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GLS: NEW CLASS OF GENERALIZED LEGENDRE
SEQUENCES WITH OPTIMAL ARITHMETIC

CROSS-CORRELATION ∗

Huijuan WANG1, Qiaoyan WEN2 and Jie ZHANG3

Abstract. The Legendre symbol has been used to construct sequences
with ideal cross-correlation, but it was never used in the arithmetic
cross-correlation. In this paper, a new class of generalized Legendre se-
quences are described and analyzed with respect to their period, distri-
butional, arithmetic cross-correlation and distinctness properties. This
analysis gives a new approach to study the connection between the
Legendre symbol and the arithmetic cross-correlation. In the end of
this paper, possible application of these sequences with optimal arith-
metic cross-correlation is indicated.
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1. Introduction

Many communication systems, such as code-division multiple-access sys-
tems, radar systems and synchronization systems, require sequences with low
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out-of-phase correlation values, so there are many results on the research of the bi-
nary sequences with optical correlation. The usual cross-correlation can be thought
as the number of ones minus the number of zeros in one period of the sequence
formed by adding the two sequences bit by bit modulo 2. However, for many
classes of sequences, the usual notion of cross-correlation of two binary sequences
is quite difficult to evaluate. Furthermore, there are fundamental limits on the
sizes of families of sequences with optimal cross-correlation properties. Related
to the correlation, Mandelbaum [10] investigated a notion of itself with carry
(arithmetic auto-correlation) rather than bit by bit modulo 2. Mark Goresky and
Andrew Klapper extended the notion of arithmetic auto-correlation to the arith-
metic cross-correlation of two sequences and gave the concept of arithmetic Walsh
transform [1, 3]. Moreover, they found that the arithmetic cross-correlation does
not suffer from some of the constraints on families of sequences with good classical
correlation.

In resent years, the arithmetic cross-correlation property of some balanced bi-
nary sequences with some special distribution has been studied. The Legendre
sequence plays an important role in the research of the ordinary cross-correlation
and has some important properties such as balanced and special distinct distribu-
tion, but there is no known analysis of Legendre symbol sequence in arithmetic
cross-correlation.

In this paper, we introduce a new class of sequences constructed by the Legendre
symbol over finite ring Z/(pe) with optimal arithmetic cross-correlation, which
we call the generalized Legendre sequences (GLS). We make the construction
based on the primitive sequences over finite ring Z/(pe), and it turns out that the
GLS over the Galois ring extends the size of the family and show the optimal
arithmetic cross-correlation property enjoyed by the longest sequences generated
by FCSR (that is l-sequences). Furthermore, we give a new approach to construct
the sequences with optimal arithmetic cross-correlation. In the study of GLS, we
have been unable to use the 2-adic approach to obtain the main results, hence
these results (Thms. 3.3, and 3.13) have been proven with the use of the Galois
ring.

It is well known that the d-folds of the l-sequences, which can be regarded as the
primitive sequences of order 1 over Galois ring Z/(pe) modulo 2, construct a family
with optimal arithmetic cross-correlation [1]. However, a flaw of the l-sequences
is the low 2-adic complexity which measures how large a feedback carry sequence
generator is required to output a sequence. The GLS have large period and the
size of the family is large enough to ensure the complexity of capacity. Experiments
show that these sequences have merit when compared with the l-sequences, as their
2-adic complexity is approximately half their periods. It remains an open problem
to prove this result.

This paper is organized as follows: In Section 2, we recall the notion of arithmetic
cross-correlation and give some important properties of the primitive sequences
over the Galois ring Z/(pe). In Section 3, we give the main results of this paper:
first, we introduce the GLS and discuss their period and distribution property.
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Next, we prove the optimal arithmetic cross-correlation property of the GLS.
Finally, we make use of Galois ring mathematical toolkit to discuss the distinctness
of the sequences in a subset of this family which reflect the distinctness property of
the Legendre symbol sequences, and we give a simple ID-based remote mutual au-
thentication in a multiuser environment by using the arithmetic cross-correlation.
In Section 4, we conclude this paper and point out some unfinished problems.

Throughout this article, for any positive integers a and n, the sign a(mod n)
refers to the minimal non-negative residue of a modulo n. The sequence sd =
{sd(t)}t≥0 is said to be a d-fold decimation of s = {s(t)}t≥0, if for every t,
we have sd(t) = s(dt). We denote � as the multiplication between vectors
Ã = (a1, a2, . . . , an) and B̃ = (b1, b2, . . . , bn), Ã� B̃ = a1 · b1 +a2 · b2 + . . .+an · bn.

2. Preliminary

2.1. Primitive sequence over Z/(pe)

Let Z/(pe) = {0, 1, . . . , pe − 1} be the residue ring of integers modulo pe, where
p is an arbitrary odd prime number and e is a positive integer. For a monic poly-
nomial f(x) = xn + cn−1x

n−1 + . . . + c1x
1 + c0 of degree n ≥ 1 over Z/(pe)

with f(0) �= 0(modp), there exists a positive integer N such that f(x)|xN − 1
over Z/(pe). The least N is called the period of f(x) over Z/(pe) and denoted by
per(f(x), pe), which has an upper bound pe−1(pn − 1).

If per(f(x), pe) = pe−1(pn−1), then the f(x) is a primitive polynomial of degree
n over Z/(pe). In this case, f(x) mod pi is also a primitive polynomial over Z/(pi),
whose period is per(f(x), pi) = pi−1(pn − 1), i = 1, 2, . . . Especially, f(x) mod p is
a primitive polynomial over the prime field GF (p).

The sequence a = {a(t)}t≥0 over Z/(pe) satisfying a(t+n) = −(cn−1 ·a(t+n−
1)+ cn−2 ·a(t+n− 2)+ . . . + c0 ·a(t)) mod pe is called a linear recurring sequence
over Z/(pe) generated by f(x). The sequence a is called a primitive sequence of
order n if a is generated by a primitive polynomial f(x) and a �= 0(modp). The
primitive sequence a has the least period pe−1(pn − 1). Particularly, the primitive
sequences over Z/(pe) have the following propositions.

