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EASY LAMBDA-TERMS ARE NOT ALWAYS SIMPLE
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Abstract. A closed λ-term M is easy if, for any other closed term N ,
the lambda theory generated by M = N is consistent. Recently, it has
been introduced a general technique to prove the easiness of λ-terms
through the semantical notion of simple easiness. Simple easiness im-
plies easiness and allows to prove consistency results via construction
of suitable filter models of λ-calculus living in the category of complete
partial orderings: given a simple easy term M and an arbitrary closed
term N , it is possible to build (in a canonical way) a non-trivial fil-
ter model which equates the interpretation of M and N . The question
whether easiness implies simple easiness constitutes Problem 19 in the
TLCA list of open problems. In this paper we negatively answer the
question providing a non-empty co-r.e. (complement of a recursively
enumerable) set of easy, but not simple easy, λ-terms.
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1. Introduction

Lambda theories are congruences on the set of lambda-terms which contain
β-conversion. Lambda theories arise by syntactical or by semantic considera-
tions. Indeed, a λ-theory may correspond to a possible operational semantics of
λ-calculus, as well as it may be induced by a model of λ-calculus through the kernel
congruence relation of the interpretation function. Lambda calculus has been origi-
nally investigated by using mainly syntactical methods (see Barendregt’s book [7]).
Syntactical proofs of consistency of remarkable λ-theories (for example, the the-
ory equating all unsolvable λ-terms) were given in Barendregt’s thesis [6]. Many
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other interesting examples of consistent λ-theories are studied in [7], Chapters 16
and 17, most of the time syntactically.

Since syntactic techniques are usually difficult to use in the study of λ-theories,
semantical methods have been extensively investigated. After the first model,
found by Scott in 1969 in the category of complete lattices and Scott continu-
ous functions, a large number of mathematical models for λ-calculus, arising from
syntax-free constructions, have been introduced in various Cartesian closed cat-
egories (ccc, for short) of domains and were classified into semantics according
to the nature of their representable functions, see e.g. [7, 12, 37]. Scott continu-
ous semantics [39] is the class of reflexive cpo-models, that are reflexive objects
in the category Cpo whose objects are complete partial orders and morphisms
are Scott continuous functions. The stable semantics (Berry [16]) and the strongly
stable semantics (Bucciarelli and Ehrhard [18]) are refinements of the continuous
semantics, introduced to approximate the notion of “sequential” Scott continuous
function. Although Scott continuous semantics and the other mentioned seman-
tics are structurally and equationally rich (each of them has 2ℵ0 models inducing
pairwise distinct λ-theories, see Kerth [31, 32]), nevertheless, they do not match
all possible operational semantics of λ-calculus, because there is a continuum of
λ-theories which are omitted by all ordered models of λ-calculus with a bottom
element (see Honsell and Ronchi [25]; Salibra [38]).

Some of the models in the above semantics, called webbed models, are built
from lower level structures called “webs” (see Berline [12] for an extensive survey).
The simplest class of webbed models is the class of graph models, which was
isolated in the seventies by Plotkin [37], Scott [40] and Engeler [23], within the
continuous semantics. The class of graph models contains the simplest models
of λ-calculus, is itself the easiest describable class, and represents nevertheless a
continuum of (non-extensional) λ-theories. Another example of a class of webbed
models, and the most established one, is the class of filter models. It was isolated
at the beginning of the eighties by Barendregt et al. [8], after the introduction of
the intersection type discipline by Coppo and Dezani [20]. Not all filter models
live in Scott continuous semantics: for example some of them lack the property
of representing all continuous functions, and others were introduced for the stable
semantics (see Honsell and Ronchi [24], Bastonero et al. [9]).

According to Jacopini [27] a closed λ-term M is easy if, for any other closed
term N , the λ-theory generated by the equality M = N is consistent. Easy terms
can be considered computational processes of a completely non-informative kind.
Thus they are suitable candidates for representing inside λ-calculus the unde-
fined value of a partial recursive function. The paradigmatic unsolvable term
Ω ≡ (λx.xx)(λx.xx) was shown easy by Jacopini [27] (cf. [7], p. 402) by a syntactic
proof. Other syntactical proofs that certain terms are easy may be found in the
literature, e.g., (Jacopini and Venturini-Zilli [28,29]; Intrigila [26]; Berarducci and
Intrigila [11]; Kuper [34]).

Baeten and Boerboom gave in [5] the first semantical proof of the easiness of
Ω by showing that, for all closed terms M one can build a graph model satisfying
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the equation Ω = M . Baeten and Boerboom build their graph model by a method
of “forcing”, which, although much simpler than the forcing techniques used in set
theory, is somewhat in the same spirit. Forcing considerations have been extended
by Zylberajch [44] to prove the simultaneous easiness of the members of some
infinite family of easy terms (see also Berline and Salibra [14] and Berarducci [10]).
However, the semantical methods via graph models have concrete limitations. For
example, no semantical proof of the easiness of ω3ω3I (where ω3 ≡ λx.xxx and
I ≡ λx.x) via graph models can exist, in contrast to the case Ω, since Kerth [30]
has shown that no graph model satisfies the identity ω3ω3I = I. Easiness of the
term ω3ω3I was proved syntactically in (Jacopini and Venturini-Zilli [29]), but was
only given a semantic proof in (Alessi et al. [3]), where the authors build, for each
closed term M , a filter model of ω3ω3I = M .

Alessi and Lusin in [2] introduced a general technique to prove the easiness of λ-
terms through the notion of simple easiness. This notion implies easiness and can
be handled in a natural way by semantic tools. It allows to prove consistency results
via construction of suitable filter models of λ-calculus living in the category Cpo:
given a simple easy term M and an arbitrary closed term N , it is possible to build
(in a canonical way) a non-trivial filter model which equates the interpretation of
M and N . In [4] Alessi et al. prove in such a way the easiness of several terms.
Moreover, simple easiness is interesting in itself, since it has to do with minimal
sets of axioms which are needed in order to assign certain types to easy terms.

The TLCA list of open problems is a list of twenty-two problems that aims at
collecting unresolved questions in the subject areas of the TLCA (Typed Lambda
Calculi and Applications) series of conferences. Problem 19 in the TLCA list was
posed by Alessi and Dezani-Ciancaglini in 2002 (see [1]) and asks whether easiness
implies simple easiness. In this paper we negatively answer the question, providing
a non-empty co-r.e. (i.e. it is the complement of a recursively enumerable set) set
of easy, but non simple easy, λ-terms.

Outline of the proof. The main idea is to apply computability theory in the
context of the models of λ-calculus and to consider the order theory Ord(A) =
{(M, N) : �M�A ≤A �N�A} of a partially ordered model A, as was done in [15].
The key step for the proof is the construction of a partially ordered model P with
the following properties:

(i) Ord(P) ⊆ Ord(F), for every filter model F that lives in Cpo;
(ii) the set of closed λ-terms N such that �N�P ≤ �λx.x�P is co-r.e.

