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BIDIRECTIONAL STRING ASSEMBLING SYSTEMS
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Abstract. We introduce and investigate several variants of a bidirec-
tional string assembling system, which is a computational model that
generates strings from copies of assembly units. The underlying mech-
anism is based on two-sided piecewise assembly of a double-stranded
sequence of symbols, where the upper and lower strand have to match.
The generative capacities and the relative power of the variants are our
main interest. In particular, we prove that bidirectional string assem-
bling system generate languages not represented as any finite concate-
nation of one-sided string assembling systems. The latter build an infi-
nite, strict and tight concatenation hierarchy. Moreover, it is shown that
even the strongest system in question can only generate NL languages,
while there are unary regular languages that cannot be derived. Fur-
thermore, a finite strict hierarchy with respect to the different variants
considered is shown and closure properties of the languages generated
are presented.

Mathematics Subject Classification. 68Q05, 68Q42.

1. Introduction

String assembling systems [5] are language generating devices, where the raw
material processed is double stranded in such a way that corresponding symbols
have to be identical. In this way the correctness of the complementation of a
strand is naturally given. With the advent of investigations of devices and opera-
tions that are inspired by the study of biological processes, and the growing interest
in nature-based problems modeled in formal systems this old control mechanism
of the generation process has been rekindled. The famous Post’s Correspondence
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Problem can be seen as a first study showing the power of double-stranded string
generation [8]. Basically, the idea of string assembling systems is to have basic as-
sembly units that are pairs of substrings which have to be synchronously connected
to the matching upper and lower strand in order to extend the string assembled to
the right. In general, we provide two further control mechanisms. First, we require
that the first symbol of a substring has to be the same as the last symbol of the
strand to which it is connected. One can imagine that both symbols are glued
together one at the top of the other and, thus, just one appears in the final string.
Second, as for the notion of strictly locally testable languages [6,10], we distinguish
between assembly units that may appear at the beginning, during, and at the end
of the assembling process.

Here we generalize the devices to two-sided ones and introduce several types of
bidirectional string assembling systems. The basic variant has a set of assembly
units for each side. The assembling of units to the left and right is not synchro-
nized. The control of the generation process is weakened for centralized variants,
where units are still assembled at both ends, but all units are centralized into one
set, that is, it is not distinguished whether a unit may be assembled at the left
or right. A stronger control of the generation process is obtained by synchronizing
the assembling of units at both ends. Here we consider systems where units are
assembled simultaneously at the right and at the left. The last variant in question
are synchronized bidirectional string assembling systems, where the units simul-
taneously assembled must be related.

A related recent approach of double-stranded string generation are sticker sys-
tems [1,3,7], where basically the assembly units may be more complex dominoes.
So, the generation process of sticker systems is subject to control mechanisms and
restrictions given, for example, by the shape of the pieces. The assembling units of
string assembling systems do not form dominoes. Although the basic mechanisms
of both types of systems are closely related, their generative capacities differ essen-
tially. In [5] it is shown that the copy language {$1w$2w$3 | w ∈ Σ+} is generated
by a one-sided string assembling system, while it is not generated by any sticker
system. On the other hand, sticker systems can generate all regular languages,
whereas it turns out that there is a regular language not generated even by the
strongest bidirectional string assembling system under consideration.

The paper is organized as follows: The next section contains preliminaries and
the definition of string assembling systems as well as some meaningful examples
that are a starting point to explore the generative capacity of the systems. In par-
ticular, by a known result from [5] and an example we obtain that bidirectional
string assembling systems are strictly stronger than unidirectional ones. Section 3
is devoted to the question whether or not bidirectional string assembling systems
generate merely the concatenation of two languages generated by one-sided sys-
tems. It is shown that bidirectional systems are strictly more powerful, but also
that they can generate languages which have no representation as any finite con-
catenation of one-sided system languages. In addition, an infinite, strict, and tight
concatenation hierarchy of one-sided systems is obtained. Then Section 4 deals



BIDIRECTIONAL STRING ASSEMBLING SYSTEMS 41

with synchronized systems. In this way, the number of units assembled is identical
for the right and left part of the strand. It is shown that synchronization yields
strictly more powerful systems regardless of whether they are centralized or not.
In turn the generative power is lowered when systems are centralized. As an up-
per bound on the generative capacity of bidirectional string assembling system a
construction is given that allows to simulate such a system by some nondetermin-
istic one-way five-head finite automaton. In Section 5 we investigate synchronized
bidirectional string assembling systems, where the units simultaneously assembled
must be related. It turns out that for such devices centralized and non-centralized
versions are equally powerful. Moreover, they form the strongest system in ques-
tion. However, nondeterministic two-way four-head finite automata can simulate
these systems, which implies that none of the devices in question can generate a
language not belonging to the complexity class NL. In particular, all languages
generated are context-sensitive. On the other hand, it is shown that there is a
unary regular language not belonging to any family of languages generated by
string assembling systems. Interestingly, any unary regular language can be gen-
erated even by unidirectional string assembling systems if finitely many words are
omitted, that is, finitely many errors are suffered. In Section 6 we consider closure
properties of the families of languages generated by the systems in question. In
particular, the non-closure under five of the six AFL operations is shown. Fur-
thermore we obtain non-closure under complementation. The only positive closure
property is for reversal.

2. Preliminaries and definitions

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted by wR,
and for the length of w we write |w|. Generally, for a singleton set {a} we simply
write a. We use ⊆ for inclusions and ⊂ for strict inclusions.

Basically, a bidirectional string assembling system generates a double-strand-
ed string by assembling substrings to the upper and lower strand at both ends,
so that both strands match. Moreover, a substring can only be assembled to the
right when its first symbol matches the last symbol of the strand, and to the left
when its last symbol matches the first symbol of the strand. In these cases the
matching symbols are glued together one at the top of the other. The substrings
to be assembled are given by so-called units. The generation has to begin with
a unit from the set of initial units. Then it may continue, and when a unit from
the sets of ending units is applied, the assembling process in the corresponding
direction stops. The generation is said to be valid if and only if both strands are
identical when the process stops at the right and at the left.

In the sequel, we denote (incomplete) matching double strands by quintuples
(v1, v2, u, w1, w2), where u is non-empty, either v1 or v2, or both are empty and,
similarly, either w1 or w2, or both are empty. It is understood that u is the part
where upper and lower strand match, v1 (v2) denotes the part of the upper (lower)
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v1 u

u w2

Figure 1. Example of an incomplete matching double strand
(v2 = w1 = λ).

strand sticking out to the left, and w1 (w2) denotes the part of the upper (lower)
strand sticking out to the right (see Fig. 1). The set of all (incomplete) matching
double strands over an alphabet Σ is denoted by Σ�.

Definition 2.1. A bidirectional string assembling system (2SAS) is a sextuple
〈Σ, A, Tl, Tr, El, Er〉, where

1. Σ is the finite, nonempty set of symbols or letters,
2. A ⊂ Σ� is the finite set of axioms,
3. Tl, Tr ⊂ Σ+ × Σ+ are the finite sets of left and right assembly units,
4. El ⊂ Σ+×Σ+ is the finite set of left ending assembly units of the forms (uv, u)

or (u, uv), where u ∈ Σ+ and v ∈ Σ∗, and
5. Er ⊂ Σ+ × Σ+ is the finite set of right ending assembly units of the forms

(vu, u) or (u, vu), where u ∈ Σ+ and v ∈ Σ∗.