Proposition 2.1 [5]. Let sequence a = {a(t)}t≥0 be a primitive sequence of order
n over Z/(pe), then

a(t) ≡ −a

(
t +

pe−1(pn − 1)
2

)
(modpe) .

Proposition 2.2 [5]. Let sequence a = {a(t)}t≥0 be a primitive sequence of order
n over Z/(pe), then

a(t) ≡ −a

(
t +

pe−1(pn − 1)
2

)
(modp) .
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Let the Galois ring Re,n = GR(pe, n) be the unique extension of degree n over
Z/(pe). It can represented as Z/(pe)[x]/(f(x)), where f(x) is a basic irreducible
polynomial of degree n over Z/(pe). Re,n is a local ring with the unique maximal
ideal p ·Re,n. The set of units R∗

e,n = Re,n \ (p ·Re,n) is a multiplicative group. Let
η be a generator of the cyclic group of R∗

e,n corresponding to Z/(pn − 1). Define
Ωe,n = {0, 1, η, . . . , ηpn−2}, it can be shown that every element α ∈ GR(pe, n) has
a unique p-adic expansion

α = α0 + α1 · p + . . . + αe−1 · pe−1,

where αi ∈ Ωe,n for i = {0, 1, 2, . . . , e − 1}. Let σ be the Frobenius map from
GR(pe, n) to GR(pe, n) given by

σ(α) = αp
0 + αp

1 · p + . . . + αp
e−1 · pe−1.

As we know σ is the generator of the Galois group of GR(pe, n)/(Z/(pe)), which
is a cyclic group of order n. The trace mapping Tr(·) : GR(pe, n) −→ Z/(pe) is
defined as follows

Tr(x) = x + σ(x) + . . . + σn−1(x),

for x ∈ GR(pe, n).
If f(x) is a primitive polynomial over Z/(pe) with degree n, let ξ ∈ GR(pe, n)

be a root of f(x). Then, for any primitive sequence a which is generated from
f(x), there must exist a unique α ∈ R∗

e,n such that

a(t) = Tr
(
α · ξt

)
for t ≥ 0. As we know, the order of ξ is pe−1(pn − 1). So ξ can be written as
ξ = η(1 + pη1), where η is a generator of Ωe,n and η1 ∈ R∗

e,n. We denote Γn =
{1, ξ, ξ2, . . . , ξpe−1(pn−1)−1}.

Assume the polynomial P (x) = xn − r is irreducible in Z/(pe), and the poly-
nomial cn−1x

n−1 + . . . + c1x + c0, (ci ∈ Z/(pe)), modulo P (x) form a Galois ring
GR(pe, n).

Let ξ ∈ GR(pe, n) be a root of the primitive polynomial f(x). For every ξt ∈
GR(pe, n), t ≥ 0, we can find cjt ∈ Z/(pe) for j = 0, 1, 2, . . . , n − 1 to denote
ξt = c0t + c1t · x + c2t · x2 + . . . + c(n−1)t · xn−1. Any element cjt ∈ Z/(pe) has a
unique p-adic decomposition as cjt = cjt,0 + cjt,1 · p+ cjt,2 · p2 + . . .+ cjt,e−1 · pe−1,
where cjt,i ∈ Z/(p), i = 0, 1, . . . , e − 1. Then

ξt =
n−1∑
j=0

(
e−1∑
i=0

cjt,i · pi

)
· xj =

e−1∑
i=0

⎛⎝n−1∑
j=0

cjt,i · xj

⎞⎠ · pi

is also the p-adic expansion. So the polynomials
∑n−1

j=0 cjt,i ·xj , i = 0, 1, 2, . . . , e−1,
can be regarded as the elements in Ωe,n. Since the trace mapping Tr(·) is from
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GR(pe, n) to Z/(pe), we assume the function tr(·) as

tr

⎛⎝n−1∑
j=0

cjt,i · xj

⎞⎠ =
n−1∑
k=0

⎛⎝n−1∑
j=0

cjt,i · xj

⎞⎠pk

is a mapping from Ωe,n to Z/(p).
Then the trace mapping Tr(ξt) : GR(pe, n) −→ Z/(pe) can be represented as:

Tr(ξt) = tr

⎛⎝n−1∑
j=0

cjt,0 · xj

⎞⎠+tr

⎛⎝n−1∑
j=0

cjt,1 · xj

⎞⎠·p+. . .+tr

⎛⎝n−1∑
j=0

cjt,e−1 · xj

⎞⎠·pe−1.

Similar to the trace mapping from GF (pn) to Z/(p), we denote

tr

⎛⎝n−1∑
j=0

cjt,i · xj

⎞⎠ = n · c0t,i.

When n is relatively prime with p, the trace mapping Tr(ξt) : GR(pe, n) −→ Z/(pe)
can be written as

Tr(ξt) = n · c0t,0 + n · c0t,1 · p + . . . + n · c0t,e−1 · pe−1 = n · c0t. (2.1)

2.2. 2-Adic integer and arithmetic cross-correlation

In this subsection, we briefly review some basic facts about the 2-adic integer
and recall the notion of the Arithmetic Cross-correlation.

Let binary sequence s = s(0), s(1), s(2), s(3), . . . have least period T with pre-
period t0, so that s(t + T ) = s(t) with t ≥ t0. If t0 > 0 we denote the sequence s
as an eventually periodic sequence, if t0 = 0 we denote the sequence s as a strictly
periodic sequence.