We now briefly explain how such properties are obtained by our construction.
First of all we observe that for any filter model F in Cpo and any inequality

M�N which fails in F, i.e. , �M�F �≤F �N�F there is a finite piece of F which is
responsible for this failure. To such finite piece, let’s say F0, which is just a partial
model of λ-calculus rather than an actual one, we apply a completion procedure
whose outcome is a model Fω of λ-calculus such that M�N still fails in Fω. Now
P is defined as the direct product of the completions of all finite pieces of filter
models; as a direct product of models, P itself is a model and by construction
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every inequality which holds in P also holds in every filter model in Cpo. This
explains property (i).

The completion procedure that we use is also effective and the web of the
completion Fω of a finite piece F0 of a filter model admits a numeration and
has effectivity properties that allow to prove that the set of closed λ-terms N
such that �N�Fω ≤ �λx.x�Fω is co-r.e. . Moreover, by construction, P itself is an
effective product of effective structures, so that it is possible to semi-decide the set
of closed λ-terms whose interpretation in P is not below �λx.x�P. This roughly
explains property (ii).

With these properties at hand we are now in the position of exhibiting a non-
empty set of easy but non-simple easy terms.

By property (ii) the set X = {N : N closed and �N�P ≤ �λx.x�P} is a non-
empty beta-closed co-r.e. set of λ-terms. Moreover, the set E of all easy terms is
also beta-closed and co-r.e.; now a theorem of Visser [43] allows us to say that
E ∩ X is co-r.e. and non-empty too. Finally, using property (i) we can prove that
the assumption of simple easiness for a term in E ∩ X leads to the contradiction
of Böhm’s theorem [17], so that the set E ∩X witnesses the existence of easy but
non-simple easy terms.

2. Preliminaries

If A is a set, then we denote by P(A) the power set of A and by Pf(A) the set
of all finite subsets of A. We write a ⊆f A for a ⊆ A and a is finite. If f : A → B
is a function, and a ⊆ A, then we define f(a) = {f(α) : α ∈ a}.

We denote by N the set of natural numbers. A set X ⊆ N is r.e. if it is the
domain of a partial recursive function. The complement of an r.e. set is called a
co-r.e. set. If both X and its complement are r.e. , X is called decidable.

Let (D,≤) be a poset. A subset X ⊆ D is directed if, for all u, v ∈ X , there
exists z ∈ X such that u ≤ z and v ≤ z. A poset D is a complete partial order
(cpo, for short) if it has a least element (denoted by ⊥D) and every directed set
X ⊆ D admits a least upper bound (denoted by �X). If D is a cpo, then [D → D]
denotes the cpo of Scott continuous functions from D to D ordered pointwise.

An element d of a cpo D is called compact if for every directed X ⊆ D we have
that d ≤ �X implies d ≤ e for some e ∈ X . We write K(D) for the collection of
compact elements of D.

An algebraic cpo D is a cpo such that for every x ∈ D the set {d ∈ K(D) : d ≤ x}
is directed and x is its least upper bound. An algebraic lattice is a complete lattice
which is an algebraic cpo.

Given two objects A, B of a category C, the set of all morphisms f : A → B is
denoted by C(A, B). A category C is Cartesian if, and only if, it has the terminal
object � and finite products A×B of all objects A, B. More precisely for all objects
A, B one has a natural isomorphism C(A, B × C) ∼= C(A, B) ×C(A, C) obtained
via the projections π1, π2 and the pairing operation 〈·, ·〉 that given two morphisms
f : A → B, g : A → C returns a morphism 〈f, g〉 : A → B × C. The product
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of morphisms f : A → B and g : A′ → B′ is given by f × g = 〈f ◦ π1, g ◦ π2〉 :
A × A′ → B × B′.

The set of points of an object A is C(�, A); A has enough points if for all
f, g ∈ C(A, A) such that f �= g there exists a point p of A such that f ◦ p �= g ◦ p.
A category has enough points if each of its objects has enough points.

A Cartesian closed category (ccc, for short) is a Cartesian category with expo-
nents: that is, a category in which the collection of morphisms between two objects
can be internalized as an object itself. In order to be precise we report explicitly
the data and the equations they must satisfy.

Definition 2.1. A category C is a ccc iff it is Cartesian and for all objects A, B, C
there exist an object BA, a morphism ev : BA × A → B and a map cur : C(C ×
A, B) → C(C, BA) which satisfy:

ev ◦ (cur(f) × id) = f cur(ev ◦ (g × id)) = g

for all f : C × A → B, g : D → BA.

The category Cpo of cpos and Scott continuous functions is a ccc with enough
points. By ALat we denote the full subcategory of Cpo determined by the al-
gebraic lattices; ALat is a ccc too. Then the points of a cpo D are exactly the
elements of its underlying set and the space Cpo(D, E) of morphisms is the same
thing as the exponent ED, i.e. the space [D → E ] of Scott continuous functions.
Evaluation morphisms are defined by ev(f)(x) = f(x).

3. λ-calculus and λ-theories

With regard to the λ-calculus we follow the notation and terminology of [7]. Λ
and Λo are, respectively, the set of λ-terms and of closed λ-terms. We denote αβ-
conversion by λβ. A λ-theory is a congruence on Λ (with respect to the operators of
abstraction and application) which contains λβ. A λ-theory is consistent if it does
not equate all λ-terms, inconsistent otherwise. The set of λ-theories constitutes a
complete lattice w.r.t. inclusion, whose top is the inconsistent λ-theory and whose
bottom is the theory λβ. The λ-theory generated by a set X of identities is the
intersection of all λ-theories containing X .

A λ-term M ∈ Λo is solvable if it has a head normal form, i.e. , M is β-convertible
to a term of the form λ	x.y 	N . A λ-term M ∈ Λo is unsolvable if it is not solvable.
Unsolvable terms have been regarded to as representing undefined computations.

A λ-term M ∈ Λo is easy if, for every other term N ∈ Λo, the lambda theory
generated by the identity M = N is consistent. Every easy term is unsolvable.

Of great relevance for the results of the present paper is a theorem of Visser [43];
he originally formulated his result in topological terms, but we prefer to report here
a rephrased version of his statement to avoid reference to unnecessary notions. Just
recall that a set of λ-terms is β-closed if it is the union of β-equivalence classes.
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Theorem 3.1 (Visser [43]). The intersection of two non-empty β-closed co-r.e.
sets of λ-terms is non-empty and co-r.e.

Lemma 3.2.

(i) The set E of all easy λ-terms is non-empty, β-closed, and co-r.e.;
(ii) every non-trivial, co-r.e. and β-closed subset of Λ contains a non-empty co-

r.e. set of easy λ-terms.

Proof.

(i) Clearly E is non-empty because it contains the term Ω = (λx.xx)(λx.xx),
and it is β-closed because if N is β-equivalent to an easy λ-term M , then
N itself can be consistently equated to any other closed λ-term. A closed
λ-term M is not easy if, and only if, there exists a closed λ-term N such
that the λ-theory generated by the identity M = N contains the identity
λxy.x = λxy.y (condition equivalent to inconsistency). Therefore E is also
co-r.e.;

(ii) follows immediately from Theorem 3.1. �

Another milestone that we use for our final proof is Böhm’s theorem. More
specifically, we will make use of an easy consequence of it, namely the incompa-
rability of closed distinct βη-normal forms in some partially ordered models of
λ-calculus.

