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ON AUTOMATIC INFINITE PERMUTATIONS ∗

Anna Frid1,2 and Luca Zamboni2,3

Abstract. An infinite permutation α is a linear ordering of N. We
study properties of infinite permutations analogous to those of infinite
words, and show some resemblances and some differences between per-
mutations and words. In this paper, we try to extend to permutations
the notion of automaticity. As we shall show, the standard definitions
which are equivalent in the case of words are not equivalent in the con-
text of permutations. We investigate the relationships between these
definitions and prove that they constitute a chain of inclusions. We also
construct and study an automaton generating the Thue-Morse permu-
tation.

Mathematics Subject Classification. 05A05, 68R15.

1. Infinite permutations

Let S be a finite or countable ordered set: we shall typically take S to be either
the set N = {0, 1, 2, . . .} of all non-negative integers, or some its subset. Let AS

be the set of all sequences of pairwise distinct reals indexed by the set S. Define
an equivalence relation ∼ on AS as follows: given a, b inAS , with a = {as}s∈S

and b = {bs}s∈S ; we write a ∼ b if and only if for all s, r ∈ S the inequalities
as < ar and bs < br hold or do not hold simultaneously. An equivalence class
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from AS/ ∼ is called an (S-)permutation. If an S-permutation α is realized by
a sequence of reals a, that is, if the sequence a belongs to the class α, we write
α = a. In particular, a {1, . . . , n}-permutation always has a representative with all
values in {1, . . . , n}, i.e., can be identified with a usual permutation in Sn.

In equivalent terms, a permutation can be considered as a linear ordering of S
which may differ from the “natural” one. That is, for i, j ∈ S, the natural order
between them corresponds to i < j or i > j, while the ordering we intend to define
corresponds to αi < αj or αi > αj . We shall also use the symbols γij ∈ {<, >}
meaning the relations between αi and αj , so that by definition we have αiγijαj

for all i �= j.

Example 1.1. Let {ai}∞i=0 be the sequence defined by an = (−1/2)n, and {bi}∞i=0

be the sequence defined by bi = 1000 + (−1)n/n. Then a = b; and we also can
define the respective permutation α = a = b directly by the family of inequalities:
for all i, j ≥ 0 we have α2i > α2j+1, α2i > α2i+2, and α2j+1 < α2j+3. Equivalently,
the same family of inequalities can be written as γ2i,2j+1 =>, γ2i,2i+2 =>, and
γ2j+1,2j+3 =<. It can be easily checked that these inequalities completely define
the permutation, and that it is equal to a and to b.

Note also that the permutation α cannot be represented by a sequence of integers
since α1 < αn < α0 for all n ≥ 2.

For more background on the theory of infinite permutations, we refer the reader
to [7]. Periodicity, subword complexity and maximal pattern complexity of per-
mutations were studied in [3, 9].

Any aperiodic (non ultimately periodic) infinite word w = w0w1w2 . . . wn . . .
on a finite alphabet Σq = {0, . . . , q − 1} naturally defines an infinite permutation
α represented by the sequence of reals {ai}∞i=0 defined by ai = .wiwi+1 . . . =∑∞

j=0
wi+j

qj+1 . Such a permutation is said to be valid over the alphabet Σq. Valid
permutations have been investigated by Makarov [10–13]. It is not difficult to see
that there exist infinite permutations which are not valid, including for example
the monotonic ones.

Example 1.2. Let wTM be the Thue-Morse word, wTM = w0w1w2 . . . =
01101001 . . .: here wi is the parity of 1s in the binary representation of i. Then
the associated infinite permutation αTM is the order among the binary numbers
.01101001 . . ., .1101001 . . ., .101001 . . ., .01001 . . . The first four values are ordered
as α3 < α0 < α2 < α1. In terms of the symbols γij ∈ {<, >} we have γ01 = γ02 =<
and γ03 = γ12 = γ13 = γ23 =>, etc. The Thue-Morse permutation has been con-
sidered in detail in [11, 14].

