈ δ(i, a, A) },

where i ∈ Ir, a ∈ Σ, and A ∈ Γ , and δP is undefined for all other cases.

Then E = L(P ) is a context-free language. It remains to show that it is a sub-
language of L that is letter-equivalent to L. Observe that ε ∈ L holds if and only
if + ∈ I0 if and only if (+,⊥) ∈ δP (q0, ε,⊥) if and only if ε ∈ E. Thus, in the
following we only need to consider nonempty words.
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Claim 1. For all i0 ∈ I, all w ∈ Σ+, and all α ∈ Γ ∗, if (i0, cw$,⊥α) ⇒M
(i1, cw1$,⊥α1) ⇒M · · · ⇒M (is, cws$,⊥αs) ⇒M (+, c$,⊥) ⇒M (+,Accept,⊥)
is an accepting computation of M, then there exists a word z ∈ Σ+ such that
(i0, z,⊥α) �∗

P (+, ε,⊥) holds, and ψ(z) = ψ(w).

Proof. We proceed by induction on s. If s = 0, then i0 ∈ Ir, w = a(i0), |α| ≤ 1,
and (+,⊥) ∈ δ(i0, a(i0),⊥), if α = ε, or (+, ε) ∈ δ(i0, a(i0), A), if α = A ∈ Γ . If we
take z = a(i0), then (i0, z,⊥α) = (i0, a(i0),⊥α) �P (+, ε,⊥) by (2) or (3).

Now assume that s ≥ 1. By the induction hypothesis there exists a word
z1 ∈ Σ+ such that (i1, z1,⊥α1) �∗

P (+, ε,⊥) and z1 is letter-equivalent to w1.
As (i0, cw$,⊥α) ⇒M (i1, cw1$,⊥α1), w has a factorization w = uav such that
u ∈ Σ

(i0)
M

∗
, a = a(i0), and w1 = uv. Further, α = ε and (i1,⊥α1) ∈ δ(i0, a(i0),⊥),

or α = α′A for some A ∈ Γ , and α1 = α′γ such that (i1, γ) ∈ δ(i1, a(i0), A).
We define z = a(i0)z1. Then z is letter-equivalent to a(i0)w1 and therewith to w,

and (i0, z,⊥α) = (i0, a(i0)z1,⊥α) �P (i1, z1,⊥α1) �∗
P (+, ε,⊥). This completes the

proof of Claim 1. �

If w ∈ L(M), then there exists an initial index i0 ∈ I0 such that

(i0, cw$,⊥) ⇒∗
M (+, c$,⊥) ⇒M (+,Accept,⊥)

holds. If w 	= ε, then it follows from Claim 1 that there exists a word z that
is letter-equivalent to w such that (i0, z,⊥) �∗

P (+, ε,⊥). Hence, we obtain that
z ∈ L(P ), as (q0, z,⊥) �P (i0, z,⊥) by (1). Thus, for each w ∈ L, there exists a
word z ∈ E that is letter-equivalent to w.

Claim 2. For all i ∈ I, all z ∈ Σ∗, and all α ∈ Γ ∗, if (i, z,⊥α) �∗
P (+, ε,⊥), then

also (i, cz$,⊥α) ⇒∗
M (+, c$,⊥) ⇒M (+,Accept,⊥) holds.

Proof. We proceed by induction on the length n of the computation (i, z,⊥α) �∗
P

(+, ε,⊥). If n = 0, then i = +, z = ε and α = ε, and hence, (i, cz$,⊥α) =
(+, c$,⊥) ⇒M (+,Accept,⊥) holds.

If n ≥ 1, then i ∈ Ir and z = az′ for some a ∈ Σ and z′ ∈ Σ∗, and the above
computation of P has the following form:

(i, z,⊥α) = (i, az′,⊥α) �P (i1, z′,⊥α1) �∗
P (+, ε,⊥)

for some i1 ∈ I and α1 ∈ Γ ∗. From the definition of P we see that a = a(i) and
either α = ε and (i1,⊥α1) ∈ δ(i, a,⊥), or α = γA for some γ ∈ Γ ∗ and A ∈ Γ ,
α1 = γη for some η ∈ Γ ∗, and (i1, η) ∈ δ(i, a, A). Thus, M can perform the
computational step (i, cz$,⊥α) = (i, caz′$,⊥α) ⇒M (i1, cz′$,⊥α1). As we know
from the induction hypothesis that M has a computation of the form

(i1, cz′$,⊥α1) ⇒∗
M (+, c$,⊥) ⇒M (+,Accept,⊥),

this completes the proof of Claim 2. �
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Let z ∈ Σ+. If z ∈ E, then P has an accepting computation of the form
(q0, z,⊥) �P (i, z⊥) �∗

P (+, ε,⊥) for some index i ∈ I0. Hence, we see from Claim 2
that M can execute the accepting computation (i, cz$,⊥α) ⇒∗

M (+, c$,⊥) ⇒M
(+,Accept,⊥), which shows that z ∈ L holds. Hence, it follows that E is indeed a
subset of L. This completes the proof of Theorem 3.8. �

In the proof of Theorem 3.8 the pushdown automaton P constructed from the
given PD-CD-R(1)-system M can easily be turned into a one-counter automaton
if M is an OC-CD-R(1)-system. Thus, we also have the following result.

Corollary 3.9. Each language L ∈ L(OC-CD-R(1)) contains a sublanguage E
that is a one-counter language such that ψ(L) = ψ(E) holds. In fact, a one-counter
automaton for E can be constructed effectively from an OC-CD-R(1)-system for L.

As each context-free language has a semi-linear Parikh image, Theorem 3.8 has
the following consequence.

Corollary 3.10. The language class L(PD-CD-R(1)) only contains semi-linear
languages, that is, if a language L over Σ = {a1, . . . , an} is accepted by a PD-
CD-R(1)-system, then its Parikh image ψ(L) is a semi-linear subset of Nn.

The semi-linear language L = { anbncn | n ≥ 0 } does not contain a context-free
sublanguage that is letter-equivalent to the language itself. Hence, Theorem 3.8
yields the following negative result.

Proposition 3.11. The language L = { anbncn | n ≥ 0 } is not accepted by any
PD-CD-R(1)-system.