Theorem 3.3 (Böhm [17]). If M, N are two closed distinct βη-normal forms,
then for all λ-terms P, Q there exists a sequence 	L of λ-terms such that M	L =β P

and N	L =β Q.

3.1. Models of lambda-calculus: λ-models and reflexive objects

in ccc’s

It took some time, after Scott gave his model construction, for consensus to
arise on the general notion of a model of the λ-calculus. There are mainly two
descriptions that one can give: the category-theoretical and the algebraic one.
Besides the different languages in which they are formulated, the two approaches
are intimately connected (see Koymans [33]). The categorical notion of model
is well-suited for constructing concrete models, while the algebraic one is rather
used to understand global properties of models (constructions of new models out
of existing ones, closure properties, etc.) and to obtain results about the structure
of the lattice of λ-theories.

3.1.1. λ-models

The algebraic description of models of λ-calculus proposes two kinds of struc-
tures, viz. the λ-algebras and the λ-models, both based on the notion of combina-
tory algebra. We will focus on λ-models.
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A combinatory algebra A = (A, ·, K, S) is a structure with a binary operation
called application and two distinguished elements K and S called basic combi-
nators. The symbol “·” is usually omitted from expressions and by convention
application associates to the left, allowing to leave out superfluous parentheses.
The class of combinatory algebras is axiomatized by the equations Kxy = x and
Sxyz = xz(yz). Intuitively elements on the left-hand side of an application are to
be seen as functions operating on arguments, placed on the right-hand side. Hence
it is natural to say that a function f : A → A is representable (in A) if there
exists an element a ∈ A such that f(b) = ab for all b ∈ A. For example the identity
function is represented by the combinator I = SKK.

Let EnvA be the set of A-environments, i.e. , the functions from the set Var of
λ-calculus variables to A. For every x ∈ Var and a ∈ A we denote by ρ[x := a] the
environment ρ′ which coincides with ρ everywhere except on x, where ρ′ takes the
value a. The aim is to define an interpretation �·�A : Λ×EnvA → A of λ-terms by
structural induction in such a way that:

�x�Aρ = ρ(x) and �MN�Aρ = �M�Aρ �N�Aρ .

Concerning the definition of �λx.M�Aρ , one would like to set it equal to an element
b ∈ A representing the function f(a) = �M�Aρ[x:=a].

Clearly this “definition” is not acceptable unless one is sure that f is repre-
sentable and that there is a canonical way of identifying an element that repre-
sents f .

The axioms of an elementary subclass of combinatory algebras, called λ-models,
were expressly chosen to make coherent the previous definition of interpretation
(see Meyer [36], Scott [41], Barendregt [7], Def. 5.2.7). In addition to five axioms
due to Curry (see [7], Thm. 5.2.5), the Meyer-Scott axiom is the most important
one in the definition of a λ-model. In the first-order language of combinatory
algebras it takes the following form

∀xy.(∀z. xz = yz) ⇒ 1x = 1y

where the combinator 1 = S(KI) is made into an inner choice operator. Indeed,
given any a, the element 1a represents the same function as a; by Meyer-Scott
axiom, 1c = 1d for all c, d representing the same function.

Let R(A) be the set of representable functions. When A is a λ-model it is
possible to prove that the two functions

F : A → R(A) G : R(A) → A
a �→ (b �→ ab) f �→ 1a where a represents f

are such that F ◦ G = idR(A) and the interpretation

�x�Aρ =ρ(x); �MN�Aρ =F
(
�M�Aρ

)(
�N�Aρ

)
; �λx.M�Aρ =G

(
a ∈ A �→ �M�Aρ[x:=a]

)
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is well-defined, since each function f(a) = �M�Aρ[x:=a] is representable. This is the
kind of interpretation we will refer to.

Each λ-model A induces a λ-theory, denoted here by Eq(A), and called the
equational theory of A. Thus, M = N ∈ Eq(A) if, and only if, M and N have
the same interpretation in A. If moreover A is endowed with a partial order
≤, which is compatible with application, then A also induces an order theory
Ord(A) = {(M, N) : �M�Aρ ≤ �N�Aρ for all environments ρ}. We write M�AN or
M�N for (M, N) ∈ Ord(A).

If M is a closed λ-term we write �M�A for �M�Aρ , since the interpretation of
closed λ-terms does not depend on the environment.

In conclusion the λ-models can be described by first-order axioms, but not by
equations only. Indeed the class of λ-models is not closed under substructures nor
under homomorphic images but it is closed under direct products.

3.1.2. Reflexive objects in ccc’s

Let C be a category. Then a pair (F, G) is a retraction pair from an object A
into an object B if F : B → A and G : A → B are two morphisms satisfying
F◦G = idA. The categorical description of a model of λ-calculus consists of a ccc
C together with a triple (U, F, G) such that (F, G) is a retraction pair from UU

into U : one such object U is called a reflexive object.
For the sake of our paper, we rely on a theorem of Koymans [33] which says

that if U = (U, F, G) is a reflexive object with enough points in a ccc, then the
set C(�, U) of morphisms from the terminal object to U can be endowed with the
structure of a λ-model where application is given by x · y = ev ◦ 〈F ◦ x, y〉 and the
basic combinators are suitable points of U .

Let D = (D, F, G) be a reflexive object in Cpo. Then the points of D are exactly
the elements of the underlying set of D and the space of morphisms Cpo(D,D)
is the space [D → D] of Scott continuous endofunctions. Since Cpo has enough
points, the λ-terms are interpreted as elements of D.

3.2. Filter models

In this section we introduce the class of filter models of λ-calculus, first intro-
duced by Coppo et al. in [21].

We remark that a filter model F lives in Cpo if F is a reflexive algebraic lattice:
this implies that all continuous endo-functions are representable in F, viewed as
a λ-model. Not all filter models live in Cpo, as some of them fail to represent all
continuous functions: such failure (or non-failure) for a filter model F depends on
the properties of the extended abstract type structure on which F is built.

Definition 3.4. (Coppo et al. [21], Def. 1.1) An extended abstract type structure
(eats, for short) is a structure S = (S,≤,∧,→, ω), where S is a set, ω ∈ S, ∧
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and → are binary functions over S and ≤ is a binary relation on S, satisfying the
following axioms and rules:

α ≤ ω ω ≤ ω → ω (α → β) ∧ (α → β′) ≤ α → (β ∧ β′)

α ∧ β ≤ α α ∧ β ≤ β α ≤ α ∧ α

α ≤ α′ β ≤ β′

α ∧ β ≤ α′ ∧ β′

α′ ≤ α β ≤ β′

α → β ≤ α′ → β′

α ≤ α′ α′ ≤ β

α ≤ β

Observe that ≤ is a preorder on S. It is customary to define an equivalence
relation ∼ on types as follows: α ∼ β iff α ≤ β ≤ α. For example ω ∼ ω → ω,
α ∼ α for all α ∈ S; the operator ∧ is a meet operator modulo ∼.

A filter of an eats S is a non-empty subset X ⊆ S which is upward closed
w.r.t. ≤ and closed under ∧; the filter generated by a subset Y ⊆ S is the set
↑Y = {α ∈ S : ∃β1, . . . , βn ∈ Y. β1 ∧ · · · ∧βn ≤ α}. By FS we denote the set of all
filters of S, which is an algebraic lattice with respect to set inclusion, and whose
compact elements are the filters of the form ↑{α}, for α ∈ S.

