
RAIRO-Theor. Inf. Appl. 45 (2011) 449–457 Available online at:

DOI: 10.1051/ita/2011124 www.rairo-ita.org

RECURSIVE ALGORITHM FOR PARITY GAMES
REQUIRES EXPONENTIAL TIME

Oliver Friedmann
1

Abstract. This paper presents a new lower bound for the recursive
algorithm for solving parity games which is induced by the constructive
proof of memoryless determinacy by Zielonka. We outline a family of
games of linear size on which the algorithm requires exponential time.

Mathematics Subject Classification. 05C57.

1. Introduction

Parity games are simple two-player games of perfect information played on
directed graphs whose nodes are labeled with natural numbers, called priorities. A
play in a parity game is an infinite sequence of nodes whose winner is determined
by the highest priority occurring infinitely often.

Solving parity games appears in several fields of theoretical computer science,
e.g. as solution to the problem of complementation of tree automata [1, 5] or as
algorithmic back end to the model checking problem of the modal μ-calculus [2,12].

There are many algorithms that solve parity games, such as the divide-and-
conquer algorithm due to Zielonka [14] and its recent improvement by Jurdziński
et al. [8], the small progress measures algorithm due to Jurdziński [7] with its
recent improvement by Schewe [9], the model-checking algorithm due to Stevens
and Stirling [11] and finally the two strategy improvement algorithms by Vöge
and Jurdziński [13] and Schewe [10]. From now on, we will refer to Zielonka’s
divide-and-conquer algorithm as the “recursive algorithm”.

Solving parity games is one of the few problems that belong to the complexity
class NP ∩ coNP and that is not (yet) known to belong to P [2]. It has also been

Keywords and phrases. Parity games, recursive algorithm, lower bound, µ calculus, model
checking.

1 Institut für Informatik, LMU München 80538 Munich, Germany.
Oliver.Friedmann@googlemail.com

Article published by EDP Sciences c© EDP Sciences 2011

http://dx.doi.org/10.1051/ita/2011124
http://www.rairo-ita.org
http://www.edpsciences.org

450 O. FRIEDMANN

shown that solving parity games belongs to UP∩coUP [6]. The currently best known
upper bound on the deterministic solution of parity games is O(|E| · |V | 13 |Ω|) due
to Schewe’s big-step algorithm [9].

In this paper we will investigate the worst-case runtime behaviour of the recur-
sive algorithm, an algorithm whose practicality is usually highly underestimated.
In fact, it ranks among the best: the strategy iteration algorithms due to Vöge
and Jurdziński [13] and Schewe [10], the recursive algorithm due to Zielonka [14]
as well as the small progress measures algorithm due to Jurdziński [7] seem to be
the best algorithms in practice [4].

Section 2 defines the basic notions of parity games and some notations that
are employed throughout the paper. Section 3 recaps the recursive algorithm.
In Section 4, we outline a family of games on which the algorithm requires an
exponential number of iterations.

2. Parity games

A parity game is a tuple G = (V, V0, V1, E, Ω) where (V, E) forms a directed
graph whose node set is partitioned into V = V0 ∪ V1 with V0 ∩ V1 = ∅, and
Ω : V → N is the priority function that assigns to each node a natural number
called the priority of the node. We assume the underlying graph to be total, i.e.
for every v ∈ V there is a w ∈ W s.t. (v, w) ∈ E. In the following we will
restrict ourselves to finite parity games. Let ind(G) denote the number of different
priorities in the game G.

We also use infix notation vEw instead of (v, w) ∈ E and define the set of
all successors of v as vE := {w | vEw}. The size |G| of a parity game G =
(V, V0, V1, E, Ω) is defined to be the cardinality of E, i.e. |G| := |E|; since we
assume parity games to be total w.r.t. E, this seems to be a reasonable way to
measure the size.