The next definition formally says how the units are assembled (see Fig. 2).

Definition 2.2. Let S = 〈Σ, A, Tl, Tr, El, Er〉 be a 2SAS. The derivation rela-
tion ⇒ is defined on Σ� by

1. (v1, v2, u, w1, w2) ⇒ (v1, v2, u
′, w′

1, w
′
2) if

(a) uw1 = ta, uw2 = sb, and (ax, by) ∈ Tr ∪ Er, for a, b ∈ Σ, x, y, s, t ∈ Σ∗,
and

(b) uw1x = uw2yz, u′ = uw2y, w′
1 = z, w′

2 = λ, or uw2y = uw1xz, u′ = uw1x,
w′

1 = λ, w′
2 = z, for z ∈ Σ∗.

2. (v1, v2, u, w1, w2) ⇒ (v′1, v
′
2, u

′, w1, w2) if
(a) v1u = at, v2u = bs, and (xa, yb) ∈ Tl ∪ El, for a, b ∈ Σ, x, y, s, t ∈ Σ∗, and
(b) xv1u = zyv2u, u′ = yv2u, v′1 = z, v′2 = λ, or yv2u = zxv1u, u′ = xv1u,

v′1 = λ, v′2 = z, for z ∈ Σ∗.

A derivation is said to be successful if it initially starts with an axiom from A,
continues with assembling units from Tl and Tr, and ends with having assembled
an ending unit from El to the left and an ending unit from Er to the right.
The process necessarily stops when both ending units have been added. The sets
Tl, Tr, El, and Er are not necessarily disjoint.

The language L(S) generated by S is defined to be the set

L(S)=
{
w ∈ Σ+ | (v1, v2, u, w1, w2) ⇒∗ (λ, λ, w, λ, λ) is a successful derivation

}

where ⇒∗ refers to the reflexive, transitive closure of the derivation relation ⇒.
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Figure 2. Examples of assembling a unit (az, bx) at the right
(top) and a unit (zyaxb, ya) at the left (bottom).

A 2SAS 〈Σ, A, Tl, Tr, El, Er〉 is said to be a unidirectional string assembling
system (1SAS) if Tl = ∅, El = {(a, a) | a ∈ Σ}, and all axioms are of the form
(λ, λ, u, w1, w2). That is, except for ending units that actually add no symbols,
units are only assembled at the right.

In order to clarify the notation we give two examples.

Example 2.3. The 2SAS S = 〈{a, b}, A, Tl, Tr, El, Er〉 generates the determinis-
tic context-free language {anbn | n ≥ 1} ∪ a+, where

A = {(λ, λ, a, λ, λ), (λ, λ, b, λ, λ)},
Tl = {(bb, b), (ab, b), (aa, bb), (a, ab), (a, aa)}, Tr = {(aa, aa)},
El = {(a, a)}, Er = {(b, b), (a, a)}.

The units in Tl are used to generate the words from {anbn | n ≥ 1} to the left
of the axiom (λ, λ, b, λ, λ). The units in Tr are used to generate the words of the
form a+ to the right of the axiom (λ, λ, a, λ, λ). Starting with this axiom it is
only possible to add units (aa, aa) to the right, and end up at both ends with
the units (a, a) ∈ El and (a, a) ∈ Er. If the unit (a, aa) would be used at the left
side, the lower strand gets longer, but cannot be completed in the upper strand.
If the axiom containing a b is used, first the suffix abn is generated by repeatedly
assembling unit (bb, b) followed by one unit (ab, b). After that the unit (aa, bb) has
to be assembled exactly as many times as the unit (bb, b) before. Now the only
possibility is to add (a, ab) and complete the lower strand with (a, aa). Because
the units of Tr cannot be used at the left side, (aa, aa) cannot be added.

Example 2.4. The 2SAS S = 〈{a, b}, A, Tl, Tr, El, Er〉 generates the determinis-
tic context-free language {anbnam | n, m ≥ 1}, where

A = {(λ, λ, ba, λ, λ)},
Tl = {(bb, b), (ab, b), (aa, bb), (a, ab), (a, aa)}, Tr = {(aa, aa)},
El = {(a, a)}, Er = {(a, a)}.
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Here, basically, the same mechanism as in the previous example is used. The main
difference is that a derivation starts with an axiom consisting of a b at the left side
and an a at the right, which leads to the generation of the concatenation of the
languages {anbn | n ≥ 1} and a+.

Now we turn to weaken the control of the generation process. So-called central-
ized bidirectional string assembling systems (C-2SAS) cannot distinguish between
the units that may be assembled at the left and right. To this end, formally it
suffices to require Tl = Tr and El = Er.

Example 2.5. The C-2SAS S = 〈{a, b}, A, Tl, Tr, El, Er〉 generates the context-
free language {anbnambm | n, m ≥ 1}, where

A = {(λ, λ, ba, λ, λ)}, Tl = Tr = {(bb, b), (ab, b), (aa, bb), (a, ab), (a, aa)} ,

El = {(a, a)}, Er = {(b, b)}.

As in Example 2.3, the words from {anbn | n ≥ 1} are generated to the left of the
axiom (λ, λ, ba, λ, λ). In addition, the same units are used to generate a second
word from the same set to the right. When a word from {akbkalbl | k, l ≥ 1} has
been assembled, the derivation cannot be extended successfully. Though the unit
(bb, b) can repeatedly be added at the right, the lower strand cannot be completed
afterwards. Similarly, the unit (a, aa) can be added at the left, but the upper
strand cannot be completed afterwards.

3. Concatenation hierarchy of 1SAS

In [5] it has been shown that the language {anbnam | n, m ≥ 1} is not generated
by any 1SAS. Therefore, by Example 2.4 we obtain the following inclusion.

Theorem 3.1. The family of languages generated by 1SAS is properly included
in the family of languages generated by 2SAS.

While the previous result is evident, we next turn to the question whether or
not 2SAS generate merely the concatenation of two 1SAS languages. The next
theorem shows that 2SAS are in fact at least as powerful as two “concatenated”
1SAS. However, the rest of the section reveals not only that 2SAS are strictly more
powerful, but also that they can generate languages which have no representation
as any finite concatenation of 1SAS languages. In addition, an infinite, strict, and
tight concatenation hierarchy of 1SAS is obtained.

Theorem 3.2. Let S1, S2 be two 1SAS. There exists a 2SAS that generates the
concatenation L(S1)L(S2).