Given FS , it is possible to define the following two continuous maps F : FS →
[FS → FS ] and G : [FS → FS ] → FS :

F (X)(Y ) = {β ∈ S : ∃α ∈ Y. α → β ∈ X}; G(f) = ↑{α → β ∈ S : β ∈ f(↑α)}.

However, the triple (FS , F, G) need not to be neither a reflexive object in the
category ALat, nor a model of the λ-calculus at all. There is a condition, isolated
in [21], Definition 2.12, that characterizes those eats S such that FS is a reflexive
algebraic lattice: this is formalized in the forthcoming theorem.

Theorem 3.5 (Coppo et al. [21]). The structure (FS , F, G) is a reflexive algebraic
lattice iff the following condition (C3) holds in S, for all αi, βi, γ, δ ∈ S:

(C3) if
∧n

i=1(αi → βi) ≤ γ → δ, then either ω ≤ δ or ∃J ⊆ {1, . . . , n} such
that J �= ∅, γ ≤

∧
j∈J αj and

∧
j∈J βj ≤ δ.

Proof. If f ∈ [FS → FS ], then we have F (G(f))(Y ) = {β ∈ S : ∃α ∈ Y. α → β ∈
↑{α → β ∈ S : β ∈ f(↑α)}} = f(Y ) iff condition (C3) holds in S. �

3.3. Simple easy λ-terms

Alessi and Lusin [2] isolated a subclass of filter models, generated by what they
call easy intersection type systems, that they used to prove the easiness of some
λ-terms. Roughly speaking they say that a λ-term M is simple easy if for every
closed λ-term N there exists an easy intersection type system which generates a
filter model satisfying the identity M = N .
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An intersection type language T is a set of formulas, called types, built on a given
set of constants by means of the type constructors “∧” and “→”. The constant
ω belongs to every intersection type language. The letters α, β, γ, δ will range
over constants (different from ω), while σ, τ, . . . over types. Whenever we write an
expression like

∧
i∈I αi, we will implicitly assume that the set I is finite.

The concept of an easy intersection type theory over an intersection type lan-
guage was defined for the first time in Alessi et al. [3], Definition 2, (see also [2],
Def. 1.2).

Definition 3.6 (Alessi et al. [3], Def. 2). An easy intersection type theory (eitt,
for short) over an intersection type language T is the set of inequalities of the form
σ ≤ τ (σ, τ ∈ T) derivable from a collection T of axioms and rules such that:

(1) T contains the axiom and the rules characterizing eats’s (and no further rules);
(2) T may only contain additional axioms of the following two shapes: α ≤ β or

α ∼
∧

i∈I(γi → τi), where α, β, γi are constants with α, β �≡ ω, and τi ∈ T;
(3) for each constant α �≡ ω there exists exactly one axiom of the shape α ∼∧

i∈I(γi → τi);
(4) if T contains α ∼

∧
i∈I(γi → τi) and β ∼

∧
j∈J (δj → σj), then T contains also

α ≤ β iff, for each j ∈ J , there exists ij ∈ I such that δj ≤ γij and τij ≤ σj .

We ambiguously denote by T the eitt generated by the set T of rules and axioms
and we write σ ≤T τ to indicate that σ ≤ τ is derivable from T . The items (1)-
(4) of the above Definition 3.6 have different purposes: some of them are taken
from [21] and allow the construction of a reflexive algebraic lattice out of a set of
inequalities over an intersection type language, while others are proper to Alessi
and Lusin [2] and concern technicalities of their constructions.

What is important for us is that the following theorem holds.

Theorem 3.7 ([2]). Every eitt T is an eats that satisfies condition (C3) and hence
(FT , F, G) is a reflexive algebraic lattice.

Let T ,S be eitt’s over the type languages T and S respectively. We say that S
is a conservative extension of T , written T � S, if T ⊆ S and, for all τ, σ ∈ T,
τ ≤T σ iff τ ≤S σ.

Definition 3.8 (Alessi and Lusin [2]). An unsolvable term M is simple easy if
for every eitt T over the type language T and every type τ ∈ T there exists a
conservative extension S of T such that σ ∈ �M�FS ⇐⇒ ∃σ′ ∈ �M�FT . σ′∧τ ≤S
σ, for all types σ in the type language of S.

Roughly speaking, Definition 3.8 says that given an arbitrary intersection type
τ , one can find a suitable pre-order on types which allows to derive τ for M .

Theorem 3.9 ([2]). Given a fixed simple easy term M , for every closed λ-term
N there exists a non-trivial eitt T , and thus a filter model FT living in Cpo, such
that �M�FT = �N�FT .
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We refer the reader to [2], Theorem 3.5, for the complete proof of Theorem 3.9
with detailed construction of the filter model FT . The following corollary explains
the importance of simple easiness.

Corollary 3.10. Every simple easy term is easy.

4. Information systems for algebraic lattices

Algebraic lattices have a representation as lattices of closed elements of closure
operators. In this section we define closure operators through a suitable class of
information systems.

Information systems were introduced by Scott in [42] to give an appealing and
suggestive representation of Scott domains. An information system consists of a
set of tokens endowed with an entailment relation and a consistency predicate.
It determines a Scott domain whose elements are those sets of tokens which are
consistent and closed with respect to the entailment relation; the ordering is just
set inclusion. Vice versa a Scott domain defines an information system through its
compact elements.

Warning. For the purposes of this paper, what we call information system
is actually a minor modification of the original structure, expressive enough to
represent all algebraic lattices. In particular we drop the consistency predicate
from the original definition.

Definition 4.1. An information system is a pair A = (A,�A), where A is a non-
empty set of tokens, and �A⊆ Pf(A)×Pf(A) is a reflexive transitive binary relation
satisfying the following condition:

a �A b1, a �A b2, c ⊇f a ⇒ c �A b1 ∪ b2.

As a matter of notation, we write a �A α for a �A {α}.
Notice that

(i) a �A b iff a �A β for all β ∈ b;
(ii) ai �A bi (i = 1, . . . , n) imply a1 ∪ · · · ∪ an �A b1 ∪ · · · ∪ bn;
(iii) a �A ∅.

An algebraic closure operator is any map (·) : P(A) → P(A) satisfying the
following conditions:

(i) x ⊆ x;
(ii) x = x;
(iii) x ⊆ y ⇒ x ⊆ y;
(iv) x = ∪a⊆fxa.

Proposition 4.2.

(i) Let A = (A,�A) be an information system. Then, the function (·)A : P(A) →
P(A), defined by xA = ∪{b : ∃a ⊆f x. a �A b}, is an algebraic closure
operator;



302 A. CARRARO AND A. SALIBRA

(ii) let c : P(A) → P(A) be an algebraic closure operator. Then, the pair Ac =
(A,�Ac), defined by a �Ac b iff b ⊆f c(a), is an information system;

(iii) the two transformations are inverses of each other.

A subset x ⊆ A is closed if xA = x. The set of all closed sets ordered by inclusion
is an algebraic lattice, denoted by A+.