The language Lpal = {wcwR | w ∈ {a, b}∗ } is a context-free language that is
not a one-counter language (see e.g. [2]). As a context-free language it is accepted
by some PD-CD-R(1)-system by Proposition 3.4, but based on Corollary 3.9 we
can show that it is not accepted by any OC-CD-R(1)-system.

Proposition 3.12. The language Lpal = {wcwR | w ∈ {a, b}∗ } is not accepted
by any OC-CD-R(1)-system.

Proof. By Corollary 3.9 we only need to show that the language Lpal does not
contain a sublanguage that is letter-equivalent to Lpal itself and that is a one-
counter language.

Let Σ = {a, b, c}, and let E be a sublanguage of Lpal that is letter-equivalent
to Lpal. Hence, for all n ≥ 1,

ψ(E ∩Σ2n+1) = { (2i, 2(n− i), 1) | 0 ≤ i ≤ n },

and accordingly,

ψ(E ∩Σ≤2n+1) = { (2i, 2(m− i), 1) | 0 ≤ m ≤ n, 0 ≤ i ≤ m }.
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Assume that there exists a one-counter automaton M = (Q,Σ, {C}, q0, ⊥, δ, F )
such that L(M) = E holds. Thus, for each m ∈ {1, . . . , n} and each i ∈
{0, 1, . . . ,m}, there exists a word w(i,m) ∈ E such that

ψ(w(i,m)) = (2i, 2(m− i), 1).

As E is a sublanguage of Lpal, w(i,m) = u(i,m)cu(i,m)R for some u(i,m) ∈
{a, b}m satisfying |u(i,m)|a = i and |u(i,m)|b = m− i. As E = L(M), M has an
accepting computation on input w(i,m), which is of the following form:

(q0, w(i,m),⊥) = (q0, u(i,m)cu(i,m)R,⊥) �∗
M (q1, cu(i,m)R,⊥Cj)

�M (q2, u(i,m)R,⊥Cj+μ) �∗
M (qf , ε,⊥)

for some states q1, q2 ∈ Q, a final state qf ∈ F , and integers j ≥ 0 and μ ∈
{−1, 0, 1}. While processing the prefix u(i,m) of w(i,m), M can increase the value
on its counter at most m = |u(i,m)| times, which means that j ≤ m holds. Hence,
while there are at least

n∑
m=0

(m+ 1) =
n+1∑
m=1

m =
1
2
(n+ 1)(n+ 2)

many different words w = ucuR in E such that |u| ≤ n, there are only n + 1
different values that the counter of M may have after processing the prefix u of
any of these words. Choose n > 2 · |Q|. Then 1

2 (n+ 1)(n+ 2) > (n+ 1)|Q|, which
means that there are two different input words ucuR, vcvR ∈ E, a state q1 ∈ Q,
and an integer j ≤ n such that |u| ≤ n, |v| ≤ n, ψ(u) 	= ψ(v), and

(q0, ucuR,⊥) �∗
M (q1, cuR,⊥Cj) �∗

M (qf , ε,⊥)

and
(q0, vcvR,⊥) �∗

M (q1, cvR,⊥Cj) �∗
M (q′f , ε,⊥)

are both accepting computations of M . But then also

(q0, ucvR,⊥) �∗
M (q1, cvR,⊥Cj) �∗

M (q′f , ε,⊥)

is an accepting computation ofM . However, ucvR 	∈ Lpal, implying that ucvR 	∈ E,
that is, L(M) 	= E. Thus, no sublanguage of Lpal can be both, letter-equivalent
to Lpal and a one-counter language. �

4. Context-free trace languages

Below we only restate those definitions of and basic results on traces, trace
monoids and trace languages that we will need for presenting our results. For
a detailed presentation of trace theory see the monograph by Diekert and
Rozenberg [9].
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Let Σ be a finite alphabet, and let D be a binary relation on Σ that is reflexive
and symmetric, that is, (a, a) ∈ D for all a ∈ Σ, and (a, b) ∈ D implies that
(b, a) ∈ D, too. Then D is called a dependency relation on Σ, and the relation
ID = (Σ × Σ) � D is called the corresponding independence relation. Obviously,
the relation ID is irreflexive and symmetric. The dependency relation D (or rather
its associated independence relation ID) induces a binary relation ≡D on Σ∗ that
is defined as the smallest congruence relation containing the set of pairs { (ab, ba) |
(a, b) ∈ ID }. For w ∈ Σ∗, the congruence class of w mod ≡D is denoted by [w]D,
that is, [w]D = { z ∈ Σ∗ | w ≡D z }. These equivalence classes are called traces,
and the factor monoid M(D) = Σ∗/≡D is a trace monoid. In fact, M(D) is the
free partially commutative monoid presented by (Σ,D). By ϕD we denote the
morphism ϕD : Σ∗ →M(D) that is defined by w �→ [w]D for all words w ∈ Σ∗.

To simplify the notation in what follows, we introduce the following notions.
For w ∈ Σ∗, we use Alph(w) to denote the set of all letters that occur in w, that
is, Alph(w) = { a ∈ Σ | |w|a > 0 }. Now we extend the independence relation from
letters to words by defining, for all words u, v ∈ Σ∗,

(u, v) ∈ ID if and only if Alph(u) × Alph(v) ⊆ ID.

As Alph(ε) = ∅, we see that (ε, w) ∈ ID for every word w ∈ Σ∗. The following
technical result (see e.g. [9] Claim A in the proof of Proposition 6.2.2) will be
useful in what follows.

Proposition 4.1. For all words x, y, u ∈ Σ∗ and all letters a ∈ Σ, if xay ≡D au
and |x|a = 0, then (a, x) ∈ ID, xay ≡D axy, and xy ≡D u.

A subset S of a trace monoid M(D) is called recognizable if there exist a finite
monoid N , a morphism α : M(D) → N , and a subset P of N such that S =
α−1(P ) [3]. Accordingly, this property can be characterized as follows (see [9]
Prop. 6.1.10).

Proposition 4.2. Let M(D) be the trace monoid presented by (Σ,D), and let
ϕD : Σ∗ → M(D) be the corresponding morphism. Then a set S ⊆ M(D) is
recognizable if and only if the language ϕ−1

D (S) is a regular word language over Σ.

By REC(M(D)) we denote the set of recognizable subsets of M(D).
A subset S of a trace monoid M(D) is called rational if it is empty, or if it can

be obtained from singleton sets by a finite number of unions, products, and star
operations [3]. This property can be characterized more conveniently as follows.