Proof. Let
S1 = 〈Σ′, A′, ∅, T ′

r, {(a, a) | a ∈ Σ′}, E′
r〉 and

S2 = 〈Σ′′, A′′, ∅, T ′′
r , {(a, a) | a ∈ Σ′′}, E′′

r 〉.
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Then the 2SAS 〈Σ′∪Σ′′, A, Tl, Tr, El, Er〉 generates the concatenation L(S1)L(S2),
where

A = {(v1, λ, v2u, w1, w2) | (v1v2, v2) ∈ E′
r, (λ, λ, u, w1, w2) ∈ A′′},

∪ {(λ, v2, v1u, w1, w2) | (v1, v2v1) ∈ E′
r, (λ, λ, u, w1, w2) ∈ A′′},

Tl = T ′
r, Tr = T ′′

r ,

El = {(uw1, uw2) | (λ, λ, u, w1, w2) ∈ A′}, and

Er = E′′
r . �

In [5] it has been shown that the family of languages generated by 1SAS is
not closed under concatenation. In order to derive the infinite, strict, and tight
concatenation hierarchy of 1SAS we consider the four languages

L0 = {anbn | n ≥ 1} ∪ d+, L1 = {cndn | n ≥ 1} ∪ a+,
L2 = {bnan | n ≥ 1} ∪ c+, L3 = {dncn | n ≥ 1} ∪ b+.

and, for i ≥ 1, their cyclic concatenations L(1) = L0 and L(i+1) = L(i)Li mod 4.
The next lemma prepares to show that L(i+1) cannot be written as concatena-

tion of at most i 1SAS languages.
Lemma 3.3. Let r ≥ 0 be a constant, and L ⊆ Σ∗ be a language so that

{anbn | n ≥ 1}a+(ba)r ⊆ L ∩ {a, b}+ ⊆ {anbn | n ≥ 1}a+(b+a+)r or
{anbn | n ≥ 1}a+(ba)rb ⊆ L ∩ {a, b}+ ⊆ {anbn | n ≥ 1}a+(b+a+)rb+.

Then L is not generated by any 1SAS.

Proof. In contrast to the assertion we assume that L is generated by some 1SAS
S = 〈Σ, A, Tl, Tr, El, Er〉. Recall that by definition Tl = ∅, El = {(x, x) | x ∈ Σ},
and all axioms are of the form (λ, λ, u, w1, w2). Let s + 1 be the length of the
longest string appearing in a unit from A, Tr, or Er.

Next, we define subsets of Tr as follows. Te(a) = {(ai, ai) ∈ Tr | i ≥ 2},
Tu(a) = {(ai, aj) ∈ Tr | i > j ≥ 1}, and Td(a) = {(ai, aj) ∈ Tr | 1 ≤ i < j}.

If Tu(a) contains a unit (ai1 , aj1) and Td(a) a unit (ai2 , aj2), then the assembling
of j2 − i2 units (ai1 , aj1) and i1 − j1 units (ai2 , aj2) extends the upper as well as
the lower string by � = i1j2 − i2j1 − i1 − j2 + i2 + j1 symbols a. If Te(a) con-
tains a unit (ai, ai), its assembling extends the upper as well as the lower string
by � = i − 1 symbols a. Let (λ, λ, u, w1, w2) be the unit from A which starts
the generation of a string with prefix anbna, where n is large enough, that is,
u, w1, w2 ∈ a∗. Then the upper and lower string can be extended by � symbols
yielding (λ, λ, a|u|+�, w1, w2), while the remaining generation is unchanged. There-
fore, a string with prefix an+�bna is generated as well, which is a contradiction.
We conclude that Te(a) and one of Tu(a) and Td(a) must be empty. Without loss
of generality, we assume Td(a) is empty.

Now we claim that there are no units of the form (b, aj+1) in Tr, for j ≥ 1.
In order to prove the claim we assume contrarily that such a unit exists in Tr.

Let (λ, λ, u, w1, w2) ⇒∗ (λ, λ, an1 , an−n1bi, λ), i ≤ s and n large enough, be the
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initial part of a successful generation which continues (λ, λ, an1 , an−n1bi, λ) ⇒∗

(λ, λ, anbnav, λ, λ), for v ∈ {a, b}∗. Since Te(a) and Td(a) are empty, such an initial
part exists. Since n is large enough, some unit (ap+1, aq+1), p > q ≥ 0 is assembled
at least once. Assembling the unit (ap+1, aq+1) j times more at the beginning
of the generation yields (λ, λ, u, w1, w2) ⇒∗ (λ, λ, an1+j·q, an+j·p−(n1+j·q)bi, λ).
Continuing the generation by assembling (p − q) times the unit (b, aj+1) yields
(λ, λ, an1+j·q+(p−q)·j , an+j·p−(n1+j·q)−(p−q)·jbi, λ) = (λ, λ, an1+j·p, an−n1 , λ). So,
the generation

(λ, λ, u, w1, w2) ⇒∗ (
λ, λ, an1+j·p, an−n1bi, λ

) ⇒∗ (
λ, λ, an+j·pbnav, λ, λ

)

is successful as well. The contradiction concludes the proof of the claim.
Now we are prepared to prove the lemma. We denote the word anbnam(ba)r

or anbnam(ba)rb by wn,m, and consider these words for n large enough and m
arbitrarily large compared with n. We distinguish three cases.

Case 1. For all constants d there is a word wn,m so that the initial part of its
generation yields an (incomplete) matching double strand (λ, λ, u, w1, λ),
where uw1 = anbnax1 and min{x1, |w1|} ≥ d.
Since Te(a) and Td(a) are empty, we obtain the derivation
(λ, λ, u, w1, λ) ⇒∗ (λ, λ, anbnax2 , am−x2bi, λ), where i ≤ s and m− x2 ≥
d. In order to complete the lower strand for d > (2r + 1)s, there must
exists a unit of the form (b, aj+1) or (a, aj+1), j ≥ 1. The latter is impos-
sible since Td(a) is empty, the former is impossible by the claim above.

Case 2. For all constants d there is a word wn,m so that the initial part of its
generation yields an (incomplete) matching double strand (λ, λ, u, λ, w2),
where uw2 = anbnax1 and min{x1, |w2|} ≥ d.
Since Te(a) and Td(a) are empty, we obtain (λ, λ, an1 , an−n1bi, λ)
as initial part of the generation, where i ≤ s. If the first a of
the third block is generated in the upper string first, the gen-
eration continues (λ, λ, an1 , an−n1bi, λ) ⇒∗ (λ, λ, an2 , an−n2bnai′ , λ),
or (λ, λ, an1 , an−n1bi, λ) ⇒∗ (λ, λ, anbn3 , bn−n3ai′ , λ), where i′ ≤ s.
Then there must be a unit in Td(a) since otherwise the situation
min{x1, |w2|} ≥ d is unreachable. But Td(a) is empty.
If the first a of the third block is generated in the lower string first, the
generation continues (λ, λ, an1 , an−n1bi, λ) ⇒∗ (λ, λ, anbn2 , λ, bn−n2ai′),
where i′ ≤ s. Then, for d > n · s there must be a unit (b, aj+1), j ≥ 1.
Otherwise the situation min{x1, |w2|} ≥ d is unreachable. But such a
unit does not exist by the claim above.

