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ON THE SIZE OF TRANSDUCERS FOR BIDIRECTIONAL
DECODING OF PREFIX CODES

Laura Giambruno1 and Sabrina Mantaci1

Abstract. In a previous paper [L. Giambruno and S. Mantaci, Theo-
ret. Comput. Sci. 411 (2010) 1785–1792] a bideterministic transducer
is defined for the bidirectional deciphering of words by the method in-
troduced by Girod [IEEE Commun. Lett. 3 (1999) 245–247]. Such a
method is defined using prefix codes. Moreover a coding method, in-
spired by the Girod’s one, is introduced, and a transducer that allows
both right-to-left and left-to-right decoding by this method is defined.
It is proved also that this transducer is minimal. Here we consider the
number of states of such a transducer, related to some features of the
considered prefix code X. We find some bounds of such a number of
states in relation with different notions of “size” of X. In particular, we
give an exact formula for the number of states of transducers associ-
ated to maximal prefix codes. We moreover consider two special cases
of codes: maximal uniform codes and a class of codes, that we name
string-codes. We show that they represent, for maximal codes, the ex-
treme cases with regard to the number of states in terms of different
sizes. Moreover we prove that prefix codes corresponding to isomorphic
trees have transducers that are isomorphic as unlabeled graphs.
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1. Introduction

There are many reasons for decoding a message in both directions. The most
important is connected to data integrity. In fact when we use a variable length
code (VLC in short) for source compression (cf. [1, 8]), a single bit error in the
transmission of the coded word may cause catastrophic consequences during de-
coding, since the wrongly decoded symbol generate loose of synchronization; in
this way the error is propagated to the following symbols till the end of the file.
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Palermo, Italy. lgiambr@math.unipa.it; sabrina@math.unipa.it

Article published by EDP Sciences c© EDP Sciences 2012

http://dx.doi.org/10.1051/ita/2012006
http://www.rairo-ita.org
http://www.edpsciences.org


316 L. GIAMBRUNO AND S. MANTACI

In order to limit this error propagation, the compressed file is usually divided into
records. If a single error occurs in a record, the decoder tries to read the record
from the end to the beginning. If there is just one bit error in the coding of the
record, it is possible to avoid the error propagation and isolate it. In order to do
this we need codes that can be easily decoded in both directions. These are called
reversible variable length codes (RVLCs in short). Actually RVLCs are usually big
and difficult to construct (cf. [4]), whereas prefix codes over a k-letter alphabet,
i.e. sets of words where no word is a prefix of another one, are very easy to be
found, since they are in bijection with k-ary trees. A word encoded by a prefix
code can be easily decoded from left to right without any delay, but it looses this
property when we try to decode it from right to left.

Moreover, a very strong result for maximal prefix code due to Schützenberger
(cf. [3]), states that a maximal finite code is either prefix or with an infinite
deciphering delay. This means that for maximal codes the only ones that can be
decoded in both directions with a finite deciphering delay are the bifix codes, i.e.
the codes that are both prefix and suffix.

In 1999 Girod (cf. [6]) introduced a very interesting alternative method to en-
code words by using prefix binary codes, that allows to decode the encoded word
both from left to right and from right to left by adding to the encoded message
just as many bits as the longest word in the code.

In [5] we introduced a construction for a transducer that allows the bidirectional
decoding of messages encoded by Girod’s method. We also introduced a variant of
the Girod’s coding method, and we defined a transducer that allows both right-to-
left and left-to-right decoding. We also proved that this transducer is deterministic,
co-deterministic and minimal.

For the sake of completeness, we recall in this paper Girod’s encoding method
with its variant and the construction of the transducer associated to the decoding
operation on a given code X . Here we are mainly interested to find some bounds
to the number of states of this transducer, depending on different notions of “size”
of the prefix code X , such as the cardinality of X , the length of X , i.e. the sum
of the lengths of its words, the number of nodes of the tree representing X , and
the length of the longest word in X .

In Section 2 we introduce some preliminary definitions and properties regarding
codes and transducers, and the connection between these two notions. We moreover
describe the method introduced by Girod for the bidirectional decoding of a prefix
word and its variant (see [5]). We describe the construction of the transducer
associated to its variant and we recall some of its properties.

