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and Rogério Reis

1

Abstract. Linear finite transducers underlie a series of schemes for
Public Key Cryptography (PKC) proposed in the 90s of the last cen-
tury. The uninspiring and arid language then used, condemned these
works to oblivion. Although some of these schemes were afterwards
shown to be insecure, the promise of a new system of PKC relying
on different complexity assumptions is still quite exciting. The algo-
rithms there used depend heavily on the results of invertibility of linear
transducers. In this paper we introduce the notion of post-initial linear
transducer, which is an extension of the notion of linear finite trans-
ducer with memory, and for which the previous fundamental results on
invertibility still hold. This extension enabled us to give a new method
to obtain a left inverse of any invertible linear finite transducer with
memory. It also plays an essencial role in the necessary and sufficient
condition that we give for left invertibility of linear finite transducers.
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1. Introduction

The concept of public key cryptography was introduced by Diffie, Hellman and
Merkle in 1976, and, in 1978, Rivest, Shamir and Adleman presented the first
public key cryptosystem, called RSA [1]. The RSA system and most of the public
key cryptosystems created in the following years are based on complexity assump-
tions related to number theory problems, namely the factorization of integers and
the discrete logarithm problem. These kinds of cryptosystems are computationally
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expensive in time as well as in space, their security relies on a very small set of
problems, and improvements in algorithms to solve these problems have led to the
necessity of increasing the size of the keys, which leads to higher computational
costs. In a series of papers [10–13], Tao introduced a family of cryptosystems
based on finite transducers, named FAPKCs. These schemes seem to be a good
alternative to the classical ones, since they are computationally attractive and thus
suitable for application on devices with very limited computational resources, such
as satellites, cellular phones, sensor networks, and smart cards [11].

The FAPKC schemes are stream cipher schemes that can be used for encryption
and signature. Roughly speaking, in these systems the private key consists of two
injective transducers, namely a linear transducer and a non-linear transducer of a
special kind, whose left inverses can be easily computed. Using a special product for
transducers, the public key is the result of applying this operation to the original
pair of transducers, thus obtaining a non-linear transducer. The crucial point is
that this product is such that it is easy to obtain an inverse of the result from the
inverses of the factors, while it is believed to be hard to find the inverse of the
product without knowing its factorization. On the other hand, the factorization of
a transducer seems, by itself, to be hard too [16].

The security of these systems relies on the difficulty of inverting nonlinear finite
transducers, which is related to the difficulty of factoring matrix polynomials over
Fq, as will become apparent below. The complexity of these problems is not known,
apart from the trivial fact that they are both NP-problems, exactly like the integer
factoring problem that is the basis of RSA.

The invertibility theory of transducers used in the FAPKCs relies heavily on
invertible linear transducers. The first study on this subject was published by
Tao [7], based on the work of Massey and Slain [4] on inverses of linear sequential
circuits. The notion of linear finite transducer used in that paper is a slight variant
of the one Nerode studies in his seminal article [5]. While Tao calls a transducer
linear if the transition and output functions are both linear on the cartesian prod-
ucts where they are defined, for Nerode a transducer is linear simply if the output
function is linear in the first variable, for all accessible states. Also, for Nerode,
a transducer has a fixed initial point, while for Tao it does not. Later on, Tao
published a paper with a study on the invertibility of linear finite transducers de-
fined over a ring [8]. Other studies were pursued some years later [2, 15–17], but
as in the first paper on this subject [7], none of them presents an algorithm to
invert finite linear transducers. Some authors refer to a book written in Chinese
on the invertibiliy of automata, where supposedly one finds an algorithm to invert
linear transducers. However, since it is not possible to have access to this algo-
rithm, unless one understands Chinese, it is important that one has an alternative
algorithm.

Moreover, the study of linear transducers and their invertibility is spread over a
series of papers that sometimes do not contain proofs, or refer to papers that are
not easily available to the English reader. Also, Tao has introduced the concept of
transducer with memory, which is a transducer that needs some of the previous
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inputs and outputs in order to transit to a new state and produce a new output.
This seems to be a rather convenient class of transducers which are easy to deal
with. Since they “have more information” than a transducer without memory,
they are “easy” to invert. However, we have never seen, in any of the works we
are aware of, the motivation for this choice. Neverthless, they play a fundamental
role in FAPKCs schemes. Therefore, in this paper, we give an unified presentation
of the known results, as far as we can establish, on general linear transducers, as
well as on linear transducers with memory. We also simplify the language used,
by introducing a more categorical point of view. As our main contribution, we
introduce a new class of transducers, to which the linear transducers with memory
belong, and give explicitly an algorithm to invert this kind of transducers.