A 2-adic integer is a formal power series � =
∑∞

t=0 s(t) · 2t, with s(t) ∈ {0, 1}.
The set Z2 of the 2-adic integers forms a ring under the operations of addition
and multiplication with carry. We denote the string 000 . . . as merely 0, and the
string 100 . . . as 1. Besides, we must define that 1 + 2 + 22 + . . . = −1; that is, the
infinite string 111 . . . is a base-2 expansion of a negative integer −1.

Specifically, addition of the 2-adic integers is given by
∞∑

t=0

s1(t) · 2t +
∞∑

t=0

s2(t) · 2t =
∞∑

t=0

s3(t) · 2t,

if there are carry integers d0, d1, d2, . . . such that d0 = 0, and for all t ≥ 0, we have
s1(t) + s2(t) = s3(t) + 2dt+1 − dt.

Similarly, the multiplication of the 2-adic integers is given by
∞∑

t=0

s1(t) · 2t ·
∞∑

t=0

s2(t) · 2t =
∞∑

t=0

s3(t) · 2t,
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if there are carry integers d0, d1, d2, . . . such that d0 = 0, and for all t ≥ 1, we have
s1(t) · s2(0) + s1(t− 1) · s2(1) + . . . + s1(0) · s2(t) = s3(t)+ 2dt+1 − dt. Note that in
the Z2, we have −1 = 1 + 2 + 22 + . . . The corresponding subtraction of the 2-adic
numbers is

∞∑
t=0

s1(t) · 2t −
∞∑

t=0

s2(t) · 2t =
∞∑

t=0

s1(t) · 2t +
∞∑

t=0

2t ·
∞∑

t=0

s2(t) · 2t.

It follows that Z2 contains all the integers. Let q = 1 + q12 + q222 + . . . + qr2r

be an odd integer, then the negative integer −q is associated to the product

−q = (1 + 2 + 22 + 23 + . . .)
(
1 + q12 + q222 + . . . + qr2r

)
.

In Z2, the formal power series −q has a unique (multiplicative) inverse

(−q)−1 = 1 · 20 + b1 · 21 + b2 · 22 + +b3 · 23 + . . .

Thus the ring Z2 contains every rational number h
q provided q is odd.

Proposition 2.3 [9]. There is a one-to-one correspondence between rational num-
bers � = h

q (where q is an odd number) and eventually periodic binary se-
quences s, which associates to each rational number � and the bit sequence
s = s(0), s(1), s(2), . . . of its 2-adic expansion. The sequence s is strictly periodic
if and only if � ≤ 0 and |�| < 1.

In this correspondence, we use the operations in Z2 to introduce the arith-
metic cross-correlation. Recall that the ordinary cross-correlation with shift τ of
two strictly sequences s1 and s2 of period T can be defined either as the sum∑T−1

t=0 (−1)s1(t)+s2(t+τ) or as the number of zeros minus the number of ones in one
period of the bitwise exclusive-or of s1 and the τ shift of s2, where the τ shift of s2

is denote as sτ
2 = s2(0+τ), s2(1+τ), s2(2+τ), . . . The arithmetic cross-correlation

is the with-carry analog, and is given by the following definition.

Definition 2.4 [1]. Let s1 and s2 be two strictly binary periodic sequences with
period T , and let 0 ≤ τ < T and sτ

2 be the τ shift of s2. Denote �1 and �τ
2

as the 2-adic integers corresponding to the sequences s1 and sτ
2 . Then, the corre-

sponding sequence s3 of �1 − �τ
2 is strictly periodic or eventually periodic, and

its period divides T . The shift arithmetic cross-correlation Ca
s1,s2

(τ) of s1 and s2

is the number of zeros minus the number of ones in one period of length T of s3.

As in Definition 2.4, it is shown that the arithmetic cross-correlation of strictly
periodic sequences s1 and s2 satisfy Ca

s1,s2
=
∑T

t=0(−1)s3(t), where
∑∞

t=0 s1(t) ·
2t +

∑∞
t=0 s2(t) · 2t =

∑∞
t=0 s3(t) · 2t.

If s1 and sτ
2 are distinct for all τ ≥ 0, then s1 and s2 are cyclically distinct. If

s1 and s2 are cyclically distinct and satisfy Ca
s1,s2

(τ) = 0, then s1 and s2 are said
to have optimal arithmetic cross-correlation.
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For instance, the sequences s1 = 1111010000100111011000101111010000101111
01100010011101000010 . . . and s2 = 010011011001001101100100110110010011011
001001101100100110110 . . . have optimal arithmetic cross-correlation have optimal
arithmetic cross-correlation as s1 − s2 has the balanced property over a period in
the 2-adic ring. s1 − s2 = �1 − �2 as the operation in Z2.

3. Main results

3.1. Sequences

In this subsection, we describe the main definition and derive the distribution
property of generalized Legendre sequences (GLS).

The construction of GLS is based on the primitive sequences a of order n over
Z/(pe), let a = {a(t)}t≥0 where a(t) ∈ Z/(pe). We first classify the a(t),

C0 = {a(t) ∈ Z/(pe) | a(t)(modp) = 0, t(mod4) = 0 or t(mod4) = 3},

C1 = {a(t) ∈ Z/(pe) | a(t)(modp) = 0, t(mod4) = 1 or t(mod4) = 2},

D0 = {a(t) ∈ Z/(pe) | a(t)(modp) �= 0,

a(t) is the quadratic residue over Z∗/(pe)},
D1 = {a(t) ∈ Z/(pe) | a(t)(modp) �= 0,

a(t) is the quadratic non − residue over Z∗/(pe)}.

For an element a over Z∗/(pe), if there exists a non-zero square b2 satisfying
a ≡ b2 mod pe, we refer to a as a quadratic residue over Z∗/(pe), else a is a
quadratic non-residue over Z∗/(pe).

Next, we give the notion of the generalized Legendre sequence (GLS).

Definition 3.1. (GLS) Let a = {a(t)}t≥0 be a primitive sequence of order n over
Z/(pe), the generalized Legendre sequence s = {s(t)}t≥0 is denoted as

s(t) =

{
1, a(t) ∈ C0

⋃
D0,

0, a(t) ∈ C1

⋃
D1

.