In Section 3 we prove some general results on the number of states of the trans-
ducer associated to prefix codes. In particular we give a general upper bound that
holds for transducers associated to any prefix code. We prove that for prefix codes
corresponding to isomorphic trees, the corresponding transducers are isomorphic
as unlabeled graphs. In Section 4 we focus in particular our attention on maxi-
mal prefix codes, for which we find a precise formula giving the number of states
of the associated transducer. This allows us to prove that, for maximal codes,
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an exponential lower bound on the length of the longest codeword. The formula
gives, as particular cases, the one of uniform maximal codes and one of the so
called string-codes. In particular, transducers associated to maximal uniform trees
have a number of states that is linear with the length of the code, and loglinear
in the cardinality of the code and in the size of the tree associated to the code,
whereas the size of the transducer associated to string-codes is exponential in all
these notions of size. Finally, in Section 5, we give the number of states of the
transducer associated to a uniform (non maximal) code with two words, and an
upper bound in the general case of non maximal prefix code. In Section 6 we give
some conclusions and open problems.

2. Preliminaries

2.1. Codes and transducers

Let B and A be two alphabets, that we call respectively source alphabet and
channel alphabet. Let γ : B → A∗ be a map that associates to each element b in
B a nonempty word over A. We extend this map to words over B by γ(b1. . . bn) =
γ(b1) . . . γ(bn). We say that γ is an encoding if γ(w) = γ(w′) implies that w = w′.
For each b in B, γ(b) is said a codeword and the set of all codewords is said a
variable length code, or simply a code. In what follows we denote by xi = γ(bi) and
by X = {x1, . . . , xm} the code defined by γ. A set Y over A∗ is said a prefix set
(resp. suffix set) if no element of Y is a prefix (resp. a suffix) of another element
of Y .

A set over A∗ is called a bifix set if it is both a prefix and a suffix set. It can be
easily proved that prefix, suffix and bifix sets are codes, called respectively prefix
codes, suffix codes and bifix codes. A code is maximal if it is not strictly contained
in any other code. A prefix code is maximal if and only if it is maximal as a prefix
code. A decoding is the inverse operation than encoding i.e. the decoding of γ is
the function γ−1 restricted to γ(B∗).

We say that a set X ⊂ A+ is weakly prefix, or that has a literal deciphering
delay d, if there exists an integer d ≥ 0 such that if xu is a prefix of x′y′ with
x, x′ ∈ X , u a prefix of a word in X∗, and y′ ∈ X∗, then |u| > d implies x = x′.

Throughout this paper we consider codes over a binary alphabet, that is A =
{0, 1}. For each word u we denote by ũ the reverse of u. For X = {x1, x2, . . . , xn},
we define by X̃ the set X̃ = {x̃1, x̃2, . . . , x̃n}. For each word u ∈ A∗ and for each
k ≤ |u|, we denote by prefk(u) the prefix of u of length k and by pref−k(u) the
prefix of u of length |u| − k.

A finite transducer T uses an input alphabet A and an output alphabet B. It
consists of a quadruple T = (Q, I, F, E) where Q is a finite set whose elements are
called states, I and F are two distinguished subsets of Q called the sets of initial
and terminal states, and E is a set of elements called edges which are quadruples
(p, u, v, q) where p and q are states, u is a word over A and v is a word over B.
We call u the input label and v the output label. An edge is commonly denoted by
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p
u|v−→ q. Two edges p

u1|v1−→ q and r
u2|v2−→ s are consecutive if q = r. A path in a

transducer is a sequence of consecutive edges. The label of the path is obtained by
concatenating separately the input and the output labels. We denote it by a pair
with first element a word over the input alphabet and second element a word over
the output alphabet. A transducer T defines a binary relation between words on
the two alphabets as follows: a pair (u, v) is in the relation if it is the label of a
successful path. This is called the relation realized by T . A transducer is called a
literal transducer if each input label is a single letter. A literal transducer is called
deterministic (resp. codeterministic) if for each state p and for each input letter a
there is at most one edge starting at (resp. ending at) p with input letter a.

We can represent encoding and decoding using transducers. An encoding γ
can be represented by a one-state literal transducer with loops on the state with
labels (b, γ(b)), for each b in B. Transducers for decoding are more interesting. In
case of decoding, A represents the channel alphabet and B the source alphabet.
An interesting result is that for any encoding there exists a literal unambiguous
transducer which realizes the associated decoding (see [7, 8]).