This paper is organized as follows. In Section 2 we recall some basic concepts and
present the most important results on the subject of invertibility of finite trans-
ducers. In Section 3 we address the problem of invertibility of linear transducers,
and restate two necessary and sufficient conditions for a linear finite transducer to
be invertible with a fixed delay. Section 4 is dedicated to linear finite transducers
with memory. Finally, in Section 5, we introduce the notion of post-initial linear
transducer (PILT), which is an extension of the notion of linear finite transducer
with memory, and for which the previous fundamental results on invertibility still
hold. A necessary and sufficient condition for left invertibility with fixed delay of
PILTs is given. The results contained in the last Section give a way to compute in-
verses of invertible linear transducers with memory using the Smith Normal Form,
which can be computed in deterministic polynomial time [14].

2. Preliminaries

As usual, for a finite set A, we let An be the set of words of length n, where
n ∈ N0, and A0 = {ε}, where ε denotes the empty word. We put A∗ = ∪n≥0A

n,
the set of all finite words, and Aω = {a0a1 . . . an . . . | ai ∈ A} is the set of infinite
words. Finally, |α| denotes the length of the word α.

In what follows, finite transducer denotes a finite state sequential machine
which, in any given state, can read a symbol from a finite set X , the input alphabet,
and in doing so produces a symbol from a finite set Y, the output alphabet, while
changing to another internal state according to certain rules. Therefore, given an
initial state and an input sequence of finite length, it produces an output sequence
of the same length. The formal definition of a finite state transducer is as follows.

Definition 2.1. A finite transducer is a quintuple 〈X ,Y, Q, δ, λ〉, where:

• X is a nonempty finite set, called the input alphabet ;
• Y is a nonempty finite set, called the output alphabet ;
• Q is a nonempty finite set called the set of states ;
• δ : Q×X → Q, called the state transition function;
• λ : Q×X → Y, called the output function.
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Let M = 〈X ,Y, Q, δ, λ〉 be a finite transducer. The state transition function δ
and the output function λ can be extended to finite words, i.e. elements of X ∗,
recursively, as follows:

δ(q, ε) = q δ(q, xα) = δ(δ(q, x), α)
λ(q, ε) = ε λ(q, xα) = λ(q, x) λ(δ(q, x), α),

where q ∈ Q, x ∈ X , and α ∈ X ∗. In an analogous way, λ may be extended to Xω.
From these definitions it follows that one has, for all q ∈ Q,α ∈ X ∗, and for all

β ∈ X ∗ ∪ Xω,
λ(q, αβ) = λ(q, α) λ(δ(q, α), β).

A transducer can be represented by a diagram that is a digraph with labeled
vertices and edges, where each state is represented by a vertex and each directed
edge indicates a transition between states. The label of each edge is a compound
symbol of the form i/o, where i stands for the input symbol and o for the output.

Example 1. The automaton M = 〈{0, 1}, {a, b}, {q1, q2}, δ, λ〉 with

δ(q1, 0) = q1 δ(q1, 1) = q2 δ(q2, 0) = q1 δ(q2, 1) = q2

λ(q1, 0) = a λ(q1, 1) = a λ(q2, 0) = b λ(q2, 1) = b

is represented by the diagram:

q1 q2

1 |a

0 |b

0 |a 1 |b

A fundamental concept to review here is the concept of injectivity that is behind
the invertibility property of the transducers used for cryptographic purposes. In
fact, we will talk about two concepts: the concept of ω-injectivity and the concept
of injectivity with a certain delay. These two notions of injectivity were introduced,
as far as we know, by Tao, who called them weakly invertible and weakly invertible
with a certain delay, respectively (see [9]). Here we use names that are more
naturally related to how these terms are used in other mathematical settings.

Definition 2.2. A finite transducer M = 〈X ,Y, Q, δ, λ〉 is ω-injective, if

∀q ∈ Q, ∀α, α′ ∈ Xω , λ(q, α) = λ(q, α′) =⇒ α = α′.