2. Automatic words and permutations

We begin by recalling some of the basic notions concerning automatic words.
For more background on this topic we refer the reader to the book by Allouche
and Shallit [1] where many details and examples can be found.
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Let k > 1 be a positive integer. An infinite word w = w0w1w2 . . . over Σq

is called k-automatic if its nth symbol wn is the output of a deterministic finite
automaton after feeding to it the base k representation (n)k of n. Formally, we
define the automaton A = (Q, Σk, δ, q0, Σq, τ) with δ : Q × Σk → Q (and the
natural extension of δ to a function Q × Σ∗

k → Q) and τ : Q → Σq so that
wn = τ(δ(q0, (n)k)) for all n ≥ 0.

Example 2.1. The Thue-Morse word wTM = w0w1 . . . = 01101001 . . . is
2-automatic by the definition given in the previous example. The corresponding
automaton is depicted below.

0 1
1

1
0 0

There are several well known equivalent definitions of automatic words (see [1]
for a more detailed discussion). One such alternative definition uses uniform mor-
phisms.

A morphism ϕ : Δ∗ → Σ∗, where Δ and Σ are alphabets, is a mapping satisfying
ϕ(xy) = ϕ(x)ϕ(y) for all x, y. Clearly, a morphism is completely determined by
the images of letters. A morphism is called k-uniform if the image of each letter is
of length k. A fixed point of a uniform morphism ϕ : Δ → Δk is a (right) infinite
word w satisfying w = ϕ(w); a fixed point of ϕ always starts with a letter a such
that ϕ(a) starts with a.

A 1-uniform morphism c : Δ → Σ is called a coding.

Theorem 2.2 (Cobham, [1, 6]). For each k > 1, an infinite word w is
k-automatic if and only if it is the image under a coding of a fixed point of a
k-uniform morphism.

Example 2.3. The Thue-Morse word is the fixed point of the 2-uniform morphism
ϕ : 0 �→ 01, 1 �→ 10. The coding c is here trivial.

For another equivalent definition, we define the k-kernel of an infinite word
w = w0w1 . . . to be the set of arithmetic subsequences of w of the form
wiwkn+iw2kn+i . . . for some n ≥ 0 and 0 ≤ i < kn.

Theorem 2.4 (Eilenberg, [1, 8]). For each k > 1, an infinite word w is
k-automatic if and only if its k-kernel is finite.

Example 2.5. The 2-kernel of the Thue-Morse word contains just two elements:
the Thue-Morse word itself and the word obtained from it by exchanging 0s and
1s.
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We now consider analogues of the previous three definitions of automatic words
in the context of infinite permutations4. The first unfortunately only applies to
valid permutations.

Definition 2.6. A valid permutation is V -k-automatic if it is generated by a
k-automatic word over a finite alphabet. The class of all V -k-automatic permuta-
tions is denoted by Vk.

Example 2.7. The Thue-Morse permutation αTM from Example 1.2 is V -2-
automatic since the Thue-Morse word is 2-automatic.

Our next definition directly involves an automaton, and so applies more gener-
ally:

Definition 2.8. A permutation α = α0α1 . . . is A-k-automatic if there exists a
deterministic finite automaton A = (Q, (Σk)2, δ, q0, {<, >, =}, τ) with δ : Q ×
(Σk)2 → Q (and the natural extension of δ to a function Q × (Σ2

k)∗ → Q) and
τ : Q → {<, >, =} so that γij = τ(δ(q0, (i)k × (j)k)) for all i, j ≥ 0. The class of
all A-k-automatic permutations is denoted by Ak.

According to this definition, the automaton A is fed by pairs of digits from the
base k representations of i and j (passing the automaton simultaneously, starting
with the most significant digit or the starting 0 if necessary). The output is the
relation between the elements of α numbered i and j.

Note that not all the automata of this form define permutations. However, in
practice it is not too difficult to check whether the automaton in question actually
generates a permutation, that is, an order on N.

Lemma 2.9. Given an automaton A = (Q, (Σk)2, δ, q0, {<, >, =}, τ), it is decid-
able if it generates a permutation or not.