A sequential transducer over A, B is a triple T = (Q, i, F ) together with a partial
function Q×A −→ B∗×Q which breaks up into a next state function Q×A −→ Q
and an output function Q × A −→ B∗. In addition, the initial state i ∈ Q has
attached a word λ called the initial prefix and F is partial function F : Q −→ B∗

called the terminal function. Thus, an additional prefix and additional suffix can be
attached to all the outputs. By definition, a sequential transducer is deterministic.
There is a unique minimal sequential transducer equivalent to a given one i.e. with
the minimal number of states among the sequential transducers realizing the same
relation (cf. [7]).

2.2. Girod’s method and transducers

It is well known that a prefix code can be decoded without delay in a left-to-right
parsing while it can not be as easily decoded from right to left. In particular, in the
case of maximal prefix codes, we have a very strong result due to Schützenberger
(cf. [3]) that states the following:

Theorem 2.1 (Schützenberger). A finite maximal code with finite deciphering
delay is prefix.

This means that the only maximal codes that can be bidirectionally decoded
with finite delay are the ones that are both prefix and suffix.

In 1999 Girod (cf. [6]) introduced a very interesting alternative coding method
using finite prefix codes, that besides the simple concatenation of codewords, ap-
plies a transformation to the obtained word that allows the deciphering of the
coded word in both directions, by adding to the encoded message just as many bits
as the longest word in the code. This is somehow surprising, since, by adding just
few bits to the encoded message, we obtain a message that can be bidirectionally
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decoded without any delay, even if the starting code is just prefix, but not neces-
sarily suffix.

In this section we describe this coding method, due to Girod, where, given a
finite prefix code X , any sequence of codewords in X is transformed in a bitstring
that can be decoded in both directions.

Such a method is based on a well-known property of the binary sum. The binary
sum operation ⊕ is a binary operation on {0, 1} that returns a bit in this way: for
a, b either both 1 or both 0, a ⊕ b returns 0 and in the other cases it returns 1.
For the operation ⊕ the following property holds: if c = a ⊕ b then b = a ⊕ c and
a = b ⊕ c.

Let X = {x1, . . . , xm} be a finite prefix code defined by an encoding γ over an
alphabet B = {b1, . . . , bm}. Consider a word w = bi1 . . . bik

in B∗ and its encoding
y = γ(w) = xi1 . . . xik

where xij ’s are codewords in X . By concatenating the
reverse of each codeword xij , we obtain the word y′ = x̃i1 . . . x̃ik

. Let z = y ⊕ y′.
The idea would be to decode y from z using the relation y = z ⊕ y′. Anyway we
cannot apply this idea since we should know y′ in order to decode y. However we
know that the elements in y′ are strictly related to those in y. If we lightly modify
y and y′ we obtain the solution given by Girod.

Let us denote by L the length of the longest codeword in {xi1 , . . . , xik
} and let

us append the word 0L to y as a suffix and to y′ as a prefix. Then consider the
words x = y0L, x′ = 0Ly′ and z = x ⊕ x′. We define the encoding δ from B∗ to
A∗ as follows: for any w = bi1 . . . bik

∈ B∗, δ(w) = z, where z is defined as before.
In order to obtain x from its encoding z, we use the property that x = z ⊕ x′.

Since we know that the first L bits of x′ are 0’s, then the first L bits of z must
be equal to the first L bits of x. Since L is the length of the longest word in X ,
those L bits contain as prefix at least the first codeword xi1 in y. Thus we have
that 0Lx̃i1 is a prefix of x′. In this way x′ has again L unread symbols, that can
be summed to the corresponding symbols of z. As before, we get L new symbols
of x that contain as prefix at least the second codeword xi2 . Again, we have that
0Lx̃i1 x̃i2 is a prefix of x′. By proceeding in this way we obtain the left-to-right
decoding of z.

Similarly we can decode z from right to left: in this case we invert the roles of x
and x′ and apply the operation ⊕ to z and x from right to left in order to obtain
new bits for x′.

In [5], we remark that by using the properties of ⊕ the method can be analo-
gously applied when any word uL of length L is used in the place of 0L. In order
to define z, this word will be concatenated to the end of y, and its reverse will
be concatenated to the beginning of y′, i.e. z = yuL ⊕ ũLy′. In particular we can
choose to use among the words of maximal length in X , the one that is minimal
in lexicographic order (given a code, it is univocally determined). We refer to it as
the Girod’s generalized method.