That is, for any q ∈ Q, and any α ∈ Xω , α is uniquely determined by q and λ(q, α).

Definition 2.3. A finite transducer M = 〈X ,Y, Q, δ, λ〉 is injective with delay τ ,
with τ ∈ N0, if

∀q ∈ Q, ∀x, x′ ∈ X , ∀α, α′ ∈ X τ , λ(q, xα) = λ(q, x′α′) =⇒ x = x′.

That is, for any q ∈ Q, x ∈ X , and α ∈ X τ , x is uniquely determined by q and
λ(q, xα).
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Below, we deal with the case X = Fl, where F is a field, and it will be useful to
identify the elements of Xω with the elements of F[[z]]l, where F[[z]] is the ring of
formal power series over F, by replacing x0x1x2 . . . with

∑
i≥0 xiz

i. In that context,
a finite transducer M = 〈X ,Y, Q, δ, λ〉 is injective with delay τ if and only if

λ(q,X) ≡ λ(q,X ′) (mod zτ+1) =⇒ X ≡ X ′ (mod z), (2.1)

for all X,X ′ ∈ F[[z]]l.

Example 2. It is easy to see that for the transducer presented in Example 1 one
has

∀q ∈ {q1, q2}, ∀x0x1, x
′
0x

′
1 ∈ {0, 1}2, λ(q, x0x1) = λ(q, x′0x

′
1) =⇒ x0 = x′0.

Therefore, this transducer is injective with delay 1.

Example 3. The transducer induced by the diagram below is not injective with
delay 1 since, for example, λ(q1, 01) = λ(q1, 11) and 0 
= 1.

q1 q2

1 |a

0 |b

0 |a 1 |a

Theorem 2.4. Let M = 〈X ,Y, Q, δ, λ〉 be a finite transducer. If M is ω-injective,
then there exists a non-negative integer τ ≤ |Q|(|Q|−1)

2 such that M is injective
with delay τ .

Proof. See Corollary 1.4.3 in [9]. �

Since every ω-injective finite transducer is injective with delay τ, for some τ on
the conditions of the previous theorem, we will confine our study to these latter
transducers. These are precisely the transducers used for cryptographic purposes.

Naturally, injective transducers should have inverses of some sort. In order to
describe the appropriate concept, given two finite transducers M = 〈X ,Y, Q, δ, λ〉
and M ′ = 〈Y,X , Q′, δ′, λ′〉, we introduce a relation Tτ defined by

Tτ = {(q, q′) ∈ Q×Q′ | ∀α ∈ Xω, λ′ (q′, λ(q, α)) = γα for some γ ∈ X τ} .
Hence, to say that (q, q′) ∈ Tτ means that the state q′ when fed λ(q, α) returns,
after τ steps, the word α.

Remark 2.5. In this definition one may replace Xω by X ∗, but then one should
also replace λ′(q′, λ(q, α)) = γα by λ′(q′, λ(q, α)) = γα′, where α′ consists of the
first |α| − τ characters of α.

Definition 2.6. Let M = 〈X ,Y, Q, δ, λ〉 be a finite transducer. One says that M
is left invertible with delay τ , if there is a transducer M ′ = 〈Y,X , Q′, δ′, λ′〉 such
that for all q ∈ Q, there is a q′ ∈ Q′ such that (q, q′) ∈ Tτ . The transducer M ′ is
called a left inverse with delay τ of M .
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< q >

M

< q >

M
y1y2 . . .x1x2 . . . γx1x2 . . .

Figure 1. M ′ is a left inverse with delay τ of M when γ ∈ X τ .

If M ′ is a left inverse with delay τ of M , then M ′ can recover the input of M
with a delay of τ input symbols. Figure 1 gives a schematic representation of this
concept.

Example 4. The transducer induced by the diagram below is a left inverse with
delay 1 of the transducer given in Example 1.

q

a |0 b |1

The following result establishes the fundamental relation between the injectivity
of a transducer and the existence of a left inverse. This result is presented in ([9],
Cor. 1.4.4).

Theorem 2.7. M = 〈X ,Y, Q, δ, λ〉 is injective with delay τ if and only if there
exists a finite transducer M ′ = 〈Y,X , Q′, δ′, λ′〉 such that M ′ is a left inverse with
delay τ of M .