Proof. We must check that the relation constructed is antisymmetric and transi-
tive, that is, that it is an order. To check the antisymmetric property, consider the
square automaton

A2 = (Q2, ((Σk)2)2, δ′, q0 × q0, {<, >, =}2, τ)

where the transition function δ′ : Q2 × ((Σk)2)2 → Q2 is defined by δ′(q1 ×
q2, (i1, j1)×(i2, j2)) → δ(q1, (i1, j1))×δ(q2, (i2, j2)), and τ(q1×q2) = (τ(q1), τ(q2)).
Now consider the restriction of A2 to the input of the form (i, j) × (j, i). All
the reachable states must give the output (<, >), (>, <), or (=, =); moreover,
the states giving (=, =) must be reachable only by the transitions of the form
(i, i), (i, i), and all the other reachable states cannot be reached by the input of
that form. Clearly, this property can be checked by standard means.

4 Yet another widely used equivalent definition of k-automatic words involves algebraic formal
power series [1,5]. However, we do not consider formal power series in the context of permutations.
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To check the transitive property, we analogously consider the cube automaton
A3 and its restriction to the input of the form (i, j) × (j, k) × (k, i). In this case,
the reachable states of this subautomaton should not give the output (<, <, <)
nor (>, >, >). �

Note also that due to this definition, an A-k-automatic permutation is equivalent
to a very specific two-dimensional [k, k]-automatic word with entries γij over the
alphabet {<, >, =}. For the properties of two-dimensional automatic words, see
Chapter 14 of [1].

Our third and last definition of k-automatic permutations involves k-kernels.
Similarly to words, let us define the k-kernel of a permutation α = α0α1 . . . as
the set of all permutations of the form αiαkn+iα2kn+i . . . for some n ≥ 0 and
0 ≤ i < kn (interpreted as N-permutations).

Definition 2.10. A permutation is K-k-automatic if its k-kernel is finite. The
class of all K-k-automatic permutations is denoted by Kk.

The main result of the paper is the following
Theorem 2.11. For each k ≥ 2, we have Vk � Ak � Kk.

Thus, it seems that no equivalence similar to that for words is possible for infinite
permutations.

In particular, it follows from the theorem that the Thue-Morse permutation
is A-2-automatic and K-2-automatic. The latter fact is easy to check since once
again there are only two elements in the 2-kernel. An automaton defining the
Thue-Morse permutation is shown below.

0 = 0 1 = 1

0 < 1 1 > 0

0 > 0 1 > 1 0 < 0 1 < 1
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The vertices of the automaton are labeled with the respective symbols wi and
wj of the Thue-Morse word and the relation between .wiwi+1 . . . and .wjwj+1 . . .

Note that the subautomaton in the lowest row corresponds to the trivial situ-
ation of i = j and is isomorphic to the usual Thue-Morse automaton. Moreover,
there are no edges incoming to this subautomaton from the outer vertices.

3. Proof of the inclusions

We begin with the simpler aspects of our proof.

Lemma 3.1. For all k > 1 we have Ak\Vk �= ∅.

Proof. The monotonic permutation α with just αi < αi+1 for all i belongs to
Ak\Vk since it can be constructed by a trivial automaton but is not valid, as
discussed earlier. �

Lemma 3.2. For all k > 1 we have Kk\Ak �= ∅.

Proof. We construct a permutation α from K2\A2 as follows: let us state that for
all j we have αj < αj+2 and α2j+1 < α2j+2. Finally, let us fix a binary word
u = u0u1 . . . over the alphabet {<, >} which is not 2-automatic and define the
relation γ2j,2j+1 between α2j and α2j+1 to be equal to uj , so that α2jujα2j+1.
Then the 2-kernel of α is of cardinality two: it just contains α itself and the
monotonically increasing permutation. So, α is K-2-automatic. On the other hand,
suppose that it is A-2-automatic. Then from the automaton determining γij from
the binary representations of i and j, the automaton determining the sequence of
γ2j,2j+1 = uj from the binary representation of j could be derived by a standard
procedure. But this automaton does not exist, a contradiction.