We describe (see [5]) how to construct a transducer for the generalization of
Girod’s left-to-right decoding. For the description of the transducer for the classic
Girod’s left-to-right decoding see [5].
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(ε, 110) (1, 10) (ε, 011) (1, 11)

(ε, 111)(0, 11)(01, 1)(0, 10)(01, 0)

0|ε 0|b1 1|ε

0|b10|ε 0|ε
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1|ε

0|ε

1|b2

Figure 1. The transducer T for the left-to-right decoding by the
Girod’s generalized method of X = {11, 011} over B = {b1, b2}.

Let X = {x1, . . . , xm} be a finite prefix code defined by an encoding γ over an
alphabet B = {b1, . . . , bm}. Let L be the length of the longest word in X and let
xL be the smallest word in the lexicographic order among the words in X of length
L. For any sequence y of codewords in X we consider the encoding δxL as defined
by the generalization of Girod’s method. In order to simplify the notation we use
δL instead of δxL . The transducer T = (Q, i, F, E) for the left-to-right decoding of
δL is defined as follows.

The states in Q are pairs of words (u, v) such that:
• u is a proper prefix of a word in X ;
• v is a suffix of a word in x̃LX̃∗ of length L − |u|;

The unique initial and final state i is (ε, x̃L).
The edges in E are defined as follows:
(1) ((u, av), c, ε, (ud, v)), with a ⊕ c = d, if ud �∈ X and ud is a prefix of a word

in X ;
(2) ((u, av), c, bi, (ε, vdũ)), with a ⊕ c = d, if ud = xi ∈ X .

In all remaining cases the transitions are not defined.
In Figure 1 we show the transducer T for the decoding of X = {11, 011}.
In [5] it is proved the following:

Theorem 2.2. The transducer T realizes the function ϕ defined by ϕ(z) =
δ−1
L (z)bL, where δ−1

L is the decoding of δL from left to right and bL is the word
γ−1(xL). Moreover this transducer is deterministic, co-deterministic and minimal
as sequential transducer.

In a similar way we can define a transducer for the right to left encoding. In [5]
we prove that:

Theorem 2.3. The transducers for the left-to-right and for the right-to-left de-
coding are isomorphic as labeled graphs.

This means that we can use the same transducer for decoding a word in both
directions.
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3. General bounds and properties

In the present and in the next two sections we are interested in counting the
number of states of the transducer associated to a given prefix code X , depending
on some of its features. We consider the dependence of this number on the different
notions of “size” of X , such as the number of codewords in X , the sum of their
lengths, the length of the longest word, and the dimension of the tree representing
X . In this section we consider some general bounds and we prove that codes
associated to isomorphic trees have transducers that are isomorphic themselves as
unlabeled graphs.

Given a prefix code X = {x1, x2, . . . , xm} we can measure the size of X in
different ways:

• |X |, the cardinality of X , that is, the number of its elements;
• ‖X‖ =

∑
x∈X |x|, the length of X , i.e. the sum of the lengths of its words;

• |TX |, the size of the binary tree TX naturally associated to X , i.e. the number
of its nodes;

• L = maxx∈X |x|, the length of the longest word in X .

For X prefix code, let TX = (Q, i, F, E) be the transducer for its bidirectional
decoding by the Girod’s generalized method, with (ε, x̃L) as initial state. We are
interested to find a bound to |Q|.

The following theorem gives a general upper bound for the number of states of
the transducer associated to any prefix code.

Theorem 3.1. If X is a prefix code then |Q| ≤ L 2L.

Proof. Every state is a pair of words (u, v) such that |u|+ |v| = L. The number of
all possible pairs with this constraint is exactly L 2L. In fact this corresponds to
consider any of the 2L words w of length L, and to factorize it as the concatenation
of two words, in all possible ways. There exist exactly L of such factorizations. This
concludes the proof. �

The following lemma shows that the number of states of the transducer grows
when adding words to the prefix code:

Lemma 3.2. Let Y ⊂ X be prefix codes such that the length of the longest word
in X is equal to length of the longest word in Y . Then TY is contained in TX and
the number of states of TY is strictly less than the number of states of TX .

Proof. In order to prove the result, it is sufficient to prove that the transducer for
a prefix code Y = X ∪ {x} is obtained from TX by adding states and transitions.
This fact follows by construction. In fact, consider the transducer TX . Any path
from a state (ε, vx̃i) to the state (ε, v′x̃j), where v, v′ are suffixes of X̃ allows to
decode xj after the decoding of xi. All the states in these paths should be preserved
when the new word is added, so no state is ever deleted. The introduction of the
new word cause the addition of new states and transitions. In fact at least a state
of acceptance for x, (ε, ux̃) must be added. �
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Given two binary trees T1 and T2, we say that they are isomorphic if T2 can be
obtained from T1 by switching the right and the left subtree of some chosen nodes.
We say that two prefix codes are isomorphic if the associated trees are isomorphic.
We have the following theorem:

Theorem 3.3. If X and Y are two isomorphic prefix codes then the corresponding
transducers are isomorphic as unlabeled graphs.