Proposition 4.3. Every algebraic lattice L is isomorphic to the algebraic lattice
of the closed elements of a suitable information system.

Proof. Define an information system KL = (K(L),�KL), where K(L) is the set of
compact elements of L, and a �KL b iff �b ≤ �a. �

Definition 4.4. Let A = (A,�A) be an information system. We define another
information system A ⇒ A = (Pf(A) × Pf(A),�A⇒A) by setting:

{(a1, b1), . . . , (an, bn)} �A⇒A (c, d) iff
⋃

{bi : c �A ai} �A d.

The information system A ⇒ A will be called the exponential of A.

Proposition 4.5. The algebraic lattice [A+ → A+] of all Scott continuous func-
tions from A+ into A+ is isomorphic (in the category ALat) to the algebraic
lattice (A ⇒ A)+.

Proof. We define two continuous functions gph : [A+ → A+] → (A ⇒ A)+ and
fun : (A ⇒ A)+ → [A+ → A+] as follows:

gph(f) = {(a, b) : b ⊆f f(aA)}; fun(x)(y) =
⋃

{b : ∃a ⊆f y. (a, b) ∈ x},

for all continuous functions f : A+ → A+, all closed subsets x ∈ (A ⇒ A)+ and
all y ∈ A+. Then we have fun(gph(f))(y) =

⋃
{b : ∃a ⊆f y. b ⊆f f(aA)} = f(y)

and gph(fun(x)) = {(a, b) : ∃a′ ⊆f aA. (a′, b) ∈ x} = x. �

5. Webbed models of λ-calculus

Some of the models of λ-calculus are called webbed models because they are
built from lower level structures called “webs” (see Berline [12,13] for an accurate
survey). Typically a web is a set with additional structure and a webbed model is
a partial order (usually a domain) whose elements are special subsets of the web.
We now introduce a class of webbed models of λ-calculus arising from information
systems that include the filter models of λ-calculus living in Cpo.

Let A,B be information systems. If f : A → B is a function, we define
f∗ : A+ → B+ and f∗ : B+ → A+ as follows:

– f∗(x) = {f(α) : α ∈ x}B, for every closed set x of A;
– f∗(y) = {α : f(α) ∈ y}A, for every closed set y of B.
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Lemma 5.1. The functions f∗, f∗ are Scott continuous.

The maps f∗ and f∗ are candidate to be a retraction, but we need more hy-
potheses.

The notions of backward morphism and forward morphism were introduced
in [19].

Definition 5.2. A function f : A → B is a backward morphism (b-morphism, for
short) from A = (A,�A) to B = (B,�B) if, for all a ⊆f A and b ⊆f B, it satisfies:

(H1) f(a) �B f(b) ⇒ a �A b The map f is a forward morphism (f-morphism, for
short) from A into B if it satisfies:

(H2) a �A b ⇒ f(a) �B f(b).

We leave to the reader the easy relativization of the notions of b-morphism and
f-morphism to the case in which f is a partial map.

Proposition 5.3. Let f : A → B be a b-morphism. Then (f∗, f∗) is a retraction
pair from A+ into B+.

Proof. From (H1) it follows f∗ ◦ f∗ = idA+ . �

Definition 5.4. A reflexive information system (a ris, for short) is a pair A =
(A,→A) where A is an information system and →A is a b-morphism from A ⇒ A
into A.

The set of tokens of A is called the web of A. In the following we will write
a →A b for →A (a, b).

Corollary 5.5. Let A = (A,→A) be a ris, F = fun ◦(→A)∗ and G = (→A)∗◦ gph.
Then A+ = (A+, F, G) is a reflexive object in the category ALat through the
retraction pair (F, G) from [A+ → A+] into A+.

The reflexive object A+ will be called a ris-model.

5.1. Examples of ris-models

In this subsection we explain how some known classes of models can be viewed
as examples of ris-models.

5.1.1. Krivine/graph models as ris models

A preordered set (A,≤), where A is non-empty, defines an information system
A = (A,�A) as follows: a �A b iff ∀β ∈ b.∃α ∈ a. α ≥ β. In this context any
function φ : Pf(A) × Pf(A) → A satisfying the following implication:

• if φ(a, a′) ≤ φ(b, b′), then a �A b and b′ �A a′

is a b-morphism, making A = (A, φ) a ris. Krivine models of λ-calculus [12],
Section 5.6.2, arise from such ris’s. Graph models [12], Section 5.5, arise from the
restricted class of ris’s in which the preorder ≤ is the equality.
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5.1.2. Filter models as ris-models

The aim of the present section is to prove that every filter model living in Cpo is
a ris-model. This is of course an explanation of the reason why our result concerning
ris models does apply to the problem posed by Alessi and Dezani-Ciancaglini.

Let S = (S,≤S ,∧,→, ω) be an eats (see Sect. 3.2). As a matter of notation, if
a = {α1, . . . , αn}⊆f S we write ∧a as a shorthand for α1 ∧ . . . ∧ αn. We define an
information system AS = (S,�S) by setting a �S b (a, b ⊆f S) iff ∧a ≤S ∧b (a
similar observation appears already in [22]).

In the exponential AS ⇒ AS of AS we have {(a1, b1), . . . , (an, bn)} �AS⇒AS

(c, d) iff either ω ≤S ∧d or there exists J ⊆ {1, . . . , n}, J �= ∅ such that ∧c ≤S
∧(∪j∈Jaj) and ∧(∪j∈J bj) ≤S ∧d. This condition results directly by instantiating
the definition of the exponential AS ⇒ AS given in Definition 4.4.

In order to define a ris (AS , φS) we now define φS : Pf(S) × Pf(S) → S by
setting φS(a, b) = ∧a → ∧b.

Proposition 5.6. Let S be an eats satisfying condition (C3) as in Theorem 3.5.
Then

(i) AS = (AS , φS) is a ris;
(ii) the ris-model A+

S coincides with the filter model (FS , F, G) determined by the
eats S.

Proof.

(i) The function φS is a b-morphism, i.e., it satisfies the implication

{φS(a1, b1), . . . , φS(an, bn)} �AS φS(a, b) ⇒
{(a1, b1), . . . , (an, bn)} �AS⇒AS (a, b)

if, and only if, S satisfies condition (C3). Thus AS is a ris;
(ii) recall by Corollary 5.5 that the maps F ′ and G′, defined by F ′ = fun ◦ (φS)∗

and G′ = (φS)∗◦ gph, make A+
S a ris-model. Let X ⊆ S be a closed set of the

information system AS . Then X is upward closed w.r.t. ≤ and closed under
∧, so that it is a filter; conversely, every filter is a closed subset of S. Therefore
A+

S = FS . Moreover the closure operator (·)S coincides with ↑(·). Now recall
the definitions of F : FS → [FS → FS ] and G : [FS → FS ] → FS from
Section 3.2, the definitions of gph and fun from the proof of Proposition 4.5;
look at Section 5 in order to work out the definitions of (φS)∗ and (φS)∗.