Case 3. There is a constant d so that for all words wn,m the initial
parts of their generation yields (incomplete) matching double strands
(λ, λ, anbnax, w1, w2), with x ≥ 1, w1, w2 ∈ a∗ with ||w1| − |w2|| < d. In
this case, either Te(a) or Td(a) must be nonempty, a contradiction.

So, in any case we obtain a contradiction to the assumption that L is generated
by some 1SAS, which concludes the proof. �
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Theorem 3.4. Let k ≥ 1 be a constant. Then L(k) can be represented as concate-
nation of k 1SAS languages, but there is no representation as concatenation of less
than k 1SAS languages.

Proof. The four languages L0, L1, L2, L3 are all 1SAS languages. Since L(k) is
defined as concatenation of k of these languages, the first part of the assertion
follows.

For the second part, we know by Lemma 3.3 that the concatenation L0L1 is not
generated by any 1SAS. So, the assertion follows for k = 2. Concluding inductively,
let k ≥ 3 and assume that L(k−1) cannot be represented as concatenation of less
than k − 1 1SAS languages.

It remains to be shown that L(k) cannot be represented as concatenation of less
than k 1SAS languages. Lemma 3.3 shows that L(k) is not a 1SAS language and,
thus, we consider its representation as concatenation of a 1SAS language Ll and a
(not necessarily 1SAS) language Lr. That is, L(k) = LlLr, where Ll is generated
by some 1SAS.

First we notice that for any fixed k, the possible numbers and orders of a-, b-, c-,
and d-blocks appearing in words from L(k) is uniquely determined from left to
right. For example, any word may begin with a d-block, or an a-block followed by
a b-block. These are followed by an a-block, or a c-block followed by a d-block,
and so on. The possible sequences of blocks are called signatures.

Since all words in L(k) begin either with letter a or with letter d, all words in Ll

begin with a or d as well.
Next we consider all words in L(k) ∩ {a, b}+. If there is some word ai, i ≥ 1,

in Ll, there is a matching word an−ibnamv ∈ Lr, where v ∈ {a, b}+. Now the
concatenation of any word in Ll beginning with a d and an−ibnamv cannot belong
to L(k) since it has an invalid signature. Similarly, if there is some word anbj,
n > j ≥ 1, in Ll, there is a matching word bn−jamv ∈ Lr. Again, the concatenation
of any word in Ll beginning with a d and bn−jamv cannot belong to L(k) since it
has an invalid signature. By Lemma 3.3, the words in Ll ∩ {a, b}+ cannot cover
all prefixes anbnam, n, m ≥ 1. We conclude that there are words of the form
anbna�, n ≥ 1 and � ≥ 0, in Ll, and there are matching words a�′v, where �′ ≥ 1
and v ∈ {a, b}+. Moreover, if there is a word of the form anbna�u in Ll, where
u ∈ {a, b, c, d}∗, then the concatenation anbna�u · a�′v has a valid structure if and
only if u ∈ a∗. This implies that Ll ∩ a{a, b, c, d}∗ includes only words anbna�,
n ≥ 1, � ≥ 0. In addition, such a word belongs to Ll for any number n.

Now assume that Lr includes words beginning with the letter d, say du, where
u ∈ {a, b, c, d}∗. Then the concatenation anbna� · du has an invalid signature.
Therefore, there is no word in Lr beginning with d, and all words dj , j ≥ 1
appearing as prefixes in Ll. Moreover, if there is a word of the form du in Ll,
where u ∈ {a, b, c, d}∗, then the concatenation du · a�′v, where a�′v ∈ Lr matches
anbna� in Ll, has a valid structure if and only if u ∈ a∗. Therefore, Ll∩d{a, b, c, d}∗
includes only words dma�, m ≥ 1, � ≥ 0, and such a word belongs to Ll for any
number m. Above it has already been derived that Ll ∩ a{a, b, c, d}∗ includes only
words anbna�, and such a word belongs to Ll for any number n.
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Next consider words in L(k) that are of the forms anbncmdmv and dncmdmv,
where m, n ≥ 1 and v ∈ {a, b, c, d}∗. From above it follows that there are matching
words cmdmv ∈ Lr. Since anbna� · cmdmv as well as dna� · cmdmv belong to L(k)

if and only if � = 0, and language Ll includes only words beginning with a or
d, it altogether follows Ll = {anbn | n ≥ 1} ∪ {dm | m ≥ 1}, that is, Ll = L0.
Furthermore, Lr is up to renaming of letters equal to L(k−1). By the induction
hypothesis this shows that L(k) cannot be represented as concatenation of less
than k 1SAS languages. �

The concept of bidirectionality of string assembling systems is different from
concatenations of 1SAS languages. In fact, there are languages on top of the infinite
concatenation hierarchy that are generated by simple 2SAS.

Theorem 3.5. There is a language generated by a 2SAS which cannot be repre-
sented as concatenation of any finite number of 1SAS languages.

Proof. By Example 2.3, the language L = {anbn | n ≥ 1} ∪ a+ is generated by
a 2SAS. Now assume in contrast to the assertion that it has a representation as
concatenation of some k ≥ 1 languages generated by the 1SAS S1, S2, . . . , Sk:
L = L(S1)L(S2) . . . L(Sk). Since L includes infinitely many words of the form a+,
at least one of the systems, say Si, generates infinitely many of them. None of
the systems Sj , with 1 ≤ j < i, generates a word containing the letter b, since
otherwise by concatenation a word is obtained where a b is followed by an a.
Moreover, none of the systems Sj , with i < j ≤ k, generates a word containing the
letter b. Otherwise two concatenations which differ only by two different words of
the form a+ from L(Si) and which include the word from L(Sj) containing the
letter b, must yield a word not belonging to L.

We conclude that system Si generates all factors containing the letter b. Since,
in addition, L(Si) contains infinitely many words of the form a+, Lemma 4.3 is
applicable, which shows that there are words generated that do not belong to L,
a contradiction. �

4. Synchronized 2SAS

This section is devoted to investigate variants of 2SAS allowing a stronger con-
trol of the generation process. Basically, the idea is to synchronize the assembling
of units at the right and left. First we consider S-2SAS (SC-2SAS), which are 2SAS
(C-2SAS) where units are always assembled simultaneously at the right and at the
left. In this way, the number of units assembled is the same for the right and left
part of the strand.

Example 4.1. The SC-2SAS S = 〈{a, b}, A, Tl, Tr, El, Er〉 generates the context-
free language {anban | n ≥ 1}, where A = {(λ, λ, aba, λ, λ)}, Tl = Tr = {(aa, aa)},
and El = Er = {(a, a)}.
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The only possibility to start with is the axiom (λ, λ, aba, λ, λ). Then n−1 times
the unit (aa, aa) is used, which is synchronously assembled at the left and at the
right. Finally, the ending unit (a, a) completes the derivation.

Though for non-synchronized 2SAS the numbers of units assembled at the right
and left may differ, they are special cases of synchronized systems. This can be seen
as follows. Let S = 〈Σ, A, Tl, Tr, El, Er〉 be a 2SAS. Then we construct an equiva-
lent S-2SAS S′ = 〈Σ, A, T ′

l , T
′
r, El, Er〉 generating L(S) by adding units that actu-

ally do not add anything to the strands. That is, we set T ′
l = Tl ∪ {(a, a) | a ∈ Σ}

and T ′
r = Tr ∪ {(a, a) | a ∈ Σ}. Clearly, S′ generates the language L(S). Since

centralized variants meet the condition Tl = Tr and the construction extends Tl

as well as Tr by the same set of units, the construction works fine also for C-2SAS
and SC-2SAS.