In order to prove it we first prove the following:

Proposition 3.4. If X and Y are two isomorphic prefix codes such that TX is
obtained by TY by a single rotation around a given vertex, then the corresponding
transducers are isomorphic as unlabeled graphs.

Proof. Let X and Y be two isomorphic codes, such that TX is obtained by TY by
a single rotation around a given vertex V . We denote by z the word corresponding
to the path in TX from the root to V .

We can decompose X as X1 ∪ X2, where X1 is the set of words in X that
have z as a prefix and X2 the set of all the remaining words in X . Let X1 =
{za1y1, . . . , zakyk}. If a is a bit, we denote by ā its opposite. By the definition of
rotation, it follows that Y = Y1 ∪ X2, with Y1 = {zā1y1, . . . , zākyk}.

Let us consider the function ϕ between the set of prefixes of words in X and
the set of prefixes of words in Y ,

ϕ : Pref(X) −→ Pref(Y )

such that, for each u in Pref(X),

– ϕ(u) = zāiw, if u = zaiw for some bit ai and some word w;
– ϕ(u) = u otherwise.

Let QX be the set of states of TX and QY be the set of states of TY . We define
the map ϕ : QX −→ QY in the following way.

For a state (u, v) ∈ QX with v = s̃ỹ1. . . ỹr and s ∈ Pref(X), {y1, . . . , yr} ⊆ X ,
we define

ϕ((u, v)) = (ϕ(u), ϕ̃(s)˜ϕ(y1) . . . ˜ϕ(yr)).

The function ϕ is well defined since if u is a prefix of a word in X then ϕ(u)
is a prefix of a word in Y , and if v is a suffix of a word in X̃∗ of length L − |u|
then ϕ̃(s)˜ϕ(y1). . . ˜ϕ(yr) is a suffix of a word in Ỹ ∗ of length L − |ϕ(u)|. Moreover
is easy to see that by construction ϕ is injective and surjective.

In order to be an isomorphism of unlabeled graphs we have to prove that ϕ
preserves the edges. In particular, we have to prove that if ((u, v), �, y, (u′, v′)) is
an edge in TX then there exist �′, y′ such that (ϕ((u, v)), �′, y′, ϕ((u′, v′))) is an
edge in TY .

Let us consider a state (u, av) in QX , with v = s̃ỹ1. . . ỹr, s ∈ Pref(X) and
y1. . . yr words in X . Let us consider a letter � such that if b = a⊕ �, ub is either a
prefix in X or a word in X .

We consider separately the two different cases.
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(1) Consider (u, av) such that ub is a proper prefix of a word in X . Thus we
have in TX the transition ((u, av), �, ε, (ub, v)). We have that ϕ(u, av) =

(ϕ(u), ˜ϕ(sa)˜ϕ(y1). . . ˜ϕ(yr)). Let c be the letter such that ˜ϕ(sa) = cϕ̃(s). Note
that c is equal to ā or to a depending on s = z or not.
On the other side we have that ϕ(ub, v) = (ϕ(ub), ϕ̃(s)˜ϕ(y1). . . ˜ϕ(yr)). Let d
be the letter such that ϕ(ub) = ϕ(u)d. Here d is equal to b̄ or to b depending
u = z or not.
We conclude the proof of case 1., since there must be in TY the transition from
(ϕ(u), cϕ̃(s)˜ϕ(y1). . . ˜ϕ(yr)) to ϕ(ub, v) = (ϕ(u)d, ϕ̃(s)˜ϕ(y1). . . ˜ϕ(yr)) with la-
bel (c ⊕ d, ε);

(2) let (u, av) be such that ub is the word xi in X . Thus we have in TX the
transition ((ua, v), �, bi, (ε, vũb)).

We have that ϕ(u, av) = (ϕ(u), ˜ϕ(sa)˜ϕ(y1). . . ˜ϕ(yr)). Let c be the letter such

that ˜ϕ(sa) = cϕ̃(s). c is equal to ā or to a depending on s = z or not.