The generalized Legendre sequence s = {s(t)}t≥0 is a binary periodic sequence.

We give a notation of a power character χl over Γn. Let ξ be a root of a primitive
polynomial f(x) of degree n over Z/(pe) (n is relatively prime with p), and it is a
generator in Γn. For another element ζ ∈ Γn, let ind(ζ) be the least non-negative
integer k such that ξk = ζ and β be a primitive fourth root of unity. We denote

χl(ζ) = βind(ζ).
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As ξ is a generator of Γn, ξpe−1(pn−1) = (ξ
pn−1
p−1 )pe−1(p−1) = 1, so ξ

pn−1
p−1 is an

element in Z∗/(pe), where Z∗/(pe) is the maximal multiplicative group in Z/(pe).
If the p and n satisfy 4|p− 1 and 2 is the biggest even divisor of n , it follows that
β is an element in Z∗/(pe). Then from the equation (1) and the above analysis,
we have a function χ from Z/(pe) to Z/(pe) as

χ(Tr(ξt)) = χ(n · c0t) =

{
χl(n · c0t), n · c0t(modp) �= 0
βt, n · c0t(modp) = 0.

If n · c0t(modp) �= 0, then χ(n · c0t) = χl(n · c0t) = β
pn−1
p−1 ·j = (−1)j(mod

pe), where n · c0t = ξ
pn−1
p−1 ·j . If n · c0t(modp) = 0, there is χ(n · c0t) = βt ∈

Z∗/(pe). Consequently, β
pn−1
p−1 ·j = (−1)j(modpe) reduces to the Legendre symbol

in Z/(pe) defined χl(a(t)) = −1 or 1 according to whether a(t) is a non-zero square
or a non-square in Z∗/(pe). Then the generalized Legendre sequence s has another
representation.

Lemma 3.2. Let ξ be a root of the primitive polynomial f(x) of degree n over
Z/(pe) and let a = {a(t)}t≥0 = {Tr(ξt)}t≥0 be a primitive sequence generated
from f(x). We have a binary sequence

s = {s(t)t≥0} = χ(a(t))(mod2).

Then the sequence s is the generalized Legendre sequence (GLS).

Next, we give the main result of this subsection.

Theorem 3.3. Let s be a generalized Legendre sequence generated from a prim-
itive sequence a of order n (n ≥ 2) over Z/(pe). If the prime number p satisfies
4|p − 1 and 2 is the biggest even divisor of n , then the sequence s has a pe-
riod T = 2 · pe−1 · (pn−1

p−1 ), and the second half of the period T of s is the bitwise
complement of the first half.

Proof. As p satisfies 4|p− 1 and 2 is the biggest even divisor of n , we have that n
is an even number and is relatively prime with p. We denote pn−1

p−1 = 2 · ko, ko is
an odd integer. Let

ξt = c0t + c1t · x + c2t · x2 + . . . + cn−1t · xn−1 = c0t + C̃t � X̃,

where C̃t = (c1t, c2t . . . , cn−1t) is an n − 1 dimension vector over Z/(pe) and X̃ =
(x, x2 . . . , xn−1). Assume the p-adic expansion of ξt is

ξt = αt,0 + αt,1 · p + . . . + αt,e−1 · pe−1.

Since ξ is a root of f(x) and satisfies ξpe−1(pn−1) = 1, that is ξpe−1pn

= ξpe−1
,

then ξpe−1 ∈ Ωe,n. Let K = pe−1 · ( pn−1
2(p−1) ), then ξK ∈ Ωe,n. Using the p-adic
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expansion of ξK , we denote ξK = αK,0, σ(ξK) = αp
K,0,. . ., σ(ξK)n−1 = αpn−1

K,0 .The
trace function can be represented as

Tr
(
ξK
)

= αK,0 + αp
K,0 + . . . + αpn−1

K,0 = ξK + ξK·p + . . . + ξK·pn−1
.

ξ(p−1)K = −1 is due to ξpe−1(pn−1) = 1, so ξp·K = −ξK , that is ξp·K + ξK = 0.
Then Tr(ξK) = 0 for n is an even number.

Next, we assume ξK = c1K · x + c2K · x2 + . . . + cn−1K · xn−1 = C̃K � X̃ , where
C̃K = (c1K , c2K , . . . , c(n−1)K), and consider the following cases.

Case 1, if a(t) mod p �= 0.
Then χ(a(t)) = χ(Tr(ξt)) = χl(n · c0t), so from Lemma 3.2 the t-th bit in

sequence s is s(t) = χl(n · c0t)(mod2). As n is relatively prime with p, s(t) can be
written as

s(t) = χl(c0t)(mod2),

and the element ξt+K in Γn can be represented as ξt+K = ξt · ξK = (C0t + C̃t �
X̃) · (C̃K � X̃). So we have c0(t+K) = r · (C̃t � C̃K) and C̃t+K = c0t · C̃K . Then,

c0(t+2K) = r · (C̃t+K � C̃K) = r · c0t · (C̃K � C̃K), (3.1)

c0(t+4K) = r · c0(t+2K) · (C̃K � C̃K) = r2 · c0t · (C̃K � C̃K)2. (3.2)

From Proposition 2.2, a(t)(modp) �= 0 implies that a(t + pe−1(pn−1)
2 )(modp) �= 0,

that is c0(t+(p−1)K)(modp) �= 0. Since 4|p − 1, we find C̃K � C̃K(modp) �= 0, so
C̃K � C̃K ∈ Z∗/(pe).

From Proposition 2.1, a(t) = −a(t+ pe−1(pn−1)
2 )(modpe), that is c0t · (1+ r

p−1
2 ·

(C̃K � C̃K)
p−1
2 )(modpe) = 0, so r

p−1
2 · (C̃K � C̃K)

p−1
2 (modpe) = −1. Then rp−1 ·

(C̃K � C̃K)p−1(modpe) = 1. We get

r · (C̃K � C̃K)(modpe) = ξ
pn−1
p−1 ·pe−1

.

Thus c0(t+2K)(modp) �= 0, c0(t+4K)(modp) �= 0, and

χl(r · (C̃K � C̃K)) = χl(r) · χl(C̃K � C̃K) = χl(ξ
pn−1
p−1 ·pe−1

) = −1.

Since n is an even number and xn − r is irreducible over Z/(pe), then

χl(r) = −1(modpe), χl(C̃K � C̃K) = 1(modpe). (3.3)

From the above analysis and equation (2), (3), (4), we know that

χl(c0t) = −χl(c0(t+2K)), χl(c0t) = χl(c0(t+4K)).

That is
s(t) + s(t + 2K) = 1, s(t) = s(t + 4K).
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Case 2, if a(t)(modp) = 0. Then

χ(a(t)) = βt.

From the analysis of Case 1, it follows that a(t + 2K)(modp) = a(t + 4K)(mod
p) = 0, that is

χ(a(t + 2K)) = βt+2K , χ(a(t + 4K)) = βt+4K .

Since K is an odd number and β is a primitive fourth root of unity, we get

χ(a(t + 2K)) = −βt = −χ(a(t)), χ(a(t + 4K)) = βt = χ(a(t)).

Therefore,
s(t) + s(t + 2K) = 1, s(t) = s(t + 4K).

So, from Case 1 and Case 2, we get that the arbitrary generalized Legendre
sequence s has a period of length T = 4K = 2 · pe−1 · (pn−1

p−1 ) and the second half
of the period T of s is the bitwise complement of the first half. �

Corollary 3.4. Let d be positive integer which is relatively prime to the period of
the generalized Legendre sequence s. Let sd be a d-fold decimation of s. Then, the
second half of one period of sd is the complement of the first half.

Proof. From Theorem 3.3, the period of the sequence s is an even number, so the
integer d must be an odd number and sd has a period of 4K. From Theorem 3.3,
we know that the sequence s satisfies s(t) + s(t + 2K) = 1. Thus

sd(t) = s(td) = 1 − s(td + 2K) = 1 − s(d · (t + 2K)) = 1 − sd(t + 2K). �

We denote Fs as the family which contains all d-fold decimation sequences of s,
where d is relatively prime to the period of the sequence s. In the next subsection,
we will give the arithmetic cross-correlation property of the sequences in Fs.

3.2. Arithmetic cross-correlation

For any two sequences s1 and s2 in Fs, Corollary 3.4 shows that the second half
of one period is the first half and the sequences are strictly periodic. We first need
two lemmas before proving the arithmetic cross-correlation of sequences in Fs.

Lemma 3.5. Let s1 = {s1(t)}t≥0, s2 = {s2(t)}t≥0 be two nonzero binary periodic
sequences and �1, �2 be the corresponding 2-adic integers of s1, s2. If �1 = −�2

and T is the common period of s1, s2 , then in a period of length T the number of
ones in the sequence s1 equals to the number of zeros in the sequence s2.

Proof. Since the corresponding 2-adic integers of s1, s2 satisfy �1 = −�2, the
sequence s1 or s2 is an eventually periodic sequence. Assume the sequence s2 is
an eventually periodic sequences with period T and pre-period t0.
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Following the addition of the 2-adic integers, we get that

s1(t) + s2(t) = s3(t) + 2dt+1 − dt,

where t ≥ t0 and s3(t) is the t−th bit of sequence s3 which corresponds to �1+�2.
Since �1 + �2 = 0, then s3(t) = 0, that is s1(t) + s2(t) = 2dt+1 − dt. Thus in a
period of length T we have

T+t0−1∑
t=t0

(s1(t) + s2(t0 + t)) =
T+t0−1∑

t=t0

(2dt+1 − dt). (3.4)

Since s1, s2 are nonzero sequences and from the properties of the addition of the
2-adic integers , we know that dt = 1 for all t ≥ t0. That is

T+t0−1∑
t=t0

(s1(t) + s2(t)) = T.

Thus, in a period of length T , the number of ones in the sequence s1 equals to the
number of zeros in the sequence s2. �

From Theorem 3.3, we know that T is an even integer. Then the sequence
s with period T can be separated into s = (s1, s2, s1, s2, . . .), where s1 =
(s(0), s(1), . . . s(T

2 −1)), s2 = (s(T
2 ), s(T

2 +1), . . . s(T −1)). In the following analy-
sis, let s1 = (s1, s1, s1, s1, . . .), s2 = (s2, s2, s2, s2, . . .) denote sequences with period
of length T

2 . The sequence s refers to the combination of s1, s2 and is denoted by
s = (s1, s2).

Lemma 3.6. Let s1 = {s1(t)}t≥0, s2 = {s2(t)}t≥0 be binary strictly periodic
sequences in Fs with the common period of length T , and s1 = (s1

1, s
2
1), s2 =

(s1
2, s

2
2). Then for all τ ≥ 0,

Ca
s1,s2

(τ) = Ca
s1
1,s1

2
(τ) + Ca

s2
1,s2

2
(τ).

Proof. The second half of s1 and s2 are the complement of their first half. Let
τ ≥ 0. We consider the following case.

Cases 1, if s1(T
2 − 1) �= s2(T

2 − 1 + τ), we can assume s1(T
2 − 1) = 1 and

s2(T
2 − 1 + τ) = 0. So the minus of the (T

2 − 1)-th bit in Z2 between s1 and sτ
2

has no effect on the following arithmetic. Then the number of zeros minus the
number of ones in a period T of s1 − sτ

2 is equivalent to the number of zeros minus
the number of ones in a period T

2 of s1
1 − s1τ

2 plus the number of zeros minus the
number of ones in a period T

2 of s2
1 − s2τ

2 .

Cases 2, if s1(T
2 −1) = s2(T

2 −1+τ), there exists a minimum integer k satisfying
s1(T

2 − 1 − k) �= s2(T
2 − 1 − k + τ). We can assume s1(T

2 − 1 − k) = 1 and
s1(T

2 −1−k + τ) = 0. So the (T
2 −1−k)-th bit of the minus in Z2 between s1 and

sτ
2 doesn’t influence the following arithmetic. So we can also get that the number
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of zeros minus the number of ones in a period T of s1 − sτ
2 is equivalent to the

addition of s1
1 − s1τ

2 and s2
1 − s2τ

2 .
From the cases 1 and 2, we find that

Ca
s1,s2

(τ) = Ca
s1
1,s1

2
(τ) + Ca

s2
1,s2

2
(τ). �

Theorem 3.7. Let s1 = {s1(t)}t≥0, s2 = {s2(t)}t≥0 be two binary strictly periodic
sequences with period T in Fs. If s1 and s2 are cyclically distinct, then Ca

s1,s2
(τ) =

0, for τ ≥ 0.

Proof. Assume s1 = (s1
1, s

2
1), s2 = (s1

2, s
2
2). Since a binary periodic sequence with

period T
2 has the minimal connection integer which is less or equal to 2

T
2 −1, then

we can assume s1
1 = f1

q s1τ
2 = f2

q , where the integer q is the common connection
integer of s1

1 and s1τ
2 but not the least. As s1 and s2 are cyclically distinct that is

s1
1 �= s1τ

2 . Using the correspondence between the binary sequences and the 2-adic
number, we get f1

q �= f2
q .

As s1
1, s1τ

2 are the complement of s2
1 and s2τ

2 , we have that s2
1 = −1 − f1

q ,
s2τ
2 = −1 − f2

q . That is

s1
1 − s1τ

2 =
f1 − f2

q
, s2

1 − s2τ
2 = − (f1 − f2)

q
·

From Lemma 3.5, we get that in a period of length T
2 the number of ones in the

sequence s1
1 − s1τ

2 equals to the number of zeros in the sequence s2
1 − s2τ

2 . That is
Ca

s1
1,s1

2
(τ) + Ca

s2
1,s2

2
(τ) = 0. Thus, from Lemma 3.6,

Ca
s1,s2

(τ) = Ca
s1
1,s1

2
(τ) + Ca

s2
1,s2

2
(τ) = 0. �

In the proof of this subsection, the key point of the sequences with optimal
arithmetic cross-correlation is the complement property. From Proposition 2.1, we
find that the primitive sequences over Z/(pe) modulo 2 also satisfy this property
and the transformation is relatively simple. But the l-sequences which are the
primitive sequences of order 1 over Z/(pe) modulo 2 have low 2-adic complexity.
However, experiments show that the 2-adic complexity of the GLS is larger and is
approximated by the half of the least period. But we have not been able to prove
a result about the 2-adic complexity of the GLS and the relationships between
the primitive sequences and the GLS have proven extremely resistant to analysis.

From Theorem 3.7, we find that the sequences in Fs have optimal arithmetic
cross-correlation due to the balanced property of their subtraction sequence. Based
on this point of view and the analysis in Lemma 3.5, we give a new approach to
the study of the sequences with optimal arithmetic correlation. Because this con-
struction has no direct relationship with the GLS, we just give a simple description
in the following.
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Lemma 3.8. Let s1 = {s1(t)}t≥0, s2 = {s2(t)}t≥0 be two binary strictly periodic
sequences with a common period of length T and with corresponding 2-adic integers
�1, �2. Then there must exist another two binary strictly periodic sequences s3 =
{s3(t)}t≥0, s4 = {s4(t)}t≥0 with the common period of length T and corresponding
2-adic integers �3, �4 that satisfy

�3 − �4 = �2 − �1.

Proof. This is easy to derive from the operation of sequences in the 2-adic ring. �

Let S1 = (s1, s3) = s1, s3, s1, s3 . . ., S2 = (s2, s4) = s2, s4, s2, s4 . . ., where
si = (si(0), si(2), . . . , si(T − 1)), i = 1, 2, 3, 4. From Lemma 3.8, the sequence
s1 − s2 and s2 − s4 must be an eventually periodic sequence. Thus, there must
exist sequences s1, s2, s3, s4 with s1(0) = s3(0) = 1 and s2(0) = s4(0) = 0 that
satisfy Lemma 3.8. Then the arithmetic correlation of S1 and S2 is given as follows.

Theorem 3.9. Let s1,s2,s3,s4 be the cyclically distinct sequences as described in
Lemma 3.8 and the sequences S1 = (s1, s3), S2 = (s2, s4). If s1(0) = s3(0) = 1
and s2(0) = s4(0) = 0, then

Ca
S1,S2

(0) ∈ {0, 4, −4}.

Proof. The arithmetic correlation of sequences S1, S2 is the number of zeros minus
the number of ones in one period of length T of S1 − S2. Since s1(0) = s3(0) = 1
and s2(0) = s4(0) = 0, we know that the sequence S1−S2 is equal to the combined
(s1 − s2, s3 − s4), apart from two bits that are flipped. Thus, from the definition
of arithmetic correlation, we have

Ca
S1,S2

(0) ∈ {Ca
s1,s2

(0) + Ca
s3,s4

(0), Ca
s1,s2

(0) + Ca
s3,s4

(0) ± 4}.

From Lemma 3.5, we get Ca
s1,s2

(0) + Ca
s3,s4

(0) = 0. �

In the analysis of Theorem 3.9, we find that sequences without the bitwise com-
plement property also satisfy optimal arithmetic correlation. For instance, the se-
quences S1 = (s1, s3), where s1 = 1, 0, 0, 1, 0, 1, 0, 0, . . . , s3 = 1, 0, 0, 1, 0, 1, 1, 1, . . .,
S2 = (s2, s4) ,where s2 = 0, 1, 0, 0, 0, 1, 1, 1, . . . , s4 =, 0, 1, 1, 0, 1, 1, 1, 0, . . ., do not
have the second half of the period being the bitwise complement of the first half
but their subtraction sequence in the 2-adic ring has the balanced property, so
their arithmetic correlation is 0.

When two sequences s1, s2 in Fs are cyclically distinct, the arithmetic cross-
correlation of s1 and s2 is 0. When s1 and s2 are not cyclically distinct, their
arithmetic cross-correlation equals to the period T . In the next subsection, we
consider the cyclically distinct properties of class Fs.
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3.3. Distinctness

In this subsection, we restrict p > 7 to prove the cyclically distinct property of
the sequences with optimal arithmetic correlation in a subset of Fs. Before showing
the main result (Thm. 4), we first list some necessary lemmas.

Lemma 3.10 [5]. Let p be an odd prime and e ≥ 2. Suppose f(x) and g(x) are two
different primitive polynomials of degree n over Z/(pe) satisfying f(x)(modp) �=
g(x)(mod p). Then for any two linear recurring sequences u, v over Z/(pe) respec-
tively generated by f(x) and g(x), we have u(modp) and v(modp) are cyclically
distinct.

Lemma 3.11 [5]. Let a be a primitive sequence over Z/(pe) of degree n, and
assume the sequence a

′
is the S-fold sequence of a, where S = pe−1. Then a

′
(mod

p) is an m-sequence over Z/(p) of degree n.

Denote Fa is the class of d-fold decimation sequences of primitive sequence a,
where d is relatively prime to the period of a and d < 2 · pn−1

p−1 . From Definition 3.1,
we denote the class of generalized Legendre sequences generated from Fa as Ls,
which is a subset of Fs. From Theorem 3.7, we know that the arithmetic correlation
of the cyclically distinct sequences in Ls is 0. We denote the product of two periodic
sequences a1, a2 in Fa as a1 · a2 = {a1(t) · a2(t)(modpe)}t≥0.

Lemma 3.12. Let a
′
1, a

′
2 be the S-fold sequences of a1, a2 in Fa, and s

′
1, s

′
2 be

the S-fold sequences of the generalized Legendre sequences s1, s2 as generated by
a1, a2, where S = pe−1. If a

′
1(modp) �= a

′
2(modp), then s

′
1 �= s

′
2.

Proof. Let the sequences a1 and a2 be the d1−fold and d2−fold of the primitive
sequence a, d1, d2 are relatively prime to the period of sequence a and d1 < 2· pn−1

p−1 ,

d2 < 2 · pn−1
p−1 , and a

′
1, a

′
2 are the S-fold sequences of a1, a2. Then we can denote

a
′
1 = {a′

1(t)}t≥0 = {a1(S · t)}k≥0,

a
′
2 = {a′

2(t)}t≥0 = {a2(S · t)}k≥0.

So the sequences a
′
1 and a

′
2 have the least period of length pn−1. From Lemma 3.11,

we know that the sequences a
′
1( mod p), a

′
2( mod p) are the m-sequences over Z/(p)

of degree n. Next, we assume a
′
1(modp) �= a

′
2(modp).

Let s1 and s2 be two sequences in Ls generated by the sequences a1 and a2

respectively. Assume s
′
1, s

′
2 are the S-fold sequences of s1, s2. From Theorem 3.3,

we know that sequences s
′
1, s

′
2 have period of length

T
′
=

2 · (pn − 1)
p − 1

·

Next, we consider a string of length T
′
= 2·(pn−1)

p−1 in the sequence a
′
1 · a

′
2, where

T
′
= P0 + P1 + P−1, and P0 is the number of t satisfying a

′
1(t) · a

′
2(t)(modp) = 0
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in this string, P1 is the number of t satisfying χl(a
′
1(t) · a

′
2(t)(modpe)) = 1 and

P−1 is the number of t satisfying χl(a
′
1(t) · a

′
2(t)(modpe)) = −1.

Since a
′
1(modp), a

′
2(modp) are the m-sequences over Z/(p) of degree n, from

the property of the m-sequence, we know that the number of a
′
1(t)(modp) = 0

and a
′
2(t)(modp) = 0 is pn−1 − 1. So the number of a

′
1(t) · a

′
2(t)(modp) = 0 in a

period of length pn−1 of sequence a
′
1 ·a

′
2 is at most 2·(pn−1−1). So in the sequence

a
′
1 · a

′
2, we can assume that the first 2·(pn−1)

p−1 length of this sequence satisfy

P0 ≤ 4 · (pn−1 − 1)
p − 1

·

From Definition 3.1 and Lemma 3.2, we know that P1 equals the number of t with
s
′
1(t)⊕s

′
2(t) = 0. From the above analysis of Theorem 3.3, the sequences s

′
1, s

′
2 have

period 2·(pn−1)
p−1 , and the correlation of the Legendre sequences generated by a

′
1,

a
′
2 is no more than 2 · (pn−1−1). So the integer P1 is at most pn−pn−1

p−1 + 4·(pn−1−1)
p−1 .

That is

P1 ≤ pn − pn−1

p − 1
+

4 · (pn−1 − 1)
p − 1

·

Since
T

′ − P0 − P1 = P−1 > 0,

so there must exist an integer t in the first string of length T
′
of sequence a

′
1 · a

′
2

satisfying
χl(a

′
1(t) · a

′
2(t)(modpe)) = −1,

where a
′
1(t) · a

′
2(t)(modp) �= 0.

As χl(a
′
1(t) · a

′
2(t)(modpe)) = χl(a

′
1(t))(modpe) · χl(a

′
2(t))(modpe), we have

s
′
1(t) �= s

′
2(t).