Proposition 4.3. Let M(D) be the trace monoid presented by (Σ,D), and let
ϕD : Σ∗ → M(D) be the corresponding morphism. Then a set S ⊆ M(D) is
rational if and only if there exists a regular word language R over Σ such that
S = ϕD(R).

By RAT(M(D)) we denote the set of rational subsets of M(D). Concerning the
relationship between the recognizable subsets of M(D) and the rational subsets of
M(D) the following results are known (see e.g. [9]).
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Proposition 4.4. For each trace monoid M(D), REC(M(D)) ⊆ RAT(M(D)),
and these two sets are equal if and only if ID = ∅.

Thus, each recognizable subset of a trace monoid M(D) is necessarily rational,
but the converse only holds if ID is empty, that is, if D = Σ × Σ, which means
that the congruence ≡D is the identity. Thus, the free monoids are the only trace
monoids for which the recognizable subsets coincide with the rational subsets.

For a subset S of the trace monoid M(D) presented by (Σ,D), the set of words
L = ϕ−1

D (S) ⊆ Σ∗ is called the linearization of S. A language L ⊆ Σ∗ is the lin-
earization of a rational trace language, if there exists a dependency relationD on Σ
such that L = ϕ−1

D (S) for a rational subset S of the trace monoid M(D) presented
by (Σ,D). From Proposition 4.3 it follows that L is the linearization of a rational
trace language if and only if there exist a trace monoid M(D) and a regular lan-
guage R ⊆ Σ∗ such that L = ϕ−1

D (ϕD(R)) =
⋃

w∈R[w]D. By LRAT (D) we denote
the set of linearizations of rational trace languages {ϕ−1

D (S) | S ∈ RAT(M(D)) },
and LRAT is the class of all linearizations of rational trace languages. In [21] the
following result was established.

Theorem 4.5. LRAT � L=1(stl-det-local-CD-R(1)), that is, if M(D) is the trace
monoid presented by (Σ,D), where D is a dependency relation on the finite al-
phabet Σ, then the language ϕ−1

D (S) is accepted by a stl-det-local-CD-R(1)-system
working in mode = 1 for each rational set S of traces of M(D).

Here we are interested in more general trace languages. A subset S of the trace
monoid M(D) presented by (Σ,D) is called a one-counter trace language, if there
exists a one-counter language R ⊆ Σ∗ such that S = ϕD(R), and S is called a
context-free trace language, if there exists a context-free languageR ⊆ Σ∗ such that
S = ϕD(R) [1, 4]. Then the language L = ϕ−1

D (S) = ϕ−1
D (ϕD(R)) is the lineariza-

tion of the one-counter or context-free trace language S. By LOC(D) we denote
the set of linearizations of one-counter trace languages obtained from (Σ,D), and
LOC is the class of linearizations of all one-counter trace languages. Further, by
LCF(D) we denote the set of linearizations of context-free trace languages ob-
tained from (Σ,D), and LCF is the class of linearizations of all context-free trace
languages.

Theorem 4.6. Let M(D) be the trace monoid presented by (Σ,D), where D is a
dependency relation on the finite alphabet Σ. Then

LCF(D) ⊆ L(PD-CD-R(1)),

that is, the language ϕ−1
D (ϕD(R)) is accepted by a PD-CD-R(1)-system for each

context-free language R ⊆ Σ∗.

Proof. Let D be a dependency relation on Σ, let R ⊆ Σ∗ be a context-free lan-
guage, and let L = ϕ−1

D (ϕD(R)) be the linearization of the context-free trace
language ϕD(R). Then there exists a context-free grammar G = (V,Σ, S, P ) in
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quadratic Greibach normal form for R′ = R � {ε}. We can assume without loss
of generality that the start symbol S does not occur on the right-hand side of any
production.

From G we construct a PD-CD-R(1)-system M for the language L. This con-
struction is a variant of the construction used in the proof of Proposition 3.4.
For each nonterminal A ∈ V and each terminal a ∈ Σ such that P contains a
production of the form (A → aγ), M has a component automaton M(A,a). As in
the proof of Proposition 3.4, the component automata with index A are used to
simulate A-productions, but here the additional second index a ∈ Σ is used to dif-
ferentiate between A-productions based on the terminal symbol being generated:
the component automaton M(A,a) only simulates those A-productions for which
the right-hand side starts with the terminal a. In addition, M(A,a) reads across all
letters b ∈ Σ that are independent of a with respect to the dependency relation D.
Thus, M is essentially a pushdown automaton for the language R that is equipped
with the additional ability to skip across independent letters when looking for a
particular input symbol a.

The PD-CD-R(1)-systemM = (I,Σ, (Mi, σi)i∈I , V,⊥, I0, δ) is defined as follows:

• I = { (A, a) | A ∈ V, a ∈ Σ, ∃ γ ∈ V ≤2 : (A→ aγ) ∈ P } ∪ {+},
• I0 = { (S, a) | ∃ γ ∈ V ≤2 : (S → aγ) ∈ P } ∪ {+ | ε ∈ R },
• the stateless deterministic R(1)-automata M(A,a) ((A, a) ∈ I) and M+ are

defined as follows:

(1) δ(A,a)(c) = MVR,
(2) δ(A,a)(a) = ε,
(3) δ(A,a)(b) = MVR for all b ∈ Σ satisfying (b, a) ∈ ID,
(4) δ(A,a)(b) = ∅, otherwise,
(5) δ(A,a)($) = ∅,
(6) δ+(c) = MVR,
(7) δ+(b) = ∅ for all b ∈ Σ,
(8) δ+($) = Accept,

• the sets of successors are defined as σ(A,a) = σ+ = I for all (A, a) ∈ I,
• and the successor relation δ is defined as follows, where A ∈ V and a ∈ Σ:

(1) δ((S, a), a,⊥) = { (+,⊥) | (S → a) ∈ P }
∪ { ((B, b),⊥B) | (S → aB) ∈ P, (B, b) ∈ I }
∪ { ((B, b),⊥CB) | (S → aBC) ∈ P, (B, b) ∈ I },

(2) δ((A, a), a, A) ={ ((B, b), ε) | B ∈ V � {S}, (B, b) ∈ I, (A→ a) ∈ P }
∪ { (+, ε) | (A→ a) ∈ P }
∪ { ((B, b), B) | (A→ aB) ∈ P, (B, b) ∈ I }
∪ { ((B, b), CB) | (A→ aBC) ∈ P, (B, b) ∈ I },

and δ yields the empty set for all other values.

It remains to show that L(M) = ϕ−1
D (ϕD(R)) =

⋃
u∈R[u]D.

Claim 1.
⋃

u∈R[u]D ⊆ L(M).
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Proof. Assume that w ∈
⋃

u∈R[u]D. Then there exists a word u ∈ R such that
w ≡D u. If w = ε, then u = ε, and therewith ε ∈ R. From the definition of M we
see that in this case + ∈ I0, which implies that w = ε ∈ L(M).

So assume that w 	= ε implying that u 	= ε, either. As w ≡D u, there exists
a sequence of words u = w0, w1, . . . , wn = w such that, for each i = 1, . . . , n,
wi is obtained from wi−1 by replacing a factor ab by ba for some pair of letters
(a, b) ∈ ID. We now prove that wi ∈ L(M) for all i by induction on i.

For i = 0 we have w0 = u ∈ R. Then w0 is generated by the grammar G,
and as in the proof of Proposition 3.4, it can be shown that a leftmost derivation
S ⇒+

G w0 can be simulated by an accepting computation of M on input w0. Hence,
it follows that w0 is accepted by M.

Now assume that wi ∈ L(M) for some i ≥ 0, and that wi = xaby and wi+1 =
xbay for a pair of letters (a, b) ∈ ID. By our hypothesis M has an accepting
computation for wi = xaby, which is of one of the following two forms:

((S, a1), cxaby$,⊥) ⇒m
M ((A1, a), cx′aby′$,⊥α1)

⇒M ((A2, a2), cx′by′$,⊥α2)
⇒∗

M (+, c$,⊥)
⇒M (+,Accept,⊥)

or
((S, b1), cxaby$,⊥) ⇒m

M ((A1, b), cx′aby′$,⊥β1)
⇒M ((B2, b2), cx′ay′$,⊥β2)
⇒∗

M (+, c$,⊥)
⇒M (+,Accept,⊥),

where in the first m cycles some letters from x and y are deleted, in this way reduc-
ing these factors to x′ and y′, respectively. However, as (a, b) ∈ I, the component
automatonM(A1,a) can read across the letter b when looking for the leftmost occur-
rence of the letter a. Thus, M also has an accepting computation for wi+1 = xbay,
which is of one of the following two forms:

((S, a1), cxbay$,⊥) ⇒m
M ((A1, a), cx′bay′$,⊥α1)

⇒M ((A2, a2), cx′by′$,⊥α2)
⇒∗

M (+, c$,⊥)
⇒M (+,Accept,⊥)

or
((S, b1), cxbay$,⊥) ⇒m

M ((A1, b), cx′bay′$,⊥β1)
⇒M ((B2, b2), cx′ay′$,⊥β2)
⇒∗

M (+, c$,⊥)
⇒M (+,Accept,⊥),

implying that wi+1 ∈ L(M). This completes the proof of Claim 1. �
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Claim 2. L(M) ⊆
⋃

u∈R[u]D.

Proof. From the definition of M we see that ε ∈ L(M) holds if and only if ε ∈ R.
So let ε 	= w ∈ L(M), and let

((S, an), cw$,⊥) ⇒M ((An−1, an−1), czn−1$,⊥αn−1)
⇒M ((An−2, an−2), czn−2$,⊥αn−2)
⇒∗

M ((A2, a2), cz2$,⊥α2)
⇒M ((A1, a1), cz1$,⊥α1)
⇒M (+, c$,⊥)
⇒M (+,Accept,⊥)

be an accepting computation of M on input w = zn. If n = 1, then A1 = S,
and we see from the definition of δ that (+,⊥) ∈ δ((S, a1), a1,⊥) implies that
(S → a1) ∈ P , that is, w = z1 = a1 ∈ R.

For n > 1, we claim that, for each i = 1, . . . , n− 1, there exists a word ui ∈ Σ∗

such that ui ≡D zi and αR
i ⇒∗

G ui. We prove this claim by induction on i.
For i = 1 we have zi = a1. As n > 1, A1 	= S. From the reduction step

((A1, a1), cz1$,⊥α1) ⇒M (+, c$,⊥),

we see that α1 = A1 and (+, ε) ∈ δ((A1, a1), a1, A1). Hence, (A1 → a1) ∈ P , and
hence, we have αR

1 = A1 ⇒G a1 = u1 = z1.
Now assume that, for some i ∈ {1, . . . , n − 2}, we have a word ui ∈ Σ+ such

that ui ≡D zi and αR
i ⇒∗

G ui hold. The above computation of M contains the
step

((Ai+1, ai+1), czi+1$,⊥αi+1) ⇒M ((Ai, ai), czi$,⊥αi).

Thus, zi+1 = uai+1v and zi = uv for some u ∈ Σ
(Ai+1,ai+1)
M

∗
and v ∈ Σ∗,

and αi+1 = βAi+1 and αi = βη, where ((Ai, ai), η) ∈ δ((Ai+1, ai+1), ai+1, Ai+1).
Hence, (Ai+1 → ai+1η

R) ∈ P , which implies that

αR
i+1 = Ai+1β

R ⇒G ai+1η
RβR = ai+1α

R
i ⇒∗

G ai+1ui.

As ui is letter-equivalent to zi = uv, we see that ui+1 = ai+1ui is letter-equivalent
to zi+1 = uai+1v. Further, as u ∈ Σ

(Ai+1,ai+1)
M

∗
, (b, ai+1) ∈ ID for all letters b

occurring in u, which means that

ui+1 = ai+1ui ≡D ai+1zi = ai+1uv ≡D uai+1v = zi+1.

This completes the inductive step.
Finally, from ((S, an), cw$,⊥) ⇒M ((An−1, an−1), czn−1$,⊥αn−1), we see that

w = u′anv
′ and zn−1 = u′v′ for some word u′ satisfying (u′, an) ∈ ID, and

((An−1, an−1),⊥αn−1) ∈ δ((S, an), an,⊥). Hence, (S → anα
R
n−1) ∈ P , and we

obtain
S ⇒G anα

R
n−1 ⇒∗

G anun−1 = un,

that is, un ∈ R. Further, un = anun−1 ≡D anzn−1 = anu
′v′ ≡D u′anv

′ = w. This
completes the proof of Claim 2. �
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Claims 1 and 2 together show that L(M) =
⋃

u∈R[u]D, which completes the
proof of Theorem 4.6. �

An analogous result also holds for one-counter languages.

Theorem 4.7. Let M(D) be the trace monoid presented by (Σ,D), where D is a
dependency relation on the finite alphabet Σ. Then

LOC(D) ⊆ L(OC-CD-R(1)),

that is, the language ϕ−1
D (ϕD(R)) is accepted by an OC-CD-R(1)-system for each

one-counter language R ⊆ Σ∗.

Proof. Let R ⊆ Σ∗ be a one-counter language, and let L = ϕ−1
D (ϕD(R)). Then

there exists a one-counter automaton A = (Q,Σ, {C}, q0,⊥, δA, F ) for R, that is,
for all w ∈ Σ∗, w ∈ R if and only if (q0, w,⊥) �∗

A (q, ε,⊥) holds for some final
state q ∈ F .

From A we construct an OC-CD-R(1)-system M for L. This construction is a
variant of the construction used in the proof of Proposition 3.5. For each state
q ∈ Q and each terminal a ∈ Σ, M has two component automata: M(q,=,a) and
M(q,>,a). As in the proof of Proposition 3.5, the component automata with index
(q,=) are used to simulate the transitions that A executes in state q with empty
counter, and the component automata with index (q,>) are used to simulate the
transitions that A executes in state q with non-empty counter. Here, however,
the additional third index a ∈ Σ is used to differentiate between the transitions
of A based on the symbol read: the component automata M(q,=,a) and M(q,>,a)

only simulate those transitions of A that read the symbol a. In addition, these
component automata read across all letters b ∈ Σ that are independent of a
with respect to the dependency relation D. Thus, M is essentially a one-counter
automaton for the language R that is equipped with the additional ability to skip
across independent letters when looking for a particular input symbol a.

The system M = (I,Σ, (Mi, σi)i∈I , {C},⊥, I0, δ) is defined as follows:

• I = (Q× {=, >} ×Σ) ∪ {+}, I0 = { (q0,=, a) | a ∈ Σ } ∪ {+ | ε ∈ R },
• σ(q,>,a) = σ(q,=,a) = σ+ = I for all q ∈ Q and all a ∈ Σ,
• the stateless deterministic R(1)-automata M(q,>,a) and M(q,=,a) (q ∈ Q, a ∈ Σ)

are defined as follows:

(1) δ(q,=,a)(c) = MVR,
(2) δ(q,=,a)(a) = ε, if δA(q, a,⊥) is defined,
(3) δ(q,=,a)(b) = MVR for all b ∈ Σ satisfying (b, a) ∈ ID,
(4) δ(q,=,a)(b) = ∅, otherwise,
(5) δ(q,=,a)($) = ∅,
(6) δ(q,>,a)(c) = MVR,
(7) δ(q,>,a)(a) = ε, if δA(q, a, C) is defined,
(8) δ(q,>,a)(b) = MVR for all b ∈ Σ satisfying (b, a) ∈ ID,
(9) δ(q,>,a)(b) = ∅, otherwise,

(10) δ(q,>,a)($) = ∅,
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L(PD-CD-R(1))

LCF

������������������� L(OC-CD-R(1))

��

CFL

��������������������
LOC

�� ������������������� L=1(stl-det-local-CD-R(1))

��

OCL

�� �������������������
LRAT

�� ������������������

REG

�� ������������������

Figure 1. Hierarchy of language classes accepted by various types
of CD-R(1)-systems. Each arrow represents a proper inclusion,
and classes that are not connected by a sequence of arrows are
incomparable under inclusion.

• M+ is defined by

δ+(c) = MVR, δ+(b) = ∅ for all b ∈ Σ, and δ+($) = Accept,

• and δ is defined as follows, where q ∈ Q, a, b ∈ Σ, and i ∈ {1, 2}:

(1) δ((q,=, a), a,⊥) ={ ((q′,=, b),⊥) | (q′,⊥) ∈ δA(q, a,⊥), b ∈ Σ }
∪ { (+,⊥) | ∃q′ ∈ F : (q′,⊥) ∈ δA(q, a,⊥) }
∪ { ((q′, >, b),⊥C) | (q′,⊥C) ∈ δA(q, a,⊥), b ∈ Σ },

(2) δ((q,>, a), a, C) ={ ((q′, >, b), Ci) | (q′, Ci) ∈ δA(q, a, C), b ∈ Σ }
∪ { ((q′, >, b), ε) | (q′, ε) ∈ δA(q, a, C), b ∈ Σ }
∪ { ((q′,=, b), ε) | (q′, ε) ∈ δA(q, a, C), b ∈ Σ }
∪ { (+, ε) | ∃q′ ∈ F : (q′, ε) ∈ δA(q, a, C) },

while δ yields the empty set for all other values. As in the proof of Theorem 4.6 it
can now be shown that L(M) = ϕ−1

D (ϕD(R)) =
⋃

u∈R[u]D holds. �

Thus, we have the inclusions of language classes depicted in the diagram in
Figure 1. As L=1(stl-det-local-CD-R(1)) contains the non-context-free language
{w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c ≥ 0 }, and as this class does not contain
the one-counter language { anbn | n ≥ 0 }, we see that L=1(stl-det-local-CD-R(1))
is incomparable under inclusion to the language classes OCL and CFL. From Propo-
sition 3.12 we see that the class L(OC-CD-R(1)) is incomparable under inclusion
to the language class CFL.

Let Σ = {a, b, c}, and let L′ = {wam | |w|a = |w|b = |w|c ≥ 1,m ≥ 1 }. As
shown in Example 4 of [22] the language L′ is accepted by a stl-det-local-CD-R(1)-
system. However, L′ is not the linearization of a context-free trace language.
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Proposition 4.8. For each dependency relation D on Σ and each context-free
language R ⊆ Σ∗, L′ 	=

⋃
w∈R[w]D.

Proof. Let D be a dependency relation on Σ, and let R ⊆ Σ∗ be a language such
that L′ =

⋃
w∈R[w]D holds. We claim that from these assumptions it follows that

R is not context-free.

Claim 1. (a, b), (b, a) ∈ D.

Proof. Assume that (a, b) 	∈ D. As D is symmetric, this means that (b, a) 	∈ D,
either. Hence, (a, b), (b, a) ∈ ID implying that ab ≡D ba holds. For all n,m ≥ 1,
the word cn(ab)nam ∈ L′, and hence, there exists a word u(n,m) ∈ R such that

u(n,m) ≡D cn(ab)nam ≡D cnan+mbn.

This, however, contradicts the assumption L′ =
⋃

w∈R[w]D, as cnan+mbn 	∈ L′.
Thus, it follows that (a, b), (b, a) ∈ D. �

Claim 2. (a, c), (c, a) ∈ D.

Proof. Assume that (a, c) 	∈ D. As D is symmetric, this means that (c, a) 	∈ D,
either. Hence, (a, c), (c, a) ∈ ID implying that ac ≡D ca holds. For all n,m ≥ 1,
the word bn(ac)nam ∈ L′, and hence, there exists a word v(n,m) ∈ R such that

v(n,m) ≡D bn(ac)nam ≡D bnan+mcn.

This, however, contradicts the assumption L′ =
⋃

w∈R[w]D, as bnan+mcn 	∈ L′.
Thus, it follows that (a, c), (c, a) ∈ D. �

Accordingly, we see that

D = {(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a)}

or
D = {(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}.

For all n,m ≥ 1, the word bnancnam ∈ L′, and hence, there exists a word w(n,m) ∈
R such that w(n,m) ≡D bnancnam. However, in each of these two cases we see
that [bnancnam]D = {bnancnam}, as (b, a), (a, c), (c, a) ∈ D, that is, w(n,m) =
bnancnam. Thus,

R ∩ (b+ · a+ · c+ · a+) = { bnancnam | n,m ≥ 1 },

which is not context-free. As the class of context-free languages is closed under
the operation of intersection with a regular language, it follows that R is not
context-free. This completes the proof of Proposition 4.8. �

Together with Proposition 3.12 this result has the following consequences.
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Corollary 4.9.
(a) LCF is incomparable under inclusion to L=1(stl-det-local-CD-R(1)).
(b) LCF is incomparable under inclusion to L(OC-CD-R(1)).
(c) LOC is incomparable under inclusion to L=1(stl-det-local-CD-R(1)).
(d) LCF � L(PD-CD-R(1)).
(e) LOC � L(OC-CD-R(1)).

Next we present a restricted class of PD-CD-R(1)-systems that accept exactly
the linearizations of context-free trace languages.

Definition 4.10. Let M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) be a PD-CD-R(1)-
system in strong normal form that satisfies the following condition:

(∗) ∀i, j ∈ I : Σ(i)
ε = Σ

(j)
ε implies that Σ(i)

M = Σ
(j)
M ,

that is, if two component automata erase the same letter, then they also read
across the same subset of Σ. With M we associate a binary relation

IM =
⋃
i∈I

(Σ(i)
M ×Σ(i)

ε ),

that is, (a, b) ∈ IM if and only if there exists a component automaton Mi such
that δi(a) = MVR and δi(b) = ε. Further, by DM we denote the relation DM =
(Σ ×Σ) � IM.

Observe that the relation IM defined above is necessarily irreflexive, but that
it will in general not be symmetric.

Theorem 4.11. Let M be a PD-CD-R(1)-system over Σ satisfying condition (∗)
above. If the associated relation IM is symmetric, then L(M) ∈ LCF(DM ), that
is, L(M) is the linearization of a context-free trace language. In fact, from M one
can construct a pushdown automaton B over Σ such that L(M) =

⋃
u∈L(B)[u]DM .

Proof. Let M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) be a PD-CD-R(1)-system in strong
normal form. Assume that M satisfies condition (∗) above, and that the associated
relation IM =

⋃
i∈I(Σ

(i)
M ×Σ(i)

ε ) is symmetric. Then the relation DM = (Σ×Σ)�

IM is reflexive and symmetric, and so it is a dependency relation on Σ with
associated independence relation IM. Without loss of generality we may assume
that all letters from Σ do actually occur in some words of L(M), since otherwise
we could simply remove these letters from Σ. From the properties of M we obtain
the following consequences:

(1) As all words w ∈ L(M) are first reduced to the empty word, which is then
accepted by the accepting component automaton M+ of M, we see that, for
each letter a ∈ Σ, there exists a component automaton Mi such that Σ(i)

ε =
{a}.
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(2) If (a, b) ∈ IM, then a ∈ Σ
(i)
M for all component automata Mi for which Σ(i)

ε =
{b} holds.

(3) If (a, b) ∈ IM, then (b, a) ∈ IM, too, and hence, b ∈ Σ
(j)
M for all component

automata Mj for which Σ(j)
ε = {a} holds.

Let L = L(M). We claim that L is the linearization of a context-free trace
language over the trace monoid defined by (Σ,DM). To verify this claim we
present a context-free language R ⊆ Σ∗ such that L =

⋃
u∈R[u]DM . The context-

free language R will be defined through a nondeterministic pushdown automaton
B = (Q,Σ, Γ, q0,⊥, δB, F ) which is obtained as follows:

• Q = I ∪ {q0}, where q0 is a new state,
• F = {+}, which corresponds to the unique accepting component M+ of M,

and
• the transition relation δB is defined as follows for all i ∈ Ir = I � {+}, a ∈ Σ,

and A ∈ Γ :

(1) δB(q0, ε,⊥) = { (i,⊥) | i ∈ I0 },
(2) δB(i, a,⊥) = { (j,⊥η) | (j,⊥η) ∈ δ(i, a,⊥) },
(3) δB(i, a, A) = { (j, α) | (j, α) ∈ δ(i, a, A) },

and δB(+, a, A) is undefined for all a ∈ Σ and all A ∈ Γ ∪ {⊥}.

Now R = L(B) is the announced context-free language over Σ. It remains to prove
that L =

⋃
u∈R[u]DM holds.

Claim 1.
⋃

u∈R[u]DM ⊆ L.

Proof. The above construction is identical to the one used in the proof of Theo-
rem 3.8. Thus, it follows that R = L(B) is a sublanguage of L = L(M) that is
letter-equivalent to L.

Now assume that w = xaby ∈ L and that z = xbay for a pair of letters (a, b) ∈
IM. Then M has an accepting computation for w = xaby, which is of one of the
following two forms:

(i0, cxaby$,⊥) ⇒k
M (i1, cx1aby1$,⊥α1) ⇒M (i2, cx1by1$,⊥α2)

⇒l
M (i3, cx2by2$,⊥α3) ⇒M (i4, cx2y2$,⊥α4)

⇒∗
M (+, c$,⊥) ⇒M (+,Accept,⊥),

or
(i0, cxaby$,⊥) ⇒k

M (j1, cx1aby1$,⊥α1) ⇒M (j2, cx1ay1$,⊥α2)
⇒l

M (j3, cx2ay2$,⊥α3) ⇒M (j4, cx2y2$,⊥α4)
⇒∗

M (+, c$,⊥) ⇒M (+,Accept,⊥),

where in the first k cycles some letters from x and y are deleted, in this way
reducing these factors to x1 and y1, respectively, Σ(i1)

ε = {a} = Σ
(j3)
ε and Σ(i3)

ε =
{b} = Σ

(j1)
ε , and in the latter l cycles some letters from x1 and y1 are deleted,

reducing these factors to x2 and y2, respectively. As (a, b) ∈ IM, we see from the



PUSHDOWN CD-SYSTEMS OF R(1)-AUTOMATA 443

above stated properties of M that b ∈ Σ
(i1)
M . Hence, in the former case we obtain

the computation

(i0, cxbay$,⊥) ⇒k
M (i1, cx1bay1$,⊥α1) ⇒M (i2, cx1by1$,⊥α2)

⇒l
M (i3, cx2by2$,⊥α3) ⇒M (i4, cx2y2$,⊥α4)

⇒∗
M (+, c$,⊥) ⇒M (+,Accept,⊥),

while in the latter case we have the computation

(i0, cxbay$,⊥) ⇒k
M (j1, cx1bay1$,⊥α1) ⇒M (j2, cx1ay1$,⊥α2)

⇒l
M (j3, cx2ay2$,⊥α3) ⇒M (j4, cx2y2$,⊥α4)

⇒∗
M (+, c$,⊥) ⇒M (+,Accept,⊥).

Hence, it follows that z ∈ L.
Finally, if w ≡DM u holds for some u ∈ L, then there exists a sequence u =

w0, w1, . . . , wn = w such that, for each i = 1, . . . , n, wi is obtained from wi−1 by
replacing a factor ab by ba for some pair of letters (a, b) ∈ IM. Hence, it follows
from the observation above that wi ∈ L for all i = 1, . . . , n, which in turn shows
that

⋃
u∈R[u]DM ⊆ L holds. �

Claim 2. L ⊆
⋃

u∈R[u]DM .

Proof. Let w ∈ L = L(M), and let

(in, cwn$,⊥) ⇒M (in−1, cwn−1$,⊥αn−1) ⇒M . . .
⇒M (i1, cw1$,⊥α1) ⇒M (+, c$,⊥)
⇒M (+,Accept,⊥)

be an accepting computation of M on input w = wn. We claim that, for each
j = 1, . . . , n, there exists a word uj ∈ Σ∗ such that uj ≡DM wj , and the pushdown
automaton B accepts when starting from the configuration (ij , uj,⊥αj).

We prove this claim by induction on j. For j = 1 we have wj = a1 ∈ Σ,
where Σ(i1)

ε = {a1}, and either α1 = ε and (+,⊥) ∈ δ(i1, a1,⊥), or α1 = A for
some A ∈ Γ and (+, ε) ∈ δ(i1, a1, A). From the definition of B we see that in
either case (i1, w1,⊥α1) = (i1, a1,⊥α1) �B (+, ε,⊥) holds. Hence, we simply take
u1 = a1 = w1, and then the above is an accepting computation of B starting from
the configuration (i1, u1,⊥α1).

Now assume that, for some j ≥ 1, uj ≡DM wj , and that B accepts when starting
from the configuration (ij, uj ,⊥αj). The above computation of M contains the
step (ij+1, cwj+1$,⊥αj+1) ⇒M (ij , cwj$,⊥αj). Thus, wj+1 = xaj+1y and wj =
xy for some words x, y ∈ Σ∗ and a letter aj+1 satisfying Σ(ij+1)

ε = {aj+1}, and
αj+1 = ε and αj = η such that (ij ,⊥η) ∈ δ(ij+1, aj+1,⊥), or αj+1 = γA for some
γ ∈ Γ ∗ and some A ∈ Γ and αj = γη such that (ij , η) ∈ δ(ij+1, aj+1, A). Also we
see that (x, aj+1) ∈ IM. Again from the definition of B it follows that in either
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case B can perform the computational step (ij+1, aj+1uj ,⊥αj+1) �B (ij , uj,⊥αj).
Now let uj+1 be the word uj+1 = aj+1uj . Then

uj+1 = aj+1uj ≡DM aj+1wj = aj+1xy ≡DM xaj+1y = wj+1,

and B has an accepting computation starting from the configuration
(ij+1, uj+1,⊥αj+1).

Finally, for j = n we obtain a word u such that u ≡DM w and B has an
accepting computation starting from the configuration (in, u,⊥). As in ∈ I0, this
means that u ∈ R = L(B), as (q0, u,⊥) �B (in, u,⊥). �

Now Claims 1 and 2 together show that L = L=1(M) =
⋃

u∈R[u]DM , which
completes the proof of Theorem 4.11. �

If the given PD-CD-R(1)-system M is a OC-CD-R(1)-system, then the pushdown
automaton B constructed in the proof above can easily be turned into a one-
counter automaton by deleting the transition δB(q0, ε,⊥) = { (i,⊥) | i ∈ I0 } and
by defining δB(q0, a,⊥) = { (j,⊥η) | ∃i ∈ I0 : (j,⊥η) ∈ δ(i, a,⊥) } for all a ∈ Σ.
Thus, we also have the following result.

Corollary 4.12. Let M be a OC-CD-R(1)-system over Σ satisfying condition (∗)
above. If the associated relation IM is symmetric, then L(M) ∈ LOC(DM ), that is,
L(M) is the linearization of a one-counter trace language. In fact, from M one can
construct a one-counter automaton B over Σ such that L(M) =

⋃
u∈L(B)[u]DM .

Observe that the system M constructed in the proof of Theorem 4.6 is in strong
normal form, that it satisfies property (∗), and that the associated relation IM
coincides with the relation ID, and hence, it is symmetric. Thus, Theorems 4.6, 4.7
and 4.11 together with Corollary 4.12 yield the following characterizations.

Corollary 4.13.

(a) A language L ⊆ Σ∗ is the linearization of a one-counter trace language if and
only if there exists a OC-CD-R(1)-system M in strong normal form satisfying
condition (∗) such that the relation IM is symmetric and L = L(M).

(b) A language L ⊆ Σ∗ is the linearization of a context-free trace language if and
only if there exists a PD-CD-R(1)-system M in strong normal form satisfying
condition (∗) such that the relation IM is symmetric and L = L(M).

Notice, however, that a PD-CD-R(1)-system may accept the linearization of a
context-free trace language, even if it does not satisfy all of the additional restric-
tions in the characterization above. This observation raises the following questions
that currently remain open: Is it decidable whether the language L(M) of a given
PD-CD-R(1)-system M is the linearization of a context-free trace language? Is
there possibly a syntactical characterization for those PD-CD-R(1)-systems that
accept linearizations of context-free trace languages?
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5. Closure and non-closure properties

As seen in Example 3.2 the language

L = { anv | v ∈ {b, c}∗, |v|b = |v|c = n, n ≥ 0 }

is accepted by an OC-CD-R(1)-system, while the language

L ∩ a∗ · b∗ · c∗ = { anbncn | n ≥ 0 }

is not accepted by any PD-CD-R(1)-system (Prop. 3.11). This gives the following
non-closure result.

Corollary 5.1. The language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) are not
closed under intersection with regular languages.

Next we consider the closure under Boolean operations.

Proposition 5.2.

(a) The language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) are closed under
union.

(b) The language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) are neither closed
under intersection nor under complementation.

Proof. It is easily seen that these language classes are closed under union, as
a PD-CD-R(1)-system for the union L1 ∪ L2 of L1 and L2 can immediately be
constructed from PD-CD-R(1)-systems for L1 and L2. On the other hand, each
regular language is accepted by an OC-CD-R(1)-system. Hence, Corollary 5.1 shows
that these language classes are not closed under intersection. Finally, closure under
union and non-closure under intersection imply that these classes are not closed
under complementation, either. �

The commutative closure com(L) of a language L ⊆ Σ∗ is the set of all words
that are letter-equivalent to a word from L, that is,

com(L) = ψ−1(ψ(L)) = {w ∈ Σ∗ | ∃u ∈ L : ψ(w) = ψ(u) }.

If L is accepted by a PD-CD-R(1)-system M, then from M we can construct
a pushdown automaton B for a context-free sublanguage E of L that is letter-
equivalent to L (Thm. 3.8). Obviously, the commutative closure com(L) of L co-
incides with the commutative closure com(E) of E. For the dependency relation
D = { (a, a) | a ∈ Σ }, the trace monoid M(D) presented by (Σ,D) is the free
commutative monoid generated by Σ. Thus, com(E) =

⋃
w∈E[w]D is simply the

linearization of the context-free trace language ϕD(E). Hence, it follows from The-
orem 4.6 that this language is accepted by a PD-CD-R(1)-system M′. In fact, the
system M′ can effectively be constructed from the pushdown automaton B, and
therewith from the given PD-CD-R(1)-system M. This yields the following effective
closure property.
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Corollary 5.3. The language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) are ef-
fectively closed under the operation of taking the commutative closure.

Also it is easily seen that these language classes are closed under disjoint
shuffle, that is, if L1 ⊆ Σ∗ and L2 ⊆ Γ ∗ are languages in L(OC-CD-R(1)) or
L(PD-CD-R(1)), where Σ ∩ Γ = ∅, then the shuffle of L1 and L2 is also in this
language class. On the other hand, the following questions remain currently open.

(1) Are the language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) closed under con-
catenation? It may be possible to carry the construction for stl-det-local-CD-
R(1)-systems from [22] over to PD-CD-R(1)-systems, but currently it is not
clear how to accommodate the pushdown operations in this construction.

(2) Are the language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) closed under
Kleene-star and Kleene-plus?

(3) Are they closed under reversal, ε-free morphisms, or inverse morphisms?

Finally we take a short look at decision problems for OC-CD-R(1)- and PD-CD-
R(1)-systems. The membership problem for a language accepted by such a CD-
system is obviously decidable nondeterministically in linear space and quadratic
time. Further, from Theorem 3.8 and Corollary 3.9 it follows immediately that
the emptiness problem and the finiteness problem are decidable for these classes
of CD-systems. On the other hand, from the corresponding results for stl-det-
local-CD-R(1)-systems in [22] it follows that the regularity problem, the inclusion
problem, and the equivalence problem are all undecidable in general for OC-CD-
R(1)- and PD-CD-R(1)-systems.

6. Concluding remarks

We have presented a class of automata (or rather, systems of automata) that
accept all linearizations of context-free trace languages. In fact, we have even
obtained a characterization of the linearizations of one-counter and context-free
trace languages in terms of our model. In comparison to Zielonka’s asynchronous
automata for recognizable trace languages, our model has certainly the disadvan-
tage that it just accepts words, that is, linearizations of traces, and not traces
themselves. Thus, it is not a concurrent model. However, we see from the proof
of Theorem 4.6 that the PD-CD-R(1)-system M that is constructed from a given
context-free grammar G and a dependency relation D on Σ performs essentially
the same computations for all linearizations of a given trace [w]D in the trace
language defined by L(G).

Further, the PD-CD-R(1)-system M is obtained in polynomial time from G
and D (provided G is already in Greibach normal form). This contrasts with the
situation for Zielonka’s asynchronous automata, where the best currently known
algorithm yields an asynchronous automaton that is polynomial in the size of the
given word automaton and exponential in the number of concurrent processes [10].
Finally, the constructions in the proofs of Theorems 4.6 and 4.11 show that the
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PD-CD-R(1)-systems yield an effective calculus for the class of linearizations of
context-free trace languages: From PD-CD-R(1)-systems M1 and M2 for the lin-
earizations of two context-free trace languages S1 and S2 over M(D), we can
effectively construct PD-CD-R(1)-systems for the linearizations of the context-free
trace languages S1 ∪ S2, S1 · S2, and S∗

1 .
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Lect. Notes Comput. Sci. 85 (1969).
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