Examples for greater values of k may be constructed analogously: we simply
assume that all the elements of the k-kernel except for the permutation itself are
monotonic, and define the relations between neighbouring entries of the permuta-
tion in a complicated fashion. �

Lemma 3.3. For all k > 1 we have Ak ⊆ Kk.

Proof. We note that a permutation α can be interpreted as a specific two-
dimensional word (γij)∞i,j=0, and by the definition, α is A-k-automatic if and only if
that two-dimensional word is [k, k]-automatic. The k-kernel of α also corresponds
to the [k, k]-kernel of that word, which is finite (see Thm. 14.2.2 in [1]). �

Now let us prove the least trivial part of the result.
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Lemma 3.4. For all k > 1 we have Vk ⊆ Ak.

Proof. Let us consider a k-automatic word v generating a valid permutation α,
the k-uniform morphism ϕ and the coding c such that v = c(w), where the infinite
word w = ϕ(w) = w0w1 . . . over a finite alphabet Δ of cardinality d is a fixed
point of ϕ : Δ → Δk. We shall use ϕ and c to construct directly the automaton
A = (Q, (Σk)2, δ, q0, {<, >, =}, τ).

In what follows for all n ≥ 0 we shall use the notation T nw for the shift
wnwn+1 . . . of the sequence w. For finite or infinite words u′ = u′

0u
′
1 . . . over an

alphabet Δ′ and u′′ = u′′
0u′′

1 . . . over Δ′′ we shall use the notation u′ × u′′ for the
word (u′

0 × u′′
0)(u′

1 × u′′
1) . . . over the alphabet Δ′ × Δ′′.

Let us denote the set of all factors of w of length 2 by P , so that P ⊆ Δ2. The
number p of such factors is not greater than d2. Now consider the product P × P
and denote by SP×P the set of all permutations of the elements of P × P and the
new symbol � which is a marker. Thus the number of such permutations is equal
to (p2 + 1)! ≤ (d4 + 1)!

The set SP×P is the set of the states of the automaton A. Denote by [a]k the
integer whose k-ary representation is the string a ∈ Σ∗

k . Then the state corre-
sponding to the input a × b ∈ (Σ2

k)∗ is the following: first, order all the factors of
length 2 of T [a]kw × T [b]kw in order of appearance; then �; then all the remaining
words of P × P in any fixed order (say, in the lexicographic order).

The starting state q0 corresponds to the input 0× 0 and thus is equal to (a1 ×
a1, a2 × a2, . . . , ap × ap, �, . . .). Here a1, . . . , ap are the factors of w of length 2 in
order of appearance: we count overlapping factors as well, that is, we take the
sequence w0w1, w1w2, w2w3, etc., and erase all words which we have met before.
The final dots indicate all the other elements of P × P arranged in lexicographic
order.

Now let us define the transition function δ. Given a state q = (s1t1 ×
p1r1, . . . , sltl × plrl, �, . . .), where sm, tm, pm, rm ∈ Δ for all m, and a pair i × j,
where 0 ≤ i, j < k, we define the state δ(q, i × j) as follows.

First for each 0 ≤ i, j < k let us define a function fij : P × P → (P × P )k as
follows. Let st×pr ∈ P ×P ; consider ϕ(st) = g0 . . . g2k−1 and ϕ(pr) = h0 . . . h2k−1.
Then fij(st × pr) = (gigi+1 × hjhj+1, gi+1gi+2 × hj+1hj+2, . . . , gi+k−1gi+k ×
hj+k−1hj+k).

Now to define δ(q, i × j) we write down successively the elements of fij(s1t1 ×
p1r1), . . ., fij(sltl × plrl), and then read them from left to right deleting the ele-
ments which have appeared in the string before. The resulting sequence of elements
of P × P is the part of δ(q, i × j) preceding the diamond, so that it remains to
complete it with � and then by all the other elements of P ×P in the lexicographic
order.

Let us show that if a state q describes the order of elements of length 2 of
T [a]kw×T [b]kw for some a× b ∈ (Σ2

k)∗, then the state δ(q, i× j) does describe the
order of elements of length 2 of T [ai]kw × T [bj]kw. In fact, it is evident from the
construction that if siti appears for the first time at the position numbered n of
T [a]kw, then ϕ(siti) = g0 . . . g2k−1 appears in ϕ(T [a]kw) = T [a0]kw at the position
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numbered kn. For T [b0]kw we can make the analogous statement; so, gi . . . gi+k ×
hj . . . hj+k really appears in T i(T [a0]kw) × T j(T [j0]kw) = T [ai]kw × T [bj]kw at the
position numbered kn. Now our procedure just considers successively the k factors
of length 2 of gi . . . gi+k × hj . . . hj+k; some of them have appeared earlier and are
excluded, the others continue the sequence δ(q, i× j). Words of P ×P which have
never appeared in this construction never appear in T [ai]kw×T [bj]kw and are just
listed after the diamond.

It remains to define the function τ : Q → {<, >, =} as follows. For a state
q = (s1t1 × p1r1, . . . , sltl × plrl, �, . . .) describing the order of two-letter factors of
some T [a]kw×T [b]kw consider the sequence of pairs c(s1)×c(p1), c(t1)×c(r1), c(s2)×
c(p2), c(t2) × c(r2), . . . , c(sl) × c(pl), c(tl) × c(rl) and consider the first of these
pairs with non-equal elements, say, c(t)γc(r) with γ ∈ {<, >}. It indicates the first
situation where T [a]kv and T [b]kv differ and thus determine the order between the
respective numbers. So, τ(q) = γ. If such a pair of non-equal elements does not
exist, it means precisely that T [a]kv = T [b]kv. If a = b, this is a normal situation,
corresponding to τ(q) equal to =. If a �= b and thus [a]k �= [b]k, this means that
the sequence v = c(w) is ultimately periodic, and thus the permutation associated
with it is not well-defined.

Thus, for each aperiodic automatic word we have constructed an automaton
defining the associated permutation. The lemma is proved. �

Note that the number of states of the automaton constructed is O(d4!), where
d is the cardinality of the alphabet of the fixed point w. In all the examples we
considered, it was possible to obtain an automaton of a much more smaller size:
for example, the automaton for the Thue-Morse permutation given above contains
only 8 states instead of 16! states of our general construction. However, our method
of proof does not allow us to obtain a better general bound.

4. Non-automatic word generating an automatic
permutation

Suppose that a permutation α is generated by a word w and is k-automatic
(according to any of the above definitions). Does it imply that the word w is
k-automatic? The answer to this question is negative.

Example 4.1. Consider the word u = u0u1 . . . over the alphabet {0, 1, 2} ob-
tained from the Thue-Morse word wTM = w0w1 . . . by substituting some 1s by
2s. More precisely, we write un = 2 instead of wn = 1 if and only if the number
.wnwn+1wn+2 . . . is greater than some constant C chosen so that the frequency of
2s in u is irrational. Note that such a constant exists since we can always define
the needed irrational frequency as the limit of a sequence of increasing rational
frequencies. In all the other cases, we put un = wn.

Then clearly u generates the same permutation αTM as the Thue-Morse word
since the order between any two entries is preserved under our transformation.
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In particular, the generated permutation is 2-automatic according to all the three
definitions; but the word u is not k-automatic for any k since the frequency of 2
is irrational (see Thm. 8.4.5. from [1]).

Acknowledgements. An automaton recognizing the permutation generated by an auto-
matic word could be constructed also with a technique due to Allouche et al. [2, 4]. We
are grateful to Prof. J. Shallit for pointing out the references above and for other useful
comments.
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[4] É. Charlier, N. Rampersad and J. Shallit, Enumeration and Decidable Properties of Auto-
matic Sequences, Lect. Notes Comput. Sci. 6795 (2011) 165–179.

[5] G. Christol, T. Kamae, M.M. France and G. Rauzy, Suites algébriques, automates et sub-
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