The game is played between two players called 0 and 1: starting in a node v0 ∈ V ,
they construct an infinite path through the graph as follows. If the construction
so far has yielded a finite sequence v0 . . . vn and vn ∈ Vi then player i selects a
w ∈ vnE and the play continues with the sequence v0 . . . vnw.

Every play has a unique winner given by the parity of the greatest priority that
occurs infinitely often in a play. The winner of the play v0v1v2 . . . is player i iff
max{p | ∀j.∃k ≥ j : Ω(vk) = p} mod 2 = i.

A strategy for player i is a – possibly partial – function σ : V ∗Vi → V , s.t. for
all sequences v0 . . . vn with vj+1 ∈ vjE for all j = 0, . . . , n − 1, and all vn ∈ Vi we
have: σ(v0 . . . vn) ∈ vnE. A play v0v1 . . . conforms to a strategy σ for player i if
for all j we have: if vj ∈ Vi then vj+1 = σ(v0 . . . vj). Intuitively, conforming to a
strategy means to always make those choices that are prescribed by the strategy.
A strategy σ for player i is a winning strategy in node v if player i wins every play
that begins in v and conforms to σ. We say that player i wins the game G starting
in v iff player i has a winning strategy for G starting in v.

RECURSIVE ALGORITHM FOR PARITY GAMES REQUIRES EXPONENTIAL TIME 451

A strategy σ for player i is called positional if for all v0 . . . vn ∈ V ∗Vi and all
w0 . . . wm ∈ V ∗Vi we have: if vn = wm then σ(v0 . . . vn) = σ(w0 . . . wm). That is,
the value of the strategy on a finite path only depends on the last node on that
path.

With G we associate two sets W0, W1 ⊆ V such that Wi is the set of all nodes
v s.t. player i wins the game G starting in v. Parity games enjoy determinacy
meaning that for every node v in the game either v ∈ W0 or v ∈ W1 [1]. Moreover,
they enjoy positional determinacy, i.e. for every v ∈ Wi, there is a positional
winning strategy σv for player i. Furthermore, it is not difficult to show that,
whenever player i has positional winning strategies σv for all v ∈ U for some
U ⊆ V , then there is also a single positional strategy σ that is winning for player
i from every node in U .

The problem of solving a given parity game is to compute W0 and W1, and
sometimes the corresponding positional winning strategies σ0 and σ1 for the players
on their respective winning regions as well. We omit the computation of winning
strategies in this paper.

Let U ⊆ V and i ∈ {0, 1}. The i-attractor of U is the least set W s.t. U ⊆ W and
whenever v ∈ Vi and vE ∩ W �= ∅, or v ∈ V1−i and vE ⊆ W then v ∈ W . Hence,
the i-attractor of U contains all nodes from which player i can move “towards”
U and player 1−i must move “towards” U . The i-attractor of U is denoted by
Attr i(G, U).

Let A be an arbitrary attractor set. The game G \ A is defined to be the game
restricted to the nodes V \A, i.e. G\A := (V \A, V0\A, V1\A, E\(A×V ∪V ×A),
Ω |V \A). Note that A being an attractor ensures the required totality of G \ A.

3. The recursive algorithm

The recursive algorithm by Zielonka [14] decomposes the game at hand to
smaller ones recursively by simultaneous induction on the number of priorities
and the number of nodes in the game. In the base case, if the game is empty, the
empty winning sets can be directly obtained. In the other cases winning sets and
winning strategies can be assembled out of winning sets and strategies for smaller
subgames and an attractor strategy for one of the players reaching the set of nodes
with maximal priority in the game.

It is based on the observation that higher priorities in a parity game dominate
all lower priorities, no matter how many there are. Let p be the highest priority
occurring in the game G, let U be a non-empty set of nodes with priority p and
let i be the parity of p. Now remove the i-attractor A of U and consider the so
obtained subgame G′.

If player i wins the whole game G′, then i also wins the whole game G: whenever
player 1−i decides to visit A, player i’s winning strategy would be to reach U . Then
every play that visits A infinitely often has p as the highest priority occurring
infinitely often, or otherwise it stays eventually in G′ and hence is won by i.