Then we arrive at s
′
1 �= s

′
2. �

Theorem 3.13. Let sequence a = {a(t)}t≥0 be a primitive sequence of order n
(n ≥ 2) over Z/(pe) where p > 7 satisfying 4|p − 1 and 2 is the biggest even divi-
sor of n. If a1, a2 are two different sequences in Fa and their primitive generator
polynomials f(x) and g(x) satisfy f(x)(modp) �= g(x)(modp), then the general-
ized Legendre sequences s1 and s2 are respectively generated by a1 and a2. Then
s1 and s2 are cyclically distinct.

Proof. Since a1 and a2 are two different sequences in Fa and their primitive
generator polynomials f(x) and g(x) satisfy f(x)(modp) �= g(x)(modp). Then
from Lemma 3.10, the sequences a1(modp) and a2(modp) are cyclically distinct.
Assume a

′
1, a

′
2 are the S-fold sequences of a1, a2, where S = pe−1. From

Lemma 3.11, we know that the sequences a
′
1(modp), a

′
2(modp) are m-sequences

over Z/(p) of degree n and are the S-fold decimation of sequences a1(modp),
a2(modp). So a

′
1(modp) and a

′
2(modp) are cyclically distinct. For all τ ≥ 0, we
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have a
′
1(modp) �= a

′
2(τ)(modp), where a

′
2(τ)(modp) is the τ -shift of sequence

a
′
2(modp).
Assume s

′
1 = {s1(t0 + S · t)}t≥0, s

′
2(τ) = {s2(t0 + τ + S · t)}t≥0 are the S-fold

sequences of the generalized Legendre sequences s1, s2(τ) as generated by a1,
a2(τ). So there must exist an integer t1 satisfying s1(t0 +S ·t1) �= s2(t0 +S ·t1+τ).
So for all τ ≥ 0, there must exist an integer t = t0 + S · t1 satisfying

s1(t) �= s2(t + τ).

Then the sequences s1 and s2 are cyclically distinct. �

From Theorem 3.13, we find that the cyclically distinct sequences in Ls depend
on their primitive generator polynomial over Z/(pe) modulo p, so Ls can be di-
vided into subsets L1, L2,. . ., LN−1, where the integer N denotes the number of
different primitive polynomials over Z/(pe) modulo p which generate the prim-
itive sequences in Fa. The sequences in different subsets are cyclically distinct.
Moreover, based on the proof of Lemma 3.12, we also find the following property.

Corollary 3.14. Let a1 be a primitive sequence generated by a primitive poly-
nomial f(x) of order n over Z/(pe1), a2 be a primitive sequence generated by
a primitive polynomial g(x) of order n over Z/(pe2), where e1 �= e2. The se-
quences s1, s2 are the generalized Legendre sequences generated by a1, a2. If
f(x)(modp) �= g(x)(modp), then s1, s2 are cyclically distinct.

We use these properties to give a simple ID-based remote mutual authentication
in a multiuser environment. A brief description about this crypto-system is given
in the following.

This scheme has two roles: one is to mutually authenticate the users
{U1, U2, . . . , UN} and a remote server A, and the second is to generate the secret
key between them.

• System initializing phase:

Step 1. The server A random selects the integer pair (p, n), and integers e1, e2,
. . ., eN , where p > 7 is an odd large prime satisfying 4|(p− 1) and 2 is the
biggest even factor of n.

Step 2. The server A uses the pairs (p, n, ei), i = 1, 2, . . .N , to generate the in-
tegers di, where the pei -adic representation of di can correspond to a
primitive polynomial fi of degree n over Z/(pei) and satisfy fi(modp) �=
fj(modp), i �= j.

Step 3. The server A keeps the key set P = {di, p, ei, n} secret.

• User registration phase:

Step 1. The user Ui chooses his identity and submits it to the server A with some
personal secret information through a secure channel.



THE GLS ARITHMETIC CROSS-CORRELATION 387

Step 2. The server A checks the identity of the user Ui and uses each public key
Ei, i = 1, 2, . . . , N − 1, to send Ei(di, p, ei, n) to each user.

• Mutual authentication with key session agreement phase

Step 1. The users use their secret key Di to compute Di(Ei(di, p, ei, n)) and use
the integers (di, p, ei, n) to generate a set Li of GLS .

Step 2. The users Ui, Uj , i �= j, randomly choose the sequences si, sj in set Li,
Lj to compute their arithmetic correlation Ca(si, sj). If Ca(si, sj) = 0,
they continue the mutual authentication, otherwise they reject the user’s
request.

Step 3. T The users Ui and Uj exchange the integers ei and ej . The user Ui

computes pej and gets a pej − fold sequence s
′
j of the sequence sj . If s

′
j

has the least period of length 2·(pn−1)
p−1 and the arithmetic correlation of

s
′
j and an arbitrary pei -fold sequence in Li is 0, Ui confirms the validity

of the user Uj , otherwise the user’s request is rejected. The user Uj can
authenticate Ui in the same way.

This ID-based remote mutual authentication crypto-system is just a simple exam-
ple to analyze the distinct properties of the GLS and only proposes a new method
for signature verifying by using arithmetic cross-correlation. The advantage over
comparable traditional schemes of this system is due to the different definitions
and purpose of the public keys in the user registration phase, which result in the
various relative merits. But compared to other sequence schemes, the large size of
the GLS increases the space complexity of the key set. We hope the applications of
the arithmetic cross-correlation to communication and password encryption may
find some use in future.

4. Conclusion

In this article, a new class of sequences called generalized Legendre sequences is
introduced. Moreover, the arithmetic cross-correlation property and the distinct-
ness of their decimation are shown. Remaining open problems include to determine
period of these sequences, and to classify the sequences with respect to distinct-
ness. Furthermore, although our experiments found that the 2-adic complexity of
these sequences approximated by half of the least period, but we have not prove
this.
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