Proof. The necessary condition is proven in ([9], Thm. 1.4.4). To prove the suffi-
cient condition, assume that there is a transducer M ′ which is a left inverse of M .
Let q ∈ Q, x, x′ ∈ X , and α, α′ ∈ X τ . Then there is a state q′ ∈ Q′ such that

λ(q, xα) = λ(q, x′α′) =⇒ λ′(q′, λ(q, xα)) = λ′(q′, λ(q, x′α′)) =⇒ x = x′.

Therefore, M is injective with delay τ . �

Finally, we give the notion of a transducer with memory, in this context.

Definition 2.8. Let φ : X h+1×Yk −→ Y, with h, k ∈ N0, and X ,Y two nonempty
finite sets. Let Mφ =

〈X ,Y,X h × Yk, δφ, λφ

〉
be the finite transducer given by

λφ(〈x1, . . . , xh, y1, . . . , yk〉, x) = φ(x1, . . . , xh, x, y1, . . . , yk) = y ;
δφ(〈x1, . . . , xh, y1, . . . , yk〉, x) = 〈x2, . . . , xh, x, y2, . . . , yk, y〉,

for all y1, . . . , yk ∈ Y, x1, x2, . . . , xh, x ∈ X , and where we use < . . . > to denote
states of this transducer. Mφ is called the finite transducer with memory of order
(h, k) defined by φ.
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If, in the above definition, (Y,+) is a group and the function φ is of the form

φ = f(x1, x2, . . . , xh, xh+1) + g(y1, y2, . . . , yk),

for some f : X h+1 → Y and g : Yk → Y, one says that Mφ is a separable
finite transducer with memory, denoted by Mf,g. Notice that, in particular, a finite
transducer with no input memory is a separable finite transducer, as well as one
with no output memory. The following result about separable finite transducers is
mentioned in [16], without proof.

Theorem 2.9. Let Y be a group, denoted additively. Then the separable trans-
ducer Mf,g =

〈X ,Y,X h × Yk, δf,g, λf,g

〉
is injective with delay τ if and only if the

transducer Mf =
〈X ,Y,X h, δf , λf

〉
is injective with delay τ .

Proof. To simplify matters, let us identify the word α = x1x2 . . . xn ∈ Xn with
the n-tuple (x1, x2, . . . , xn). Then, given q1 ∈ X h, q2 ∈ Yk, x ∈ X , one can write

λf,g(〈q1, q2〉, x) = f(q1, x) + g(q2). (2.2)

Now, if α ∈ X τ , then λf,g(〈q1, q2〉, xα) is just a sequence of elements as in (2.2),
and since obviously

f(q1, x) + g(q2) = f(q1, x′) + g(q2) ⇐⇒ f(q1, x) = f(q1, x′),

one concludes that

λf,g(〈q1, q2〉, xα) = λf,g(〈q1, q2〉, x′α′)

is equivalent to
λf (〈q1〉, xα) = λf (〈q1〉, x′α′).

From this the claim made follows immediately. �

This last result essentially states that the study of the injectivity with some de-
lay of separable finite transducers can be reduced to the study of finite transducers
with no output memory.

3. Linear transducers

Definition 3.1. If X ,Y and Q are vector spaces over a field F, then a finite state
transducer M = 〈X ,Y, Q, δ, λ〉 is said to be linear over F when both δ : Q×X → Q
and λ : Q×X → Y are linear maps.

If X ,Y, and Q have dimensions l, m and n, respectively, then there exist matrices
A ∈ Mn,n(F), B ∈ Mn,l(F), C ∈ Mm,n(F), and D ∈ Mm,l(F), such that

δ(q, x) = Aq +Bx,

λ(q, x) = Cq +Dx,
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for all q ∈ Q, x ∈ X . The matrices A,B,C,D are called the structural matrices
of the finite transducer, and l,m, n are called structural parameters of the finite
transducer.

Now, starting at a state q0 and reading an input sequence x0x1x2 . . ., one gets
a sequence of states q0q1q2 . . . and a sequence of outputs y0y1y2 . . . satisfying the
relations

qt+1 = δ(qt, xt) = Aqt +Bxt, (3.1)
yt = λ(qt, xt) = Cqt +Dxt, (3.2)

for all t ≥ 0. Let

X(z) =
∑
t≥0

xtz
t, Y (z) =

∑
t≥0

ytz
t, Q(z) =

∑
t≥0

qtz
t,

regarded as elements of the F[[z]]-modules F[[z]]l, F[[z]]m, F[[z]]n, respectively,
where F[[z]] is the ring of formal power series over F. Multiplying equality (3.1)
by zt, and adding for all t ≥ 0, one obtains:∑

t≥0

qt+1z
t = AQ(z) +BX(z) ⇔ (Q(z) − q0)z−1 = AQ(z) +BX(z)

⇔ (I −Az)Q(z) = q0 +BzX(z).