452 O. FRIEDMANN

Otherwise, if player i does not win G′ completely, i.e. player 1−i wins a non-
empty subset W ′

1−i, we know player 1−i also wins on W ′
1−i w.r.t. G, because player

i cannot force player 1−i to leave W ′
1−i. Hence, we compute the 1−i-attractor B

of W ′
1−i w.r.t. G, remove it as safe winning region for 1−i from the game and

recursively solve the subgame G\B.
The algorithm therefore can be specified as follows. In the original version of

the algorithm, the non-empty subset U of nodes with priority p is the whole set
of nodes with priority p. The freedom of choosing U can be seen as a rule for the
recursive algorithm. Nevertheless, there is no indication of any benefits for practical
solving as well as for the analysis of the lower bound by choosing a proper subset
here. See Algorithm 1 for a pseudo-code specification.

Algorithm 1 Recursive Algorithm
1: procedure Solve(G)
2: if VG = ∅ then
3: (W0, σ0)← (∅,⊥)
4: (W1, σ1)← (∅,⊥)
5: return (W0, σ0), (W1, σ1)
6: else
7: p← max{ΩG(v) | v ∈ VG}
8: i← p mod 2
9: U ← non-empty subset of {v ∈ VG | ΩG(v) = p}

10: τ ← arbitrary strategy for player i on U
11: (A, τ ′)← Attr i(G, U)
12: (W ′

0, σ
′
0), (W

′
1, σ

′
1)← Solve(G \ A)

13: if W ′
1−i = ∅ then

14: (Wi, σi)← (Vi, σ
′
i ∪ τ ∪ τ ′)

15: (W1−i, σ1−i)← (∅,⊥)
16: return (W0, σ0), (W1, σ1)
17: else
18: (B, �)← Attr 1−i(G, W ′

1−i)
19: (W ′′

0 , σ′′
0), (W ′′

1 , σ′′
1)← Solve(G \ B)

20: (Wi, σi)← (W ′′
i , σ′′

i)
21: (W1−i, σ1−i)← (W ′′

1−i ∪B, σ′′
1−i ∪ � ∪ σ′

1−i)
22: return (W0, σ0), (W1, σ1)
23: end if
24: end if
25: end procedure

It is not hard to see that this algorithm is sound. Note that the correctness also
implies that there are always positional winning strategies for parity games.

Theorem 3.1 ([14]). Let G be a parity game. Solve(G) terminates and returns
the winning sets with positional winning strategies for both players.

RECURSIVE ALGORITHM FOR PARITY GAMES REQUIRES EXPONENTIAL TIME 453

Proof. Let G = (V, V0, V1, E, Ω). We prove the claim by an induction on the
number of nodes |V |. If G is empty, the algorithm obviously terminates and returns
the correct winning sets and strategies.

For the the induction step, let |V | > 0. Let p = max{Ω(v) | v ∈ V }, i = p mod 2,
U be a non-empty subset of {v ∈ V | Ω(v) = p}, τ be an arbitrary strategy for
player i on U and (A, τ ′) = Attr i(G, U).

Consider the game G′ = G\A. Obviously, |VG′ | < |V |. By induction hypothesis,
it follows that Solve(G′) terminates and that it returns winning sets W ′

0, W ′
1 as

well as positional winning strategies σ′
0, σ′

1 for G′.
If now W ′

1−i = ∅, let σi = σ′
i ∪ τ ∪ τ ′. We claim that player i indeed wins

on Vi following strategy σi. Let π be a σi-conforming play in G; we distinguish
whether π eventually stays in W ′

i . If that is the case, it is obviously won by player i,
because σ′

i is a winning strategy for i on W ′
i by assumption. Otherwise, if π visits

A infinitely often, then player i enforces infinitely many visits to U as well by
the attractor strategy τ ′. Hence, the highest priority occurring infinitely often is
p. Therefore, Solve(G) terminates and returns the winning sets with positional
winning strategies for both players.

Otherwise, if W ′
1−i �= ∅, let (B, �) = Attr1−i(G, W ′

1−i). Consider the game G′′ =
G\B. Obviously, |VG′′ | < |V |. By induction hypothesis, it follows that Solve(G′′)
terminates and that it returns winning sets W ′′

0 , W ′′
1 as well as positional winning

strategies σ′′
0 , σ′′

1 for G′′.
First, we argue that σ′′

i is still a winning strategy on W ′′
i in the game G for

player i. Let π be a σ′′
i -conforming play in G starting from a node in W ′′

i . It is
impossible for player 1−i to escape from W ′′

i , as escaping directly to W ′′
1−i is a

contradiction to W ′′
i being the i-winning set in G′′ and escaping directly to B is

impossible with B being an 1−i-attractor.
Second, we argue that σ1−i = σ′′

1−i ∪�∪σ′
1−i is a winning strategy on W ′′

1−i ∪B
for player 1−i. Let π be a σ1−i-conforming play in G; we distinguish whether π
eventually stays in W ′′

1−i. If that is the case, it is obviously won by player 1−i,
because σ′′

1−i is a winning strategy for 1−i on W ′′
1−i by assumption. Otherwise, if π

visits B infinitely often, player 1−i enforces infinitely many visits to W ′
1−i as well

by the attractor strategy τ ′; π even stays in W ′
1−i, because W ′

1−i is the 1−i-winning
set w.r.t. G′ and player i cannot enforce a visit to A with A being an i-attractor
in G. Hence, W ′

1−i is won by player 1−i by assumption. Therefore, Solve(G)
terminates and returns the winning sets with positional winning strategies for
both players. �

For the analysis of the runtime complexity, let Rec(G) denote the total number
of Solve-calls that are executed in order to solve a given parity game G. We fix
the U -selection rule now that chooses the whole set of nodes with priority p.

A non-trivial upper bound can be easily derived: due to the fact that the number
of different priorities is strictly reduced in the first recursive call and the number
of nodes is strictly reduced in both recursive calls, the following recurrence f(n, p),
where n is an upper bound on the number of nodes and p is an upper bound on the

454 O. FRIEDMANN

number of different priorities, obviously describes an upper bound on the number
of iterations that are required to solve a game with at most p different priorities
and at most n nodes.

f(0, 0) = 1
f(n + 1, p + 1) ≤ f(n, p) + f(n, p + 1).

Since f(n, p) = np satisfies the recurrence, this yields the upper bound np.
Similarly, it would be possible to derive that for arbitrary selection policies 2n

would be an upper bound on the number of iterations.

Theorem 3.2. Let G be a parity game. Then Rec(G) ∈ O(|VG|ind(G)) w.r.t. the
whole-set rule and Rec(G) ∈ O(2|VG|) for arbitrary policies.

4. Exponential lower bound

We provide a concrete exponential lower bound on the number of iterations
required by the recursive algorithm to solve parity games. The construction will
yield the lower bound independently of the actual rule, because every “important”
node in our family of games will have a different priority.

The games will be denoted by Gn = (Vn, Vn,0, Vn,1, En, Ωn) and are of linear
size. The sets of nodes are

Vn := {a1, . . . , an, b1, . . . , bn, c0, . . . , cn−1, d0, . . . , dn−1, e0, . . . , en−1}.
The players, priorities and edges are described in Table 1. The game G3 is depicted
in Figure 1; nodes owned by player 0 are drawn as circles and nodes owned by
player 1 are drawn as rectangles.

Table 1. The recursive lower bound game Gn.

Node Player Priority Successors

ai 1− (i mod 2) 1− (i mod 2) {bi, di−1}
bi i mod 2 1− (i mod 2) {ai} ∪ ({ci} ∩ Vn)

ci 1− (i mod 2) 3i + 5 {bi+1, di}
di i mod 2 3i + 4 {ei} ∪ ({di−1, di+1} ∩ Vn)

ei 1− (i mod 2) 3i + 3 {bi+1, di}

Fact 4.1. The game Gn has 5 × n nodes, 11 × n − 3 edges and 3 × n + 2 as the
highest priority. In particular, |Gn| = O(n).

Basically, solving the game Gn, requires Gn−1 to be solved within the first recur-
sive descent and Gn−2 to be solved within the second recursive descent. Therefore,
the number of recursion steps can be described by the Fibonacci sequence.

RECURSIVE ALGORITHM FOR PARITY GAMES REQUIRES EXPONENTIAL TIME 455

a1 : 0

b1 : 0

c0 : 5

d0 : 4

e0 : 3

a2 : 1

b2 : 1

c1 : 8

d1 : 7

e1 : 6

a3 : 0

b3 : 0

c2 : 11

d2 : 10

e2 : 9

Figure 1. The recursive lower bound game G3.

The Fibonacci sequence is a function F : N → N which is recursively defined as
follows:

F0 = 0
F1 = 1

Fn+2 = Fn+1 + Fn for all n.

It is a well-known fact that F ∈ Ω
((

1+
√

5
2

)n)
, and since 1+

√
5

2 > 1, this partic-
ularly implies that the Fibonacci sequence has exponential asymptotic behavior.

Lemma 4.2. The game Gn is completely won by player 1 − (n mod 2).

Proof. By induction on n. It is easy to see that G1 is won by player 0 and G2 is
won by player 1. Let now n > 2 and i = 1 − (n mod 2). We know by induction
hypothesis that Gn−2 is won by i.

Now attach the following strategy to the winning strategy for i on Gn−2: σ(an) =
bn, σ(bn−1) = cn−1, σ(dn−1) = en−1 and σ(cn−2) = σ(en−2) = bn−1.

It is easy to see that an and bn are won by player i. Hence, bn−1, cn−1, dn−1,
en−1, cn−2 and en−2 are won by player i.

456 O. FRIEDMANN

Therefore Gn−2 ⊆ Gn is still won by player i, as moving to cn−2 from nodes
in Gn−2 results in a win of player i. Hence, also an−1 and dn−2 are won by
player i. �

We will now show that solving Gn requires at least Fn many iterations, which
directly implies that the recursive algorithm requires exponentially many iterations
on the family (Gi)i>0.

Theorem 4.3. For all n > 0, it holds that Rec(Gn) ≥ Fn.

Proof. By induction on n. For n = 1, 2 this is certainly true. For n > 2, we have
to show that the solving computation w.r.t. Gn finally requires Gn−1 and Gn−2

to be solved in independent subcomputations:
The highest priority in Gn is p = 3n + 2, solely due to U = {cn−1}, and its

parity is i := n mod 2. The i-attractor of U is A = U , because the only node
leading into cn−1 – namely bn−1 – is owned by 1−i and has more than one edge.

Let G′
n = Gn \ A. We will now show that sub-solving G′

n requires Gn−1 to be
solved.

• The highest priority in G′
n is p′ = 3n + 1, solely due to U ′ = {dn−1}, and its

parity is i′ = 1− (n mod 2). The i′-attractor of U ′ is A′ = {an, bn, dn−1, en−1},
because the only node leading into A′ – namely dn−2 – is owned by 1− i′ and
has an edge not leading into A′.
Now note that G′

n \ A′ = Gn−1 which is to be computed next within this
subcomputation.

Due to Lemma 4.2, Gn−1 is completely won by player i, and A′ is obviously won
by player 1−i; due to the fact that the only edge connecting Gn−1 and A′ in the
game Gn is the edge from dn−2 to dn−1, it is safe to conclude that solving G′

n

indeed returns a partition into winning sets W ′
i = Gn−1 and W ′

1−i = A′.
Since W ′

1−i is not empty, one has to compute the 1−i-attractor of W ′
1−i w.r.t.