So, in order to separate synchronized from non-synchronized string assembling
systems, it suffices to show that the language {anban | n ≥ 1} of Example 4.1 is
not generated by any 2SAS.

Theorem 4.2. (i) The family of languages generated by 2SAS is properly included
in the family of languages generated by S-2SAS. (ii) The family of languages gen-
erated by C-2SAS is properly included in the family of languages generated by
SC-2SAS.

Proof. By Example 4.1, the language L = {anban | n ≥ 1} is generated by
an SC-2SAS and, thus, by an S-2SAS. Assume that L is generated by a 2SAS
S = 〈Σ, A, Tl, Tr, El, Er〉. We distinguish two cases. First, let there be an ax-
iom (v1, v2, x1bx2, w1, w2) ∈ A with v1, v2, x1, x2, w1, w2 ∈ a∗, so that infinitely
many words of L are generated by starting the derivation with this axiom. Since
the derivations are not synchronized, the single assembling steps at the right
are independent of the steps at the left and vice versa. So, we can rearrange
the single steps such that all units at the right are assembled before the units
at the left, without changing the strings derived. Next, consider two successful
derivations (v1, v2, x1bx2, w1, w2) ⇒∗ (v1, v2, x1ba

n1 , λ, λ) ⇒∗ (λ, λ, an1ban1 , λ, λ)
and (v1, v2, x1bx2, w1, w2) ⇒∗ (v1, v2, x1ba

n2 , λ, λ) ⇒∗ (λ, λ, an2ban2 , λ, λ), where
n1 
= n2. Then there is a successful derivation

(v1, v2, x1bx2, w1, w2) ⇒∗ (v1, v2, x1ba
n2 , λ, λ) ⇒∗ (λ, λ, an1ban2 , λ, λ) ,

which contradicts our assumption.
Second, consider the case where all axioms containing letter b generate only

finitely many words. Then there exists at least one axiom (v1, v2, a
j , w1, w2) not

containing b such that infinitely many words are generated from it. Moreover, for
infinitely many of these words the letter b is added at the same side, say at the
right. For this case, we consider two different successful derivations

(
v1, v2, a

j , w1, w2

) ⇒∗ (
λ, λ, ai+j , w1, w2

) ⇒∗ (
λ, λ, ai+j+kbai+j+k, λ, λ

)
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and (v1, v2, a
j , w1, w2) ⇒∗ (λ, λ, ai′+j , w1, w2) ⇒∗ (λ, λ, ai′+j+k′

bai′+j+k′
, λ, λ).

We conclude that
(
v1, v2, a

j, w1, w2

) ⇒∗ (
λ, λ, ai+j , w1, w2

) ⇒∗
(
λ, λ, ai+j+k′

bai′+j+k′
, λ, λ

)

is successful as well. If i 
= i′ the word generated does not belong to L. Therefore, i
is equal to i′ for any derivation starting with the axiom in question.

Next, subsets of Tr are defined as follows: Tr,e(a) = {(ai, ai) ∈ Tr | i ≥ 2},
Tr,u(a) = {(ai, aj) ∈ Tr | i > j ≥ 1}, and Tr,l(a) = {(ai, aj) ∈ Tr | 1 ≤ i < j}.

If Tr,u(a) contains a unit (ai1 , aj1) and Tr,l(a) a unit (ai2 , aj2), then the assem-
bling of j2 − i2 units (ai1 , aj1) and i1 − j1 units (ai2 , aj2) extends the upper as
well as the lower string by � = i1j2 − i2j1 − i1 − j2 + i2 + j1 symbols a. If Tr,e(a)
contains a unit (ai, ai), its assembling extends the upper as well as the lower string
by � = i − 1 symbols a. So, the derivation above can successfully be extended as

(
v1, v2, a

j , w1, w2

) ⇒∗ (
λ, λ, ai+j , w1, w2

) ⇒∗
(
λ, λ, ai+j+�, w1, w2

) ⇒∗
(
λ, λ, ai+j+�+k′

bai+j+k′
, λ, λ

)

which yields a contradiction. So, Tr,e(a) and one of Tr,u(a) and Tr,l(a) must be
empty. Without loss of generality, we assume Tr,l(a) is empty.

Recall that there are infinitely many derivations of the form above where i must
always be equal to i′. Since Tr,e(a) and Tr,l(a) are empty, any unit containing letters
a only increases the length difference between the upper and lower strand. So, the
only way to get long matching suffixes following the sole b is to assemble units of
the form (b, a+) that add letters a to the suffix in advance. However, to get long
suffixes these units must be assembled before the first a of the suffix appears in
the upper strand. Therefore, there are a fixed i0 ≥ 0 and infinitely many k′ and
m(k′) so that

(v1, v2, a
j , w1, w2) ⇒∗ (

λ, λ, ai+j , w1, w2

) ⇒∗
(
λ, λ, ai+j+k′

b, λ, ai0
)
⇒∗

(
λ, λ, ai+j+k′

b, λ, am(k′)
)
⇒∗

(
λ, λ, ai+j+k′

bai+j+k′
, λ, λ

)

are successful derivations. Hence, for two different k′
1 and k′

2 we have

(
v1, v2, a

j , w1, w2

) ⇒∗ (
λ, λ, ai+j , w1, w2

) ⇒∗
(
λ, λ, ai+j+k′

1b, λ, ai0
)
⇒∗

(
λ, λ, ai+j+k′

1 b, λ, am(k′
2)

)
⇒∗

(
λ, λ, ai+j+k′

1bai+j+k′
2 , λ, λ

)
.

The contradiction shows that L is not generated by any 2SAS and concludes the
proof. �

The next result is, to some extend, a pumping lemma for certain languages. It
has been shown in [5] for 1SAS. Interestingly, it can be adapted even to synchro-
nized bidirectional string assembling systems provided they are centralized.
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Lemma 4.3. Let L ⊆ Σ∗ be a language generated by an SC-2SAS. If |a+ ∩ L| =
∞, for some symbol a ∈ Σ, then there exist constants p, q ≥ 1 such that apv ∈ L,
v ∈ Σ∗, implies ap+lqv ∈ L, for all l ≥ 1.

Proof. Let S = 〈{a, b}, A, Tl, Tr, El, Er〉 be an SC-2SAS generating L, that is Tl =
Tr and El = Er, and a ∈ Σ, |a+∩L| = ∞, and three sets defined by Te = {(ai, ai) ∈
Tl | i ≥ 2}, Tu = {(ai, aj) ∈ Tl | i > j ≥ 1}, and Td = {(ai, aj) ∈ Tl | 1 ≤ i < j}.