F ′(X)(Y ) =
⋃

{b ⊆f S : ∃a ⊆f Y. (a, b) ∈↑{(a, b) : ∧a → ∧b ∈ X}}
= {β ∈ S : ∃α ∈ Y. α → β ∈ X}
= F (X)(Y )

G′(f) = ↑{∧a → ∧b : (a, b) ∈ {(a′, b′) : b′ ⊆f f(↑a′)}}
= ↑{α → β ∈ S : β ∈ f(↑α)}
= G(f).
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This shows that the filter λ-model FS coincides with A+
S , and hence it is a

ris-model too. �

5.2. The interpretation of λ-terms in a ris-model

In this section we make explicit the definition of interpretation of a λ-term as a
closed subset of a ris, instantiating the more abstract definition of interpretation
in a λ-model (see Sect. 3.1.1).

Let A = (A,→A) be a ris and EnvA be the set of all finite environments, that
is, functions from V ar into Pf(A). The interpretation �M�Aρ of a λ-term M in a
finite environment ρ can be also described by a system of judgements of the form
ρ �A M : a (where a ⊆f A) whose intended meaning will be a ⊆f �M�Aρ . As usual,
we write ρ �A M : α for ρ �A M : {α}.

Two environments ρ and σ are called A-equivalent if {α : ρ(y) �A α} = {α :
σ(y) �A α} for all variables y. We can simultaneously define the interpretation
�M�Aρ of a λ-term M and show that this interpretation is independent of the
choice of A-equivalent environments:

�y�Aρ = {α : ρ(y) �A α}
�λy.M�Aρ = G(aA �→ �M�Aρ[y:=a]), where G = (→A)∗◦ gph

= {α : ∃d ⊆f A. d �A α and d ⊆f {a →A b : b ⊆f �M�Aρ[y:=a]}}
�MN�Aρ = F (�M�Aρ )(�N�Aρ ), where F = fun ◦ (→A)∗

=
⋃
{b : ∃a ⊆f �N�Aρ .∃x ⊆ A. x �A⇒A (a, b) and

x ⊆f {(c, d) : c →A d ∈ �M�Aρ }}
=

⋃
{b : ∃a ⊆f �N�Aρ .∃e ⊆f �M�Aρ . e = {c1 →A d1, . . . , cn →A dn},

a �A ∪ci and ∪ di �A b}.

We advise the reader to distinguish the entailment relation �A of the information
system A and the entailment relation �A associated with the ris A we will now
define.

The following are the deduction rules:

[r0]
ρ �A M : ∅

[r1]
ρ �A y : ρ(y)

ρ �A M : a ρ �A M : b a ∪ b �A c
[r2]

ρ �A M : c

ρ[y := a] �A M : b
[r3]

ρ �A λy.M : a →A b

ρ �A M : a →A b ρ �A N : a
[r4]

ρ �A MN : b

Notice that by rule (r2) we have that ρ �A M : a iff ρ �A M : α for all α ∈ a.

Proposition 5.7. Let A = (A,→A) be a ris and ρ be a finite environment. Then
b ⊆f �M�Aρ iff ρ �A M : b.
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Proof. We proceed by induction on the structure of terms. The base of the induc-
tion is obvious.

(M ≡ λy.P ): If b ⊆f �λy.P �Aρ then there exist ai →A bi (i = 1, . . . , n) such
that bi ⊆f �P �Aρ[y:=ai]

and {ai →A bi : 1 ≤ i ≤ n} �A b. By induction hypothesis
ρ[y := ai]�A P : bi, so that by applying rule (r3) and (r2) we get first ρ�A λy.P :
ai →A bi and then ρ �A λy.P : {ai →A bi : 1 ≤ i ≤ n}. Finally, an application
of (r2) to this last entailment and to {ai →A bi : 1 ≤ i ≤ n} �A b provides
the conclusion. We now show the opposite direction. If we have ρ �A λy.P : b by
applying (r2) the conclusion easily follows. If we have applied (r3) then we have
that b = {c →A d} and ρ[y := c]�AP : d. By induction hypothesis d ⊆f �P �Aρ[y:=c],
so that by definition of interpretation c →A d ∈ �P �Aρ .

(M ≡ PQ): If b ⊆f �PQ�Aρ then there exist a ⊆ �Q�Aρ and ci, di (i ≤ n) such
that ci →A di ∈ �P �Aρ with a �A ci for all i and d1 ∪ · · · ∪ dn �A b. From the fact
that �Q�Aρ is closed, a ⊆ �Q�Aρ and a �A ci it follows that ci ⊆ �Q�Aρ . By induction
hypothesis we have that ρ �A Q : ci and ρ �A P : ci →A di, so that by rule (r4)
ρ�A PQ : di for all i = 1, . . . , n. Then ρ�A PQ : d1∪· · ·∪dn by rule (r2). Finally,
by applying rule (r2) to d1 ∪ · · · ∪ dn �A b and to ρ �A PQ : d1 ∪ · · · ∪ dn we get
ρ �A PQ : b. The opposite direction is easy. �

6. Completion method

When dealing with constructions of webbed models with special purposes, it is
indeed very useful to have canonical procedures for completing finite pieces of web.
This idea dates back to Longo [35] and has been further developed by Kerth [30].
This method is useful for building models satisfying prescribed constraints, such
as domain equations and inequations, and it is particularly convenient for dealing
with the equational theories of webbed models. The completion method presented
in this section has been fruitfully applied in [19] to show that the least extensional
λ-theory λβη cannot be the theory of a reflexive Scott domain in the category Cpo.

6.1. Partial ris’s

A partial reflexive information system (a partial ris, for short) is a pair A =
(A,→A), where A is an information system and →A: (A ⇒ A) ⇀ A is a partial
b-morphism. For the rest of the paper is very important to notice that λ-terms
can be interpreted as subsets of a partial ris A by using the above deduction rules
(r0)-(r1)-(r2)-(r4) and

ρ[y := a] �A M : b (a, b) ∈ dom(→A)
[r′3]

ρ �A λy.M : a →A b

A finite ris is a partial ris with a finite number of tokens.
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Definition 6.1. Let B = (B,→B) be a partial ris and C = (C,→C) be a ris.
We say that h : B → C is a ris f-morphism if h : B → C is an f-morphism of
information systems and the following further condition holds:

(H3) h(a →B b) = h(a) →C h(b), for all (a, b) ∈ dom(→B).

Lemma 6.2. If h is a ris f-morphism from a partial ris B = (B,→B) into a ris
C = (C,→C), then we have:

ρ �B M : a ⇒ h(ρ) �C M : h(a).

Proof. The proof is by induction on the length of the proof of ρ �B M : a.
Let π be a proof ρ �B y : ρ(y) consisting of an application of rule (r1). Then

h(ρ) �C y : h(ρ(y)) is trivially true.
Let π be a proof of ρ �B M : ∅ consisting of an application of rule (r0). Then

h(ρ) �B M : h(∅) = ∅.
Let π be a proof of ρ �B M : c consisting of an application of rule (r2) to a

proof π1 of ρ �B M : a and a proof π2 of ρ �B M : b, where a ∪ b �B c. Then

h(ρ) �C M : h(a) h(ρ) �C M : h(b) h(a ∪ b) = h(a) ∪ h(b) �C h(c)

ρ �C M : h(c)

follows from the hypothesis that h is an f-morphism from B into C, so that a∪b �B c
implies h(a ∪ b) �C h(c).

Let π be a proof of ρ�B λy.M : a →B b consisting of an application of rule (r′3)
to a proof π1 of ρ[y := a] �A M : b, assuming (a, b) ∈ dom(→B). Then

h(ρ[y := a]) = h(ρ)[y := h(a)] �C M : h(b)

h(ρ) �C λy.M : h(a) →C h(b)

Let π be a proof of ρ �B MN : b whose conclusion is obtained by an application
of rule (r4), to a proof π1 of ρ �B M : a →B b and a proof π2 of ρ �B N : a. Then

h(ρ) �C M : h(a →B b) = h(a) →C h(b) h(ρ) �C N : h(a)

h(ρ) �C MN : h(b)

follows from the hypothesis that h(a →B b) = h(a) →C h(b). �

Definition 6.3. A partial ris A = (A,→A) is a subsystem of a ris B = (B,→B)
if the following conditions hold:

• A ⊆ B and �A = �B ∩ (Pf(A) × Pf(A));
• →A= →B ∩ ((Pf(A) × Pf(A)) × A).

Notice that the subsystem A of B is univocally characterized by the subset A
of B. In other words, given A ⊆ B, �A and →A are univocally characterized by
the conditions expressed in the above definition.
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6.2. The completion

Starting from a partial ris A = (A,→A), it is possible to obtain by “completion”
a (total) ris Aω = (Aω ,→ω) such that →ω and Aω extend respectively →A and
A.

The canonical completion Aω = (Aω ,→ω) of a partial ris A = (A,→A) (where
w.l.o.g. we assume A does not contain pairs) is defined as follows:

A0 = A; An+1 = An ∪ ((Pf(An) × Pf(An)) − dom(→A))

– Aω = ∪nAn;
– a �ω b iff (a ∩ A) �A (b ∩ A) and b ∩ (Aω − A) ⊆ a ∩ (Aω − A);
– Aω = (Aω ,�ω);

– a →ω b =

{
a →A b if (a, b) ∈ dom(→A)
(a, b) otherwise.

Lemma 6.4. The canonical completion Aω of a partial ris A is a ris.

Proof. First we observe that Aω is an information system, since the relation �ω

is an entailment. Moreover the map →ω is a total b-morphism from Aω ⇒ Aω to
Aω . �

Lemma 6.5. Let A = (A,→A) be a partial ris, which is a subsystem of a ris
B = (B,→B). Then there exists a ris f-morphism gω from the canonical completion
Aω of A into B.

Proof. Recall that Aω = ∪n∈NAn, where A0 = A and An+1 − A is a set of pairs.
We define gω by induction as follows:

gω(α) =

{
α, if α ∈ A0 = A;
gω(a) →B gω(b), if α ≡ (a, b) ∈ An+1 − An.

Condition (H2) of Definition 5.2 is straightforward to verify, since �ω coincides
with ⊇f for elements of Aω − A.

We now show condition (H3) of Definition 6.1: if (a, b) ∈ dom(→A) then
gω(a →ω b) = gω(a →A b) = a →A b = a →B b = gω(a) →B gω(b), because gω is
the identity restricted to the elements of A and →A=→B over the elements of
dom(→A).

If (a, b) /∈ dom(→A) then gω(a →ω b) = gω(a, b) = gω(a) →B gω(b) by definition
of gω over the pairs. �

Recall that an inequality M�N fails in a ris B if there exists a finite
B-environment ρ such that �M�Bρ �⊆ �N�Bρ .

The following is the main theorem of the section.
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Theorem 6.6. Let B = (B,→B) be a ris and M � N be an inequality which fails
in B. Then there exists a finite ris A such that M � N fails in the canonical
completion Aω of A.

Proof. The proof is divided into two parts.
In the first part we illustrate a way to construct, given a proof π of ρ �B M : α

a subset Aπ ⊆ B of tokens containing α. Intuitively, this will induce a finite
subsystem of B whose canonical completion satisfies: α is in the interpretation of
M . The construction is by induction on the height of proofs.

Let π be a proof of ρ �B y : ρ(y) consisting of an application of rule (r1). Then
we define Aπ = ρ(y).

Let π be a proof of ρ �B M : ∅ consisting of an application of rule (r0). In this
case define Aπ = ∅.

Let π be a proof of ρ �B M : c consisting of an application of rule (r2) to a
proof π1 of ρ�B M : a and a proof π2 of ρ�B M : b, where a∪ b �B c. In this case,
assume that we have already constructed Aπ1 and Aπ2 , define Aπ = Aπ1 ∪Aπ2 ∪ c.
Let π be a proof of ρ �B λy.M : a →B b consisting of an application of rule (r3)
to a proof π1 of ρ[y := a] �A M : b. In this case define Aπ = Aπ1 ∪ {a →B b}.

Let π be a proof of ρ�B MN : b whose conclusion is obtained by an application
of rule (r4), to a proof π1 of ρ�BM : a →B b and a proof π2 of ρ�BN : a. Assume
that we have already defined Aπ1 , Aπ2 ⊆ B. Then we define Aπ = Aπ1 ∪ Aπ2 ∪ b,
because a →B b ∈ Aπ1 and a ⊆ Aπ2 but it may happen that b �⊆f Aπ1 ∪ Aπ2 .

In the second part of the proof we use the above construction in order to exhibit
a finite ris A such that M � N fails in the canonical completion Aω of A.

Let α ∈ �M�Bρ − �N�Bρ for some finite B-environment ρ. By Proposition 5.7 we
have that α ∈ �M�Bρ iff there is a proof π of ρ �B M : α. Let A = Aπ be the
subset of B resulting from the construction described in the first part. Recall from
Definition 6.3 that �A and →A are univocally determined by the set A.

We let ρA be the A-environment defined by ρA(x) = ρ(x)∩A for every variable
x. It is evident that the proof π of ρ�B M : α can be relativized to the finite ris A
(so that it can be relativized to the canonical completion Aω of A) by obtaining a
proof πA of ρA �A M : α. It follows that α ∈ �M�Aω

ρA
. We now conclude the proof

of the theorem by showing that α /∈ �N�Aω
ρA

. Assume, by way of contradiction, that
α ∈ �N�Aω

ρA
. From Lemma 6.5 there exists a ris f-morphism gω : Aω → B. Since

α ∈ A, ρA(x) ⊆ A for every x, gω is the identity restricted to A and gω(ρA) = ρA,
then by Lemma 6.2 we have that gω(α) = α ∈ �N�BρA

⊆ �N�Bρ . This contradicts
the original hypothesis. �

7. Effectiveness

In this section we introduce the notion of an effective ris. The interested reader
may refer to [19] for a more general theory of effectiveness.

Definition 7.1. We say that a ris A = (A,→A) is effective if there exists a
bijective map σ from A onto the set N of natural numbers such that, after encoding,



310 A. CARRARO AND A. SALIBRA

the entailment relation �A is decidable and the function →A: Pf(A)×Pf(A) → A
is computable with a decidable range.

Theorem 7.2. The canonical completion of a finite ris is effective.

Proof. Let A = (A,→A) be a finite ris. By construction there exists a bijective
correspondence between Aω and the set N of natural numbers. The relation �ω is
trivially decidable because a �ω α iff either α ∈ a or a∩A �A α and A is a finite set.
Moreover, →ω is the identity map in the cofinite set Pf(Aω)×Pf(Aω)−dom(→A)
and →A is a finite function. �

Lemma 7.3. Let Aω be the canonical completion of a finite ris A. Then, after
encoding, we have:

(i) �N�Aω is r.e. , for every N ∈ Λo;
(ii) �λx.x�Aω is decidable;
(iii) {M ∈ Λo : �M�Aω ⊆ �λx.x�Aω} is a co-r.e. set of λ-terms.

Proof.

(i) Since �ω is decidable, the deduction rules (r0)-(r4) in Section 5.2 are effective.
Then the interpretation of a λ-term is r.e.;

(ii) the set �λx.x�Aω is the closure in Aω of the set {a →ω b : b ⊆f (a)Aω
}.

Formally, being ∅ the empty environment, we have:

�λx.x�Aω = {α : ∃d ⊆f X. d �ω α}, (see Sect. 5.2)
where X = {a →ω b : b ⊆f �x�Aω

∅[x:=(a)Aω
]
}

= {α : ∃ai, bi ⊆f Aω. {a1 →ω b1, . . . , an →ω bn} �ω α},
with ai �ω bi

= {(a, b) ∈ Aω − A : a �ω b} ∪ {α ∈ A : ∃ai, bi ⊆f A.

ai �A bi and {a1 →A b1, . . . , an →A bn} �A α}.

We outline an algorithm to decide the set �λx.x�Aω :
– given α ∈ Aω decide whether α ∈ A or α = (a, b) ∈ Aω − A;
(α ∈ A) Search the finite set A in order to find a1 →A b1, . . . , an →A bn,

which together entail α in A. Output “no” iff this search fails.
(α �∈ A) Output “yes” iff a �ω b (recall that �ω is decidable);

(iii) since �λx.x�Aω is a decidable closed subset of Aω, then {M ∈ Λo : �M�Aω �⊆
�λx.x�Aω} is r.e. , so that the complement is co-r.e. We outline an algorithm
to semi-decide {M ∈ Λo : �M�Aω �⊆ �λx.x�Aω}:
– Given M ∈ Λo, recursively enumerate the tokens of �M�Aω (this is pos-

sible by item (i)) and for each such token α run the algorithm that de-
cides whether α ∈ �λx.x�Aω (this is possible by item (ii)); as soon as
α /∈ �λx.x�Aω , stop and output “yes”. �
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8. The main theorem

We say that a finite ris has cardinality n ∈ N if it has exactly n tokens. We
remark that every finite ris is isomorphic to a finite ris whose set of tokens is a
finite subset of N.

We now define an effective numeration (Em)m∈N of all finite partial ris’s whose
tokens are natural numbers. Consider each natural number m as the encoding of
a triple m = 〈n1, n2, n3〉, where n1 codes a finite subset X1 ⊆ N, n2 codes a finite
subset X2 ⊆ Pf(N)×Pf(N), and n3 codes a finite subset X3 ⊆ Pf(N)×Pf(N)×N.

– If the pair X = (X1, X2) is an information system according to Definition 4.1,
and X3 is the graph of a partial b-morphism →X: (X ⇒ X ) ⇀ X , then we
define Em to be the finite ris X = (X ,→X ) defined by these data;

– otherwise Em is defined as the finite ris with empty web and completely unde-
fined b-morphism.

Recall that Em,ω is the completion of Em and that E+
m,ω, is a reflexive object in

ALat, so that it has the structure of a λ-model. Therefore the Cartesian product
P =

∏
m∈N

E+
m,ω is an algebraic lattice and a λ-model too (see Sect. 3.1), although

it is not necessarily neither a reflexive object in ALat nor a filter model at all.
The following two lemmas are essential for carrying out Theorem 8.3.

Lemma 8.1. The order theory Ord(P) of the Cartesian product P is contained
within the order theory of every ris-model. In particular, Ord(P) is contained
within the order theory of every filter model which lives in Cpo.

Proof. By Theorem 6.6 every inequality M � N , which fails in a ris-model, fails
in the canonical completion of a finite ris, and then in P too, since Ord(P) =⋂

k∈N
Ord(E+

k,ω). By Section 5.1.2 every filter model F which lives in Cpo is a
ris-model, so that Ord(P) ⊆ Ord(F). �

Lemma 8.2. For every non-trivial ris model A and every two closed distinct βη-
normal forms M, N we have �M�A �⊆ �N�A.

Proof. Let A be a non-trivial ris model and let M, N be closed distinct βη-normal
forms. By Theorem 3.3 there exists a sequence 	L of λ-terms such that M	L =β

λxy.y and N	L =β λxy.x; note that the interpretations �M	L�A and �N	L�A do not
depend on any environment. Now assuming, by contradiction, that �M�A ⊆ �N�A

and using the monotonicity of application in A we obtain that for arbitrary a, b ∈ A
it holds that a = �λxy.x�Aab = �M	L�Aab ⊆ �N	L�Aab = �λxy.y�Aab = b. This
contradicts the non-triviality of A. �

Theorem 8.3. There exists a non-empty co-r.e. set of easy terms that are not
simple easy.

Proof. We claim that the set X = {N ∈ Λo : �N�P ≤ �λx.x�P} is non-empty,
β-closed and co-r.e. Non-emptyness and β-closure of X are trivial. For the last
point, we show that the complement of X is r.e.
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We define a binary relation R as follows:

R(M, m) ⇐⇒ �M�Em,ω �⊆ �λx.x�Em,ω .

Recall by Lemma 7.3(i-ii) that, for every m, the set �λx.x�Em,ω is decidable
and that, for every m and M , the set �M�Em,ω is r.e. Note that by Lemma 8.2
R(λxy.xy, m) holds for all m.

Now we define an algorithm:

Interpretation(M, m, l)

with the following specification:

• takes as input a λ-term M and two numbers m, l and performs l steps of the
completion of Em. Call B the result of this partial completion. Since �λx.x�Em,ω

is decidable and �M�B is finite, then the algorithm outputs the pair (M, m), if
�M�B �⊆ �λx.x�Em,ω , and the pair (λxy.xy, m) otherwise.

The range of outputs of Interpretation(M, m, l) is exactly the predicate R.
Therefore the relation R(M, m) is r.e. and hence so is the predicate ∃m. R(M, m).
We conclude that Λo − X is r.e. since M ∈ Λo − X ⇐⇒ ∃m. R(M, m).

By Theorem 3.1 the intersection of the non-empty β-closed co-r.e. set X and
of the non-empty β-closed co-r.e. set E of all easy terms is co-r.e. and non-empty.
Let M ∈ X ∩ E. Assume, by contraposition, M to be simple easy, so that by
Theorem 3.9 there exists a non-trivial filter model F in the category Cpo such
that �M�F = �λxy.x�F. From M ∈ X it follows that �M�P ≤ �λx.x�P; therefore,
by Lemma 8.1 we obtain that �M�F ≤ �λx.x�F. Finally we obtain �λxy.x�F =
�M�F ≤ �λx.x�F and this contradicts Lemma 8.2. We conclude that M is easy
(since M ∈ E) but not simple easy. �
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