Gn, which is B = A′ ∪{bn−1, cn−1, cn−2, en−2}, because all nodes leading into B –
namely an−1, bn−2 and dn−2 – are owned by player i and have edges not leading
into B.

Let G′′
n = Gn \B. We will finally show that sub-solving G′′

n requires Gn−2 to be
solved.

• The highest priority in G′′
n is p′′ = 3n − 2, solely due to U ′′ = {dn−2}, and its

parity is i′′ = n mod 2. The i′′-attractor of U ′′ is A′′ = {an−1, dn−2}, because
the only other node leading into A′′ – namely dn−3 – is owned by 1 − i′′ and
has an edge not leading into A′′.
Now note that G′′

n \ A′′ = Gn−2 which is to be computed next within this
subcomputation. �

5. Conclusion

We have shown that the recursive algorithm has exponential worst-case run-
time complexity. Similar results hold true for almost all other parity game solving

RECURSIVE ALGORITHM FOR PARITY GAMES REQUIRES EXPONENTIAL TIME 457

algorithms ([3, 7]) and therefore the recursive algorithm should not be considered
to be of less use to the practical solving of parity games. In fact, the recursive
algorithm is one of the best global parity game solving algorithms in practice [4].

References

[1] E.A. Emerson and C.S. Jutla, Tree automata, µ-calculus and determinacy, in Proc. 32nd
Symp. on Foundations of Computer Science. San Juan, Puerto Rico, IEEE (1991) 368–377.

[2] E.A. Emerson, C.S. Jutla and A.P. Sistla, On model-checking for fragments of µ-calculus,
in Proc. 5th Conf. on Computer Aided Verification, CAV’93. Lect. Notes Comput. Sci. 697
(1993) 385–396.

[3] O. Friedmann, An exponential lower bound for the parity game strategy improvement
algorithm as we know it, in Proc. of LICS (2009) 145–156.

[4] O. Friedmann and M. Lange, Solving parity games in practice, in Proc. of ATVA (2009)
182–196.

[5] E. Grädel, W. Thomas and Th. Wilke Eds., Automata, Logics, and Infinite Games. Lect.
Notes Comput. Sci. 2500 (2002).

[6] M. Jurdzinski, Deciding the winner in parity games is in up ∩ co − up. Inf. Process. Lett.

68 (1998) 119–124.
[7] M. Jurdziński, Small progress measures for solving parity games, in Proc. 17th Ann. Symp.

on Theoretical Aspects of Computer Science, STACS’00, edited by H. Reichel and S. Tison.
Lect. Notes Comput. Sci. 1770 (2000) 290–301.

[8] M. Jurdziński, M. Paterson and U. Zwick, A deterministic subexponential algorithm for solv-
ing parity games, in Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithm, SODA’06.
ACM (2006) 117–123.

[9] S. Schewe, Solving parity games in big steps, in Proc. FST TCS. Springer-Verlag (2007).
[10] S. Schewe, An optimal strategy improvement algorithm for solving parity and payoff games,

in 17th Annual Conference on Computer Science Logic (CSL) (2008).
[11] P. Stevens and C. Stirling, Practical model-checking using games, in Proc. 4th Int. Conf.

on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’98, edited
by B. Steffen. Lect. Notes Comput. Sci. 1384 (1998) 85–101.

[12] C. Stirling, Local model checking games, in Proc. 6th Conf. on Concurrency Theory,
CONCUR’95. Lect. Notes Comput. Sci. 962 (1995) 1–11.

[13] J. Vöge and M. Jurdziński, A discrete strategy improvement algorithm for solving parity
games, in Proc. 12th Int. Conf. on Computer Aided Verification, CAV’00. Lect. Notes
Comput. Sci. 1855 (2000) 202–215.

[14] W. Zielonka, Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theoret. Comput. Sci. 200 (1998) 135–183.

Communicated by Ch. Choffrut.
Received January 23, 2011. Accepted September 22, 2011.

	Introduction
	Parity games
	The recursive algorithm
	Exponential lower bound
	Conclusion
	References