On the other side we have that ϕ(ε, vũb) = (ε, ϕ̃(s)˜ϕ(y1). . . ˜ϕ(yr)˜ϕ(ub)). Let
d be the letter such that ϕ(ub) = ϕ(u)d. The value of d will be equal to b̄ or
to b depending on u = z or not.
We conclude the proof of case 2., since there must be in TY the transition
from (ϕ(u), cϕ̃(s)˜ϕ(y1). . . ˜ϕ(yr)) to ϕ(ε, vũb) = (ε, ϕ̃(s)˜ϕ(y1). . . ˜ϕ(yr)˜ϕ(ub))
with label (c ⊕ d, ε). �

Proof of Theorem 3.3. If TX and TY are two isomorphic trees, then TY can be
obtained from TX by a finite number of switches of subtrees around some given
vertices. Induction, combined with Proposition 3.4 concludes the proof. �

4. Bounds for maximal prefix codes

In this section we consider maximal prefix codes. It is well known that maximal
prefix codes are represented by complete trees, i.e. trees where each node has
two or zero subtrees. For maximal prefix codes we prove an exact formula that
computes the number of states of the associated transducer. As a consequence, we
get an exponential lower bound on L for this number. It is well known (see [2])
that, if X is a maximal prefix code, any word w in A∗ is also in X∗Pref(X) that
is, it can be written as concatenation of a sequence of codewords followed by a
prefix of a codeword. Consequently w̃ is in Suff(X̃)X̃∗.

Lemma 4.1. If X is a maximal prefix code then, for each pair of words (u, v)
with u = ε or u proper prefix of X and v ∈ AL−|u|, we have that (u, v) ∈ Q.

Proof. Let w ∈ AL. Let us prove that (ε, w̃) is accessible.
By construction, w̃ ∈ Suff(X̃)X̃∗, then w̃ can be written as w̃ = x̃′

0x̃1. . . x̃t

with x̃′
0 suffix of some x̃0 ∈ X̃. Let w0 = x̃0. . . x̃t, and consider the sum z =

x0. . . xt ⊕ pref−L(x̃Lx̃0. . . x̃t). By reading label z starting from the initial state
(ε, x̃L) we go to the state (ε, w̃). In fact in [5] we have proved that there exists a
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path from the initial state to a state (ε, u) with label (z, bi1 . . . bik
) if and only if z =

xi1 . . . xik
⊕pref−L(x̃Lx̃i1 . . . x̃ik

). Thus, given z = x0. . . xt⊕pref−L(x̃Lx̃0. . . x̃t), we
have a path from the initial state to a state of the form (ε, t) with label (z, b0. . . bt).
Since in [5] we have proved that if there exists in T a path from the initial state
(ε, x̃L) to a state of the form (ε, u), with label (z, bi1 . . . bik

), then u is the suffix
of length L of x̃Lx̃i1 . . . x̃ik

, we have that the terminal state of this path is (ε, w̃).
Thus the state (ε, w̃) is accessible.

Notice that, by construction, from every accessible state we have a path leading
to the state (ε, x̃L), that is, every accessible state is coaccessible. This proves the
first part of the lemma.

Let (u, v) be a pair of words such that u is a proper prefix of a word in X and
v ∈ AL−|u|. As we proved in the first part of the lemma, the state (ε, uv) is in Q.
Since the code is maximal, for every state in TX there are exactly two out edges,
one with input label 1 and the other with input label 0. Then the path starting
from (ε, uv) and labeled 0|u| takes to (u, v). This proves that (u, v) is accessible.
By the previous remark (u, v) is also coaccessible. This concludes the proof. �

Given a prefix set X , let us denote by Prefi(X) the set of proper prefixes of
elements in X of length i and let us denote by Leveli(X) the set of internal nodes
in TX at level i. As a consequence of Lemma 4.1 we have that the number of states
for the transducer associated to a maximal prefix code is given by the following:

Theorem 4.2. If X is a maximal prefix code then,

|Q| =
L−1∑
i=0

|Prefi(X)| · 2L−i =
L−1∑
i=0

|Leveli(X)| · 2L−i.

By Theorem 4.2 we can deduce an exponential lower bound in L for maximal
prefix codes:

Corollary 4.3. If X is a maximal prefix code then |Q| ≥ 2L.

Proof. There are at least 2L final states. �

From this theorem we expect that the farthest from being uniform a code is,
the greatest the number of states in the corresponding transducer is.

Following Theorem 4.2, we individuate two classes of maximal codes that repre-
sent respectively the best and the worst case for the state complexity for maximal
prefix codes: the uniform codes and the string-codes.

We say that a prefix code X is uniform if all the words in X have the same
length L. A maximal uniform code whose words have length L contains all the
words of this length, i.e. X = AL. Then for uniform maximal codes:

• |X | = 2L;
• ‖X‖ = L 2L;
• |TX | = 2L+1 − 1.
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Since, for each i, the number of nodes at level i in TX is 2i we get:

Theorem 4.4. If X is a uniform maximal code then |Q| = L2L.

Corollary 4.5. The upper bound given by Theorem 3.1 is tight.

The number of states of the transducer associated to a maximal prefix code,
computed in terms of the different sizes is given by the following:

Corollary 4.6. Let X be a uniform maximal prefix code. The number of states of
TX is equal to

• ‖X‖;
• L2L = |X | log(|X |);
• O(|TX | log |TX |).

Proof. For uniform maximal codes, we have that L2L = ‖X‖.
Moreover, since |X | = 2L, we have that |Q| = |X | log(|X |).
From |TX | = 2L+1 − 1 it follows that L = log(|TX | + 1)/2. Thus |Q| =

L2L = log((|TX | + 1)/2)(|TX | + 1)/2 = 1/2(log(|TX | + 1) − 1)(|TX | + 1) that
is O(|TX | log |TX |). �

This means that for maximal uniform codes we have a linear dependence be-
tween the size of the transducer associated to X and the length of X . Moreover
there is an almost linear dependence (with a multiplicative logarithmic factor) on
the cardinality of X and the size of its tree.

We have to remark that the study of the maximal uniform codes is here given
for sake of completeness, since actually maximal uniform codes are bifix, so they do
not need the application of Girod’s coding in order to obtain messages bilaterally
deciphered without any delay.

On the other side, as one can guess, uniform maximal code are the biggest among
the maximal codes having the same value of L, since the corresponding tree has
the greatest number of nodes at a given level. Conversely, the best case happens
when the number of nodes at a given level is 1, corresponding to string-codes.

Let u be a word over A = {0, 1}. We define Xu the string-code of u as Xu =
{u} ∪ {va | vā ∈ Pref(u)}, where Pref(u) is the set of prefixes of u, and ā is the
opposite bit of a. In this case L is the length of u.

If X is a string-code, then

• ‖X‖ = L(L + 1)/2 + L;
• |X | = L + 1; and
• |TX | = 2L.

Since, for each i, the number of internal nodes at level i in TX is 1 we get:

Theorem 4.7. If Xu is a string-code then |Q| = 2L+1 − 2.
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Proof. By definition Xu is a maximal prefix code. Moreover for each level, there
is just one internal node. By Theorem 4.2,

|Q| =
L−1∑
i=0

|Leveli(X)| · 2L−i =
∑

i=1,L−1

1 · 2L−i =
∑

j=1,L−1

2j = 2L − 2. �

This means that |Q| = O(2
√

‖Xu‖), and |Q| = O(2|TXu |) and |Q| = O(2|X|).
Thus these codes seem to have the worst behavior in terms of the number of states
in relation with the different definitions of size of the code.

The theorems proved in this section formalize somehow the intuition that the
farthest a code is from being uniform and maximal, the greatest the number of
states is in the correspondent transducer, depending either on |TX | or on ‖X‖.

5. Uniform codes

In the previous section we have given a value for the number of states of a
transducer associated to the Girod’s decoding by a uniform maximal code.

In this section we consider X a uniform non-maximal prefix code. This means
that all the words in the code have the same length L, but they are not necessarily
all of the 2L possible words of length L.

For uniform codes of two words we have a result giving a precise number of the
states of the transducer:

Theorem 5.1. Let X = {x1, x2} be a uniform code and let u be the longest com-
mon prefix between x1 and x2. Then:

|Q| =
{
|TX | − 3|u|+ 2L − 3 if |u| < L/2
|TX | − |u| + L − 2 if |u| ≥ L/2.

Proof. Starting from the initial state (ε, x̃1) there are two paths, the first leading
to the state (ε, x̃1) itself with output label b1 and the second leading to the state
(ε, x̃2) with output label b2. These two paths share the path from (ε, x̃1) to the
state (u, v) where u is the common prefix between x1 and x2 and v is the suffix
of x̃1 of length L − |u|. The number of the states involved in these two paths is
|TX | − 1.

Starting from (ε, x̃2) there are two paths: the first leading to (ε, x̃1), with output
label b1, and other leading to the state (ε, x̃2) itself, with output label b2. As before,
these two paths share a common path to the state (u, v′) where u is the common
prefix between x1 and x2 and v′ a suffix of ṽ2.

However, this time we do not have to count |TX | states, since some of the states
needed have already been created before.

In particular, since u is the common prefix between x1 and x2, ũ is a suffix
of x̃2. Since there is a cycle from (ε, x̃2) to itself, this path contains the state
(prefL−|u|(x2), ũ). Analogously, since there is a path from (ε, x̃2) to (ε, x̃1), this
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path contains the state (prefL−|u|(x1), ũ). Both of these states are already been
created in the constructions of the paths from (ε, x̃1), since ũ is a suffix both of x̃1

and x̃2.
If |u| < L/2, then PrefL−|u|(x1) and PrefL−|u|(x2) are different. So the two

states (PrefL−|u|(x1), ũ) and (PrefL−|u|(x2), ũ) are different too and they lie re-
spectively in the path going from (u, v) to (ε, x̃2), and from (u, v) to (ε, x̃2). That
is we need to add |u|+2(L−|u|−1) states to the ones already constructed before.
That is:

|Q| = |TX | − 1 + |u| + 2(L − 2|u| − 1) = |TX | − 3|u| + 2L − 3.

If |u| ≥ L/2, then PrefL−|u|(x1) = PrefL−|u|(x2). This means that the state
(PrefL−|u|(x1), ũ) = (PrefL−|u|(x2), ũ) is in the path going from (ε, x̃1) to (u, v).
In this case we need to add just L − |u| − 1 states. Then we have:

|Q| = |TX | + L − u − 2. �

The following proposition establishes an upper bound of O(|X ||TX |) to the
number of states of a transducer associated to a non maximal uniform prefix code:

Proposition 5.2. If X = {x1, . . . , xk} is a non maximal uniform prefix code then
|Q| ≤ |X ||TX | − |X |2. This bound is tight for codes of two words beginning with
different letters.

Proof. Starting from initial state (ε, x̃1), for each j = 1, . . . , k there must exist a
path with output label bj , ending in the state (ε, x̃j). Notice that the final states
are all of the form (ε, x̃j) since the code is uniform. All of these paths should
follow the structure of the tree TX for what observed in the proof of the previous
theorem. So the number of the states needed for these paths is |TX | − 1.

From each state (ε, x̃j), j �= 1, there is again a path to each state (ε, x̃l), and all
of these paths reproduce the structure of the tree. Thus, for each state (ε, x̃j) �=
(ε, x̃i), we must add at most |TX | − |X | − 1 states.

Thus finally we get an upper bound for general prefix codes

|Q| ≤ |TX | − 1 + (|X | − 1)(|TX | − |X | − 1) = |X ||TX | − |X |2.

Tightness follows by Theorem 5.1 when u = ε. �

6. Conclusions and open problems

In this paper we have given some bounds to the number of states of transducers
associated to the Girod’s deciphering by a given prefix code, depending on different
notions of size associated to a prefix code. We have found a tight general upper
bound depending on the length of the longest word in the code. Moreover we
have found a precise value of the number of states for transducers associated to
maximal uniform prefix codes and “string codes”, depending on the different sizes
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of the code, that represent the best and the worst case for maximal codes, providing
upper and lower bounds for maximal codes. Moreover we proved that ”isomorphic”
prefix codes, i.e. codes associated to isomorphic trees, have associated transducers
that are isomorphic as unlabeled graphs.

Unfortunately, we do not have an exact formula giving the number of states of
the transducer for any maximal code X , given its sizes (length of the longest word,
cardinality and sum of the lengths of its elements). It remains an open question
to find such a formula.

Also, we do not have a general formula, but just an upper bound, for such a
number for codes that are not maximal, except for the case of a uniform code with
just two words. A possible strategy could be to see how the transducer grows, in
terms of number of states, when we add a new word to the prefix code, and in
which measure this growth depends on how much a prefix of the new added word
matches a prefix of another word already in the code.

Another open problem is the one of doing an average study of the number of
states for different distributions on prefix codes, stating how big the transducers
associated to a prefix code are in the average.

In conclusion, we also think that studying the transducer associated to Girod’s
deciphering by prefix code can also inspire some similar methodologies that can
be applied not necessarily to finite prefix codes, but also to infinite prefix codes,
and finite codes that are not necessarily prefix, but with some weaker property.
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