Since (I − Az) ∈ Mn,n(F)[z] is invertible in Mn,n(F)[[z]], one can rewrite the
above equality as follows:

Q(z) = (I −Az)−1q0 + (I −Az)−1BzX(z). (3.3)

Multiplying the equality (3.2) by zt, and adding for all t ≥ 0, one gets:

Y (z) = CQ(z) +DX(z).

Therefore, using (3.3),
Y (z) = G(z)q0 +H(z)X(z)

where
G(z) = C(I −Az)−1 and H(z) = C(I −Az)−1Bz +D. (3.4)

In [9], the matrices G ∈ Mm,n(F)[[z]] and H ∈ Mm,l(F)[[z]] are called, respec-
tively, the free response matrix and the transfer function matrix of the transducer,
designations that were suggested by [4], and that we will also use here.

The following result is presented in [15] without proof.

Theorem 3.2. Let M =
〈
Fl,Fm,Fn, δ, λ

〉
be a linear finite transducer with struc-

tural matrices A,B,C and D. Let H(z) be its transfer function matrix. Then,
H(z) is of the form

1
f(z)

n∑
i=0

Hiz
i,

where Hi ∈ Mm,l(F), and f(z) ∈ F[z] is such that f(0) = 1.
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Proof. Since

(I − Az)−1 =
(I −Az)∗

|I −Az| ,

where P ∗ denotes the adjoint matrix of P , while |P | denotes its determinant, one
gets from (3.4) that

H(z) = C
(I −Az)∗

|I −Az| Bz +D =
1

|I −Az| (C(I −Az)∗Bz + |I −Az|D) .

Let f(z) = |I − Az|, and thus f(0) = 1, because the independent term of
|I −Az| is I. Since the entries of the matrix I −Az are polynomials of degree ≤ 1
and A ∈ Mn,n(F), the entries of the matrix (I − Az)∗ are polynomials of degree
≤ n− 1. Also, the degree of the polynomial |I −Az| is ≤ n. Therefore, the entries
of the matrix C(I − Az)∗Bz + |I − Az|D are polynomials of degree ≤ n. Since
a matrix of polynomials is the same as a polynomial which the coefficients are
matrices, the result follows. �

Let S = {1 + zb(z) | b(z) ∈ F[z]} and F[z]S =
{

f
s | f ∈ F[z], s ∈ S

}
. Then, the

previous result states that the transfer function matrix of a linear finite transducer
is in M(F[z]S). Recall that two m × n matrices A,B, with entries in a principal
ideal domain R, are said to be equivalent if there exist an invertible matrix P in
Mm,m(R) and an invertible matrix N in Mn,n(R) such that B = PAN . It is clear
that this defines an equivalence relation in the set Mm,n(R). The following result
is well known (see [3] or [6], Thm. II.9).

Theorem 3.3. Let R be a principal ideal domain. Every matrix A ∈ Mm,n(R) is
equivalent to a matrix of the form

D = diag(d1, d2, . . . , dr, 0, . . . , 0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

. . . 0
dr

0

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where r is the rank of A, di 
= 0 and di | di+1, i.e. di divides di+1, for 1 ≤ i ≤ r−1.
The matrix D is called the Smith normal form of A, and the elements di are called
the invariant factors of A.

Since F[z]S is a principal ideal domain, and z is the unique irreducible element in
F[z]S , up to units, it follows from Theorem 3.3 that every matrix H(z) ∈ M(F[z]S)
with rank r is equivalent to a “diagonal” matrix of the form

Dn0,n1,...,nu = diag(In0 , zIn1 , . . . , z
uInu , 0, . . . , 0)

where ni ≥ 0, for 0 ≤ i ≤ u, nu 
= 0 unless H(z) = 0, and
∑u

i=0 ni = r. In order
to facilitate the statement of the next result, we put ni = 0, ∀i > u.
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This is used in ([15], Thms. 1 and 2) to prove the following result, which is of
great importance, because it gives two necessary and sufficient conditions for a
transducer to be injective with some delay τ .

Theorem 3.4. Let X ,Y and Q be vector spaces over a field F, with dimensions l,
m and n, respectively. Let M = 〈X ,Y, Q, δ, λ〉 be a linear transducer, and let
H ∈ Mm,l(F[z]S) be its transfer function matrix. Let D = Dn0,n1,...,nu be the
Smith normal form of H, and assume nu 
= 0. Then, the following conditions are
equivalent:

i. M is injective with delay τ ;
ii.

∑τ
i=0 ni = l;

iii. there is H ′ ∈ Ml,m(F[z]S) such that H ′H = zτI.

Moreover, if M is τ-injective, for some τ ∈ N0, then it is u-injective.

Proof.
(i) ⇒ (ii). Suppose that

∑τ
i=0 ni 
= l, that is,

∑τ
i=0 ni < l. Let X =

[0, . . . , 0, 1]T ∈ Ml,1 (F[[z]]). Then DX = 0, where 0 = [0, . . . , 0]T ∈ Ml,1 (F[[z]]).
If P and N are the invertible matrices such that D = PHN , then HNX = 0.
Putting X ′ = NX , one gets that λ(0, X ′) = HX ′ = 0. Since X ′ 
= 0, it follows
that M is not injective with delay τ .

(ii) ⇒ (iii) The hypothesis implies that, in D, one has τ ≥ u and that there are
no zero columns. Now, take again P and N to be invertible matrices such that
D = PHN , and take D′ = diag(zτIn0 , z

τ−1In1 , . . . , z
τ−uInu) ∈ Ml,m(F [z]S).

Then D′D = zτI, and therefore D′PHN = zτI. From this it follows that D′PH =
zτN−1 = N−1zτI, and hence (ND′P )H = zτI.

(iii) ⇒ (i) Let q be a state of M and X,X ′ two input sequences such that
λ(q,X) ≡ λ(q,X ′) (mod zτ+1). Assume that there is H ′ ∈ Ml,m(F [z]S) such
that H ′H = zτI. Then, λ(q,X) ≡ λ(q,X ′) (mod zτ+1) ⇐⇒ Gq + HX ≡
Gq + HX ′ (mod zτ+1) ⇐⇒ HX ≡ HX ′ (mod zτ+1) ⇐⇒ H(X − X ′) ≡ 0
(mod zτ+1), which implies zτI(X − X ′) ≡ 0 (mod zτ+1), from which it follows
X ≡ X ′ (mod z). Therefore, M is injective with delay τ .

The last sentence in the statement of the theorem follows from (i) ⇐⇒ (ii),
and the fact that ni = 0, for all i > u. �

4. Linear transducers with memory

Let X = Fl, Y = Fm. Given h, k ∈ N0, it is easy to see that a transducer Mφ

with memory of order (h, k), in the sense of Definition 2.8, is linear if and only if
the function φ is of the form

φ(x1, x2, . . . , xh, xh+1, y1, . . . , yk) =
h∑

i=0

aixh+1−i +
k∑

j=1

bjyk+1−j ,
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for some a0, . . . , ah ∈ Mm,l(F); b1, . . . , bk ∈ Mm,m(F), and where xi ∈ X , yj ∈ Y.
Its structural matrices A,B,C, and D are as follows. Given a state q of Mφ, which
is a vector of dimension lh+ km of the form

q =
[
x1 . . . xh y1 . . . yk

]T
,

where xi ∈ M1,l(F) and yi ∈ M1,m(F), then putting

C =
[
ah . . . a1 bk . . . b1

]
and D =

[
a0

]
,

it follows that

φ(x1, . . . , xh, xh+1, y1, . . . , yk) = Cq +Dxh+1.

Recalling that, by Definition 2.8,

δφ(〈x1, . . . , xh, y1, . . . , yk〉, x) = 〈x2, . . . , xh, x, y2, . . . , yk, y〉,

where y = φ(x1, . . . , xh, x, y1, . . . , yk), if one takes

B =
[
B1 B2

]T =
[
0l×(h−1)l Il 0l×(k−1)m aT

0

]T
,

and

A =

[
A1 A2

A3 A4

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0l Il

0l Il

0hl×km. . .
. . .

0l Il

0l 0l . . . 0l 0l

0m Im

0(k−1)m×hl

0m Im

. . .
. . .

0m Im

ah ah−1 . . . a2 a1 bk bk−1 . . . b2 b1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

it can easily be seen that δφ(q, x) = Aq +Bx.
Since a linear finite transducer with memory is separable, Theorem 2.9 guaran-

tees that the injectivity of linear finite transducers with memory can be reduced
to the study of linear finite transducers with no output memory.

Let now L be the set of all linear maps from X h+1 to Y, for all h ∈ N0,
which can be given by linear forms

∑h
i=0 aixh−i (note that ai ∈ Mm,l(F), and

xi ∈ Fl). Now, linear finite transducers with no output memory are exactly
the transducers defined by functions in L, and this set can be identified with
Mm,l(F[z]) � Mm,l(F)[z] through the map ψ : Mm,l(F[z]) → L defined by

ψ

(
h∑

i=0

aiz
i

)
=

h∑
i=0

aixh−i,
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which is clearly a bijection. Thus, in what follows, we will use indistinctly either
the polynomial matrix P =

∑h
i=0 aiz

i or its linear form ψ(P ) to represent the
linear finite transducer with no output memory defined by them. The following
result states that the polynomial matrix that defines a linear finite transducer with
no output memory is exactly the transfer function matrix of that transducer.

Theorem 4.1. Let M be a linear finite transducer with memory of order (h, 0),
defined by

∑h
i=0 aixh−i ∈ L. Then, the transfer function matrix of M is H =

ψ−1
(∑h

i=0 aixh−i

)
.

Proof. The structural matrices of M are:

A =

⎡
⎢⎢⎢⎢⎣

0l Il
0l Il

. . . . . .
0l Il

0l

⎤
⎥⎥⎥⎥⎦ , B =

[
0(h−1)l×l

Il

]
,

C =
[
ah . . . a1

]
, and D =

[
a0

]
.

Then

I −Az =

⎡
⎢⎢⎢⎢⎣
Il −zIl

Il −zIl
. . .

. . .
Il −zIl

Il

⎤
⎥⎥⎥⎥⎦

and

(I −Az)−1 =

⎡
⎢⎢⎢⎢⎣
Il zIl z

2Il . . . z
h−1Il

Il zIl zh−2Il
. . . . . .

...
Il zIl

Il

⎤
⎥⎥⎥⎥⎦ .

Consequently, the transfer function matrix of M is

H = C(I − Az)−1Bz +D = C

⎡
⎢⎢⎢⎣
zhIl

...
z2Il

zIl

⎤
⎥⎥⎥⎦ +D =

h∑
i=0

aiz
i = ψ−1

(
h∑

i=0

aixh−i

)
. �

The result just proved leads to a simplification of the results of Theorem 3.4 for
this kind of transducers, presented in [16] without proof, and that we now state.

Theorem 4.2. Let M be a linear finite transducer with memory of order (h, 0),
defined by E =

∑h
i=0 aiz

i ∈ Mm,l(F [z]). Then, M is injective with some delay if
and only if E has maximal rank, which when m = l is, of course, equivalent to
det(E) 
= 0. Moreover, M is injective with delay τ if and only if the Smith normal
form of E has exactly τ + 1 invariant factors.
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Table 1. Table with the coefficients of Θ.

t Input coefficients (ICs) Output coefficients (OCs)
0 a0 α0,1 α0,2 . . . α0,n−1 β0,1 β0,2 β0,3 . . . β0,n

1 a0 a1 α1,2 . . . α1,n−1 b1 β1,2 β1,3 . . . β1,n

2 a0 a1 a2 . . . α2,n−1 b1 b2 β2,3 . . . β2,n

...
...

...
...

. . .
...

...
...

...
. . .

...
n− 1 a0 a1 a2 . . . an−1 b1 b2 b3 . . . βn−1,n

≥ n a0 a1 a2 . . . an−1 b1 b2 b3 . . . bn

Proof. From the previous result, the matrix E is the transfer function matrix of
M . Let D = Dn0,n1,...,nu be the Smith normal form of E, with nu 
= 0. Then, from
the last statement of Theorem 3.4 one concludes that M is injective with some
delay if M is u-injective. Then, from the equivalence (i) ