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A NOTE ON CONSTRUCTING INFINITE BINARY
WORDS WITH POLYNOMIAL SUBWORD COMPLEXITY ∗

Francine Blanchet-Sadri1, Bob Chen2 and Sinziana
Munteanu3

Abstract. Most of the constructions of infinite words having poly-
nomial subword complexity are quite complicated, e.g., sequences of
Toeplitz, sequences defined by billiards in the cube, etc. In this paper,
we describe a simple method for constructing infinite words w over a
binary alphabet {a, b} with polynomial subword complexity pw. As-
suming w contains an infinite number of a’s, our method is based on
the gap function which gives the distances between consecutive b’s. It
is known that if the gap function is injective, we can obtain at most
quadratic subword complexity, and if the gap function is blockwise in-
jective, we can obtain at most cubic subword complexity. Here, we
construct infinite binary words w such that pw(n) = Θ(nβ) for any real
number β > 1.
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1. Introduction

Let w be an infinite word. A subword of w is a block of consecutive letters
of w. The subword complexity function pw of w gives for each positive integer n,
the number pw(n) of distinct subwords of length n of w. The subword complexity
of infinite words has become an important research topic that finds applications
in dynamical systems, ergodic theory, number theory, and theoretical computer
science [12]. We refer the reader to [1,2,12] for some surveys on subword complexity.

Specific methods have been given for constructing infinite words with subword
complexity functions that are linear [5, 9, 13, 15–18], polynomial [3, 4, 6, 7, 11–14],
intermediate [10], and exponential [2]. In the case of polynomial complexity, most
of the constructions are quite complicated, e.g., sequences of Toeplitz, sequences
defined by billiards in the cube, etc.

Gheorghiciuc [13] studied the subword complexity of a class of infinite words
over the binary alphabet {a, b}. Assuming that such words contain an infinite
number of a’s, her approach is based on the concept of gap function that gives
the distances between consecutive b’s. She described a method for computing the
subword complexity of a word w whose gap function h is injective or blockwise
injective (the latter is defined by “h(i) = h(j) for i < j implies h(i) = h(i + 1) =
· · · = h(j)”). In the case of an injective gap function, pw(n) = O(n2), while in
the case of a blockwise injective gap function, pw(n) = O(n3). She also obtained
a necessary and sufficient condition for a function to be the subword complexity
of an infinite binary word with an increasing gap function.

In this paper, we provide a simple way of constructing infinite binary words
with polynomial subword complexity. Reference [13], Theorem 1.3 shows that if
an infinite word w over {a, b} has a gap function that is increasing, then pw(n) =
O(n2). Here for each real number β > 1, we construct an infinite word w over
{a, b} such that pw(n) = Θ(nβ), whose gap function is not strictly increasing. In
order to do this, we require that the b’s be not spread “too far” apart. Similar
constructions were used recently by Blanchet–Sadri et al. [8] who showed that
there are infinite partial words that have subword complexities not achievable by
infinite full words.

2. A Construction of infinite binary words
with polynomial subword complexity

Let w be an infinite word over {a, b}, i.e., w is a function from N = {0, 1, 2, . . .}
to {a, b}. Assuming that w contains an infinite number of a’s, let H : N

+ → N
+

be a strictly increasing function such that for each i ∈ N, w(i) = b if and only
if i = H(m) − 1 for some m ∈ N

+. In other words, the mth b occurs at position
H(m) − 1.

The gap function h : N
+ → N

+ of w gives the distances between consecutive b’s
in w, i.e., for each m ∈ N

+, h(m) = H(m + 1) − H(m).
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If w has only a finite number N of b’s, then we take H(m) = ∞ for m > N and
h(m) = ∞ for m ≥ N .

We obtain quadratic growth if the gap function is injective.

Theorem 2.1. If an infinite word w over {a, b} has a gap function that is injec-
tive, then pw(n) = O(n2).

Proof. There are only n + 1 subwords of length n containing fewer than two b’s.
The function, on the set of subwords of length n containing at least two b’s, that
maps a subword u to the pair

(position in u of first occurrence of b, distance between 1st and 2nd b in u)

is injective, and each coordinate in the codomain is bounded by n. So there are at
most O(n2) subwords of length n. �

However, we can obtain arbitrary polynomial growth if the gap function is not
strictly increasing, as in the following theorem.

Theorem 2.2. Let β > 1 be a real number, and let α = β
β−1 . Let H(m) = �mα�,

and let w be the infinite word whose letter at position i is defined by

w(i) =

{
b, if i = H(m) − 1 for some m;

a, otherwise.

Then pw(n) = Θ(nβ).

Proof. Note that α > 1 and that there are exactly n+1 subwords of length n that
contain at most one b.

Now consider the set of subwords of length n with at least two b’s. Pick M large
enough so that h is strictly increasing beyond M , i.e., h(M +1) < h(M +2) < · · · .
Then for n > H(M +2), the pattern of b’s form a unique fingerprint for a subword
u of length n (provided u has at least two b’s). Now, if m is the smallest integer so
that h(m) ≥ n, then we will get a unique subword starting at every position until
H(m − 1).

Let G(x) = xα. Then

G′(x) =
d
dx

xα = αxα−1, G′−1(x) =
(

1
α

) 1
α−1

x
1

α−1 ,

and set m∗ = G′−1(n) =
(

1
α

) 1
α−1 n

1
α−1 .
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If we let g(x) = G(x + 1) − G(x) = (x + 1)α − xα, then for all x there is a real
number r such that

h(x) = �(x + 1)α� − �xα� = (x + 1)α − xα + r = g(x) + r and |r| < 1.

Based on the definition of m and increasingness of h, h(m − 2) < n − 1 and
h(m + 1) ≥ n + 1, and then g(m − 2) < n and g(m + 1) ≥ n.

Hence g(m− 2) < n ≤ g(m +1), and it follows that m− 2 < m∗ < m + 2. Now,

H(m∗) =

⌈(
1
α

)β

nβ

⌉
= Θ(nβ).

But H increases, so

H(m − 2) ≤ H(m∗) ≤ H(m + 2),

and it follows that H = Θ(nβ). Because β > 1, we have

pw(n) = H(m − 1) + n + 1 = Θ(nβ),

as desired. �
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