Since L includes infinitely many words from a+, set Te, or Tu and Td both are
non-empty. Otherwise only finitely many words from a+ are generated. If Te is
not empty, choose a unit (ai, ai) ∈ Te and set q = i − 1. If, otherwise, Tu and Td

both are non-empty, choose a unit (ai1 , aj1) from Tu and a unit (ai2 , aj2) from Td.
Assembling j2 − i2 units (ai1 , aj1) and i1 − j1 units (ai2 , aj2) extends the upper as
well as the lower string by i1j2 − i2j1 − i1 − j2 + i2 + j1 symbols. In this case set
q = i1j2 − i2j1 − i1 − j2 + i2 + j1.

Consider the strings B = {viuwi | i ∈ {1, 2} and (v1, v2, u, w1, w2) ∈ A} and
set p to be the length of the longest string appearing in B or a unit from Tl ∪ El.
Then in any successful derivation of a word apv ∈ L there appears an (incomplete)
matching double strand of the form (a∗, λ, au′, w1, w2) or (λ, a∗, au′, w1, w2), that is
extended to the left only by units of the form (a+, a+) ∈ (Tl∪El). So, assembling l
times the unit(s) that extend(s) the upper as well as the lower string by q symbols a
at the left of this double strand, and having the remaining derivation unchanged
generates the string ap+lqv. �

The next theorem applies the lemma to separate centralized from non-central-
ized string assembling systems.

Theorem 4.4. (i) The family of languages generated by C-2SAS is properly in-
cluded in the family of languages generated by 2SAS. (ii) The family of languages
generated by SC-2SAS is properly included in the family of languages generated by
S-2SAS.

Proof. Let L be the language {anbn | n ≥ 1} ∪ a+, and assume L is generated
by an SC-2SAS. Then Lemma 4.3 can be applied with constants p, q ≥ 1. Since
apbp ∈ L, we derive ap+qbp ∈ L, a contradiction. So, L does not belong to the
family of languages generated by SC-2SAS and, thus, does not belong to the family
of languages generated by C-2SAS, either. On the other hand, by Example 2.3
language L is generated by a 2SAS and, thus by an S-2SAS. �

Next, we compare the generative capacity of synchronized 2SAS with the com-
putational capacity of nondeterministic one-way multi-head finite automata in
order to derive languages that are not generated by any S-2SAS. The following
relation has been shown in [4].

Theorem 4.5. Let S be an S-2SAS. There exists a nondeterministic one-way 5-
head finite automaton M that accepts L(S).
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5. Synchronized 2SAS with related units

The last variant in question are synchronized bidirectional string assembling
systems, where the units which are simultaneously assembled must be related.
Formally, we introduce a relation R ⊆ (Tl×Tr)∪(El×Er), so that it is understood
that when a unit p is assembled at the left simultaneously with a unit q at the
right, then (p, q) ∈ R. We denote such systems by R-2SAS and their centralized
versions by RC-2SAS. Though we denote the reversal of a word w by wR, there
will never be a conflict of notation with the relation R.

Example 5.1. The following RC-2SAS S = 〈{a, b}, A, Tl, Tr, El, Er, R〉 generates
the context-free language {wwR | w ∈ {a, b}+}.

A = {(λ, λ, aa, λ, λ), (λ, λ, bb, λ, λ)}
Tl = Tr = {(bb, bb), (aa, aa), (ab, ab), (ba, ba)}
El = Er = {(a, a), (b, b)}
R = {((bb, bb), (bb, bb)), ((aa, aa), (aa, aa)), ((ab, ab), (ba, ba)),

((ba, ba), (ab, ab)), ((a, a), (a, a)), ((b, b), (b, b))}
The derivation of wwR starts in the center of the word with one of the axioms
(λ, λ, aa, λ, λ) or (λ, λ, bb, λ, λ). The relation R associates a unit (u, u) ∈ Tl with
its reversed version (uR, uR) ∈ Tr. So, each time a unit of Tl is assembled at the
left, the reversed counterpart is assembled at the right. Moreover, the units allow
to add an a or a b regardless of the current symbol at the end of the strings. The
derivation is simply completed by assembling an ending unit (a, a) or (b, b) at both
ends.

While for all variants of bidirectional string assembling systems considered so
far the centralized versions are strictly weaker than the non-centralized ones, this
difference disappears when the units of synchronized systems are related.

Theorem 5.2. A language is generated by an R-2SAS if and only if it is generated
by an RC-2SAS.

Proof. Let S = 〈Σ, A, Tl, Tr, El, Er, R〉 be an R-2SAS. To turn it into an equivalent
RC-2SAS S′ = 〈Σ, A′, T ′

l , T
′
r, E

′
l , E

′
r, R

′〉 we set A′ = A, T ′
l = T ′

r = Tl ∪ Tr and
E′

l = E′
r = El ∪ Er. In order to make sure that the units from Tr (Tl) are only

assembled at the right (left) and similarly for Er and El, the relation R′ is used.
To this end, it is simply defined to be R. In this way, clearly, in a derivation of S′

only pairs of units are assembled that also can be assembled in S. Since the set of
axioms is unchanged we obtain L(S) = L(S′). �

It is worth mentioning that any S-2SAS is an R-2SAS, where the relation be-
tween units is R = (Tl × Tr) ∪ (El × Er). Theorem 4.5 shows that every language
generated by an S-2SAS is accepted by a nondeterministic one-way 5-head finite
automaton. It is well known that the latter cannot accept the mirror language
{wwR | w ∈ {a, b}+}. By Example 5.1 we obtain the following proper inclusions.



BIDIRECTIONAL STRING ASSEMBLING SYSTEMS 53

NL

RC-2SAS R-2SAS

SC-2SAS S-2SAS

C-2SAS 2SAS

1SAS

Figure 3. Inclusion structure of language families generated by
string assembling systems. The arrows indicate strict inclusions.
The relation between 1SAS and C-2SAS is an open problem.

Theorem 5.3. The families of languages generated by S-2SAS and SC-2SAS are
properly included in the family of languages generated by R-2SAS (or RC-2SAS).

At the top of the hierarchy are the synchronized 2SAS with related units. An
upper bound on their generative capacity is given by the power of nondeterministic
two-way 4-head finite automata. From the complexity point of view, these devices
are well explored. In [2] it has been shown that the computational complexity
class NL = NSPACE(log n) is characterized by the class of nondeterministic two-
way multi-head finite automata. So, together with the next theorem, we obtain
that the family of languages generated by R-2SAS is properly included in NL. The
theorem is shown in [4].

Theorem 5.4. Let S be an R-2SAS. There exists a nondeterministic two-way
4-head finite automaton that accepts L(S).

Finally, we compare all language families generated by some variant of a 2SAS
with (sub-) families of the Chomsky hierarchy. Theorem 5.4 revealed that all the
former families are properly included in NL and, thus, in the family of context-
sensitive languages. In [5] it has been shown that even 1SAS can generate non-
context-free languages. The next two lemmas allow to conclude the incomparability
of all 2SAS families with the regular and, thus, with the (deterministic) (linear)
context-free languages.

Lemma 5.5. A unary language is generated by an R-2SAS if and only if it is
generated by a 1SAS.

Proof. By Theorem 5.2 it suffices to show that any unary language generated by
an RC-2SAS is also generated by a 1SAS. So, let S = 〈{a}, A, Tl, Tr, El, Er, R〉 be
a unary RC-2SAS. An equivalent 1SAS S′ = 〈{a}, A′, T ′

l , T
′
r, E

′
l , E

′
r〉 is constructed

as follows. By definition we have T ′
l = ∅ and E′

l = {(a, a)}. Since all units are unary



54 M. KUTRIB AND M. WENDLANDT

they always fit to the current double strand. Since the assembling is synchronized
in S, in S′ pairs of units assembled at the same time, that is, which are related,
are merged into one unit:

T ′
r =

{(
a|u1u2|−1, a|v1v2|−1

)
| (u1, v1) ∈ Tl, (u2, v2) ∈ Tr,

and ((u1, v1), (u2, v2)) ∈ R
}
,

E′
r =

{(
a|u1u2|−1, a|v1v2|−1

)
| (u1, v1) ∈ El, (u2, v2) ∈ Er,

and ((u1, v1), (u2, v2)) ∈ R
}
.

The axioms of S are shifted relative to each other until their left ends match:

A′ =
{(

λ, λ, ai+|u|, a|v1w1|−i, a|v2w2|−i
)
| (v1, v2, u, w1, w2) ∈ A

and i = min{|v1w1|, |v2w2|}
}
.

In order to give evidence of the correctness of the construction we consider an arbi-
trary derivation (v1, v2, u, w1, w2) ⇒∗ (v′1, v

′
2, u

′, w′
1, w

′
2) of S, and claim that there

is a derivation (λ, λ, z, x1, x2) ⇒∗ (λ, λ, z′, x′
1, x

′
2) in S′ so that |v1uw1| = |zx1|,

|v2uw2| = |zx2|, |v′1u′w′
1| = |z′x′

1|, and |v′2u′w′
2| = |z′x′

2|.
For (v1, v2, u, w1, w2) ∈ A there is an axiom (λ, λ, ai+|u|, a|v1w1|−i, a|v2w2|−i)

in A′, where i = min{|v1w1|, |v2w2|}. Since |v1uw1| = i + |u| + |v1w1| − i and
|v2uw2| = i + |u| + |v2w2| − i, the claim is true for the axiom.

Concluding inductively, assume the claim is true for a derivation as above.
Assume that assembling a pair of units ((ap, aq), (ar, as)) ∈ R in S yields

(v′1, v
′
2, u

′, w′
1, w

′
2) ⇒ ((v′′1 , v′′2 , u′′, w′′

1 , w′′
2 ) ,

where |v′′1 u′′w′′
1 | = |v′1u′w′

1|+p+r and |v′′2 u′′w′′
2 | = |v′2u′w′

2|+q+s. Then there is a
unit (ap+r , aq+s) in T ′

r. Therefore, in S′ we have the derivation (λ, λ, z′, x′
1, x

′
2) ⇒

(λ, λ, z′′, x′′
1 , x′′

2 ), where |z′′x′′
1 | = |z′x′

1| + p + r and |z′′x′′
2 | = |z′x′

2| + q + s. From
|v′1u′w′

1| = |z′x′
1| and |v′2u′w′

2| = |z′x′
2| the claim follows.

The claim shows in particular that for any successful derivation in S there
must be a successful derivation in S′. The converse is seen similarly and, thus,
L(S) = L(S′). �

Lemma 5.6. There is a (unary) regular language not generated by any R-2SAS.

Proof. In [5] it has been shown that the regular language {a} ∪ {a2n | n ≥ 2} is
not generated by any 1SAS and, thus, by Lemma 5.5 it is not generated by any
R-2SAS, either. �

The proof of the previous lemma utilizes the language {a}∪{a2n | n ≥ 2} which
is the union of a finite language and an infinite language. The idea of the proof is
that the axioms and the ending units of the finite language have to be of a certain



BIDIRECTIONAL STRING ASSEMBLING SYSTEMS 55

form, and may be extended by units of the infinite language. For this witness
language the problem disappears when the finite language is omitted from the
union. So, the question arises whether this observation can be generalized. That
is, given a unary regular language, is it always possible to omit a finite number of
words from it in order to obtain a language generated by a 1SAS. The following
lemma answers the question in the affirmative.

Lemma 5.7. Let L be a unary regular language. Then there exists a finite set
W ⊆ L so that L \ W is generated by a 1SAS.

Proof. Let a regular language L ⊆ {a}∗ be given by a complete minimal deter-
ministic finite automaton M with state set Q = {q1, q2, . . . , qn}, initial state q1,
set of accepting states F , and transition function δ. Since M is unary and de-
terministic, it consists of an initial tail of states followed by a cycle. That is,
δ(qi, a) = qi+1, for 1 ≤ i ≤ n − 1, and δ(qn, a) = qj , for some 1 ≤ j ≤ n. Let
F1 = F ∩ {q1, q2, . . . , qj−1} be the set of accepting states belonging to the initial
tail and F2 = F ∩{qj, qj+1, . . . , qn} be the set of accepting states belonging to the
cycle. Clearly, only finitely many words are accepted by M with states from F1.
The set W = {w ∈ a∗ | w ∈ L(M) and δ(q1, w) ∈ F1} includes exactly these
words.

Next we construct a 1SAS S = 〈{a}, A, Tl, Tr, El, Er〉 such that L(S) = L \ W ,
where by definition Tl = ∅ and El = {(a, a)}. To this end, consider a function
d : Q × Q → {0, 1, . . . , n} that maps a pair of states q, q′ to the length of the
shortest non-empty path driving M from q to q′. If there does not exist such a
path, d returns 0. Now, for each accepting state qf ∈ F2 an axiom is added to A,
more precisely, A = {(λ, λ, ad(q1,qf ), λ, λ) | qf ∈ F2}. Recall that j−1 is the length
of the cycle. The set Tr is defined to be the singleton {(aj , aj)}, and the set of
ending units is Er = {(a, a)}.

Let w be a word accepted by M . If δ(q1, w) ∈ F1, then the word w belongs to
the finite set W and is excluded. If δ(q1, w) = qf ∈ F2, then w is generated by S
starting with the axiom (λ, λ, ad(q1,qf ), λ, λ) and assembling the unit (aj , aj) ∈ Tr

as many times as M runs through the cycle. So, (L \ W ) ⊆ L(S).
Next, let w be generated by S where the derivation starts with an axiom

(λ, λ, ad(q1,qf ), λ, λ) ∈ A, continues with assembling the sole unit (aj , aj) ∈ Tr sev-
eral times, and ends by adding the sole ending unit (a, a). So, the length of w is
d(q1, qf ) + i(j − 1), for some i ≥ 0. Since δ(q1, a

d(q1,qf )+i(j−1)) = δ(qf , ai(j−1)) =
δ(qf , a(i−1)(j−1)) = qf and qf ∈ F2 is an accepting state, automaton M accepts w.
So, we have L(S) ⊆ (L \ W ) and, thus, L(S) = (L \ W ). �

6. Closure properties

Here we consider closure properties of the families of languages generated by
different versions of 2SAS. Some of the ideas of the proofs are inherited from 1SAS.
First we examine the Boolean operations. In [5] it has been shown that 1SAS can
not generate the language {a} ∪ {a2n | n ≥ 2}. A small extension of the proof
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shows that the language {a} ∪ {a2n | n ≥ 1} is not generated by any 1SAS either.
Together with Lemma 5.5, where it is shown that a unary language is generated
by a R-2SAS if and only if it is generated by a 1SAS, we obtain the non-closure
under union.

Theorem 6.1. The families of languages generated by any type of 2SAS are not
closed under union.

The non-closure under complementation follows by the same witness language.

Theorem 6.2. The families of languages generated by any type of 2SAS are not
closed under complementation.

Proof. From above we know that the language {a}∪{a2n | n ≥ 1} is not generated
by any type of 2SAS. However, its complement {a2n+1 | n ≥ 1} is generated by
the 1SAS 〈{a, }, {(λ, λ, a3, λ, λ)}, ∅, {(a3, a3)}, {(a, a)}, {(a, a}〉. �

Since the families of languages generated by any type of 2SAS is incompara-
ble with the family of regular languages, but includes the language Σ∗, for any
alphabet Σ, their non-closure under intersection with regular languages follows
immediately.

Lemma 6.3. The families of languages generated by any type of 2SAS are not
closed under intersection with regular languages.

The general non-closure under intersection is now shown for all types of 2SAS
except for R-2SAS, for which it is an open problem.

Lemma 6.4. Let k ≥ 1 be a constant. Then there are k languages generated by
1SAS whose intersection is accepted by a one-way �-head finite automaton if and
only if k ≤ (

�
2

)
.

Proof. In [5] it is shown that the two languages

L1 = {$1w$2u1$3u2$4w$5 | u1, u2, w ∈ {a, b}+} and
L2 = {$1u1$2w$3w$4u2$5 | u1, u2, w ∈ {a, b}+}

are generated by 1SAS. More general, we consider the languages

Lk,i = {$1u1$2u2 . . . $2ku2k$2k+1 | uj ∈ {a, b}+, 1 ≤ j ≤ 2k, ui = u2k−i+1}.
which are generated by 1SAS as well. However, in [9] it is shown that the inter-
section

Lk =
k⋂

i=1

Lk,i = {$1w1$2w2 . . . $kwk$k+1wk$k+2wk−1 . . . $2kw1$2k+1 |

wj ∈ {a, b}+, 1 ≤ j ≤ k}

is accepted by a one-way �-head finite automaton if and only if k ≤ (
�
2

)
. �



BIDIRECTIONAL STRING ASSEMBLING SYSTEMS 57

Theorem 6.5. The families of languages generated by any type of 2SAS except
R-2SAS are not closed under intersection.

Proof. Theorem 4.5 shows that all language families in question are accepted by
some one-way 5-head finite automaton. So, the theorem follows by Lemma 6.4. �

The next (non-)closure properties are for homomorphisms. It turns out that we
can adopt the proof of [5] to show that all language families generated by 2SAS
are not closed under non-erasing letter-to-letter homomorphisms.

Theorem 6.6. The families of languages generated by any 2SAS except R-2SAS
are not closed under λ-free letter-to-letter homomorphisms.

Proof. The homomorphism h : {a, $, #}∗ → {a}∗ is applied to the language
{
$a1$a3$ . . .$a2i+1# | i ≥ 1

}
.

The result is a non-semilinear language which is not accepted by any one-way
k-head finite automaton. �

Theorem 6.7. The families of languages generated by 2SAS, S-2SAS and
R-2SAS are not closed under concatenation.

Proof. A straightforward modification of Example 2.3 yields 2SAS that generate
the languages L1 = {bnan | n ≥ 1} ∪ b+ and L2 = {anbn | n ≥ 1} ∪ {b}. We
consider the concatenation L′ = L1L2 and assume that it is generated by some
R-2SAS.

Strings from b+b do belong to L′. We consider their assembling up to the last
step. Recall that the ending units have to be assembled synchronously. During
the assembling process at least one but maybe both ends of the current string are
extended to get longer and longer. Moreover, since there is only a finite number
of ending units, parts of the extension are in such a way that – after assembling
a certain number of units – both strands at the left end and both strands at the
right end are extended by the same number of symbols, say l symbols at the left
and r symbols at the right end, where l, r ≥ 0 and l+r ≥ 1 (cf. proof of Lem. 3.3).

Next, we consider the generation of words bnanambm, with m, n large enough.
For such words, the ending units consist of symbols b only. Just before the ending
units are added, we can assemble the units that extend the lower and upper strand
at the left by l symbols b, and the lower and upper strand at the right by r
symbols b. So, the string bn+lanambm+r /∈ L′ is generated, a contradiction. It
follows that the families of languages generated by 2SAS, S-2SAS, and R-2SAS
are not closed under concatenation. �

For the centralized variants the witness languages have to be modified.

Theorem 6.8. The families of languages generated by C-2SAS and SC-2SAS are
not closed under concatenation.
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Table 1. Summary of closure properties of bidirectional string
assembling systems.

∼ ∪ ∩ ∩REG · hλ R
1SAS no no no no no no yes
C-2SAS no no no no no no yes
2SAS no no no no no no yes
S-2SAS no no no no no no yes
SC-2SAS no no no no no no yes
R-2SAS no no ? no no ? yes

Proof. The languages L1 = {bnanambm | n, m ≥ 1} ∪ {b} and L2 = b+ are gen-
erated by some C-2SAS. As in the proof of Theorem 6.7, we assume that the
concatenation L′ = L1L2 is generated by some SC-2SAS, and consider the assem-
bling of a string w = bnanambm where m, n are large enough. For the centralized
variants, the units can be used at both sides. So, before the last step at which the
ending units are added, we extend the string at the left end and at the right end,
and thus generate bn+l+ranambm+l+r, where l, r ≥ 0 and l + r ≥ 1. But this word
does not belong to L′, a contradiction. �

Finally, we turn to a sole positive closure property, the reversal.

Theorem 6.9. The families of languages generated by any type of 2SAS are closed
under reversal.

Proof. Let S = 〈Σ, A, Tl, Tr, El, Er〉 be an 2SAS. Then we construct a 2SAS SR =
〈Σ, A′, T ′

l , T
′
r, E

′
l , E

′
r〉 with L(S) = (L(SR))R as

A′ =
{
(vR

1 , vR
2 , uR, wR

1 , wR
2 ) | (v1, v2, u, w1, w2) ∈ A

}
,

E′
l =

{
(uR, vR) | (u, v) ∈ Er

}
, E′

r =
{
(uR, vR) | (u, v) ∈ El

}
,

T ′
l =

{
(uR, vR) | (u, v) ∈ Tr

}
, T ′

r =
{
(uR, vR) | (u, v) ∈ Tl

}
.

So, the strings in the units are reversed, and the units from the left side are
interchanged with the units from the right side. It is evident that for any derivation
of a word w by S there is a derivation of w′ by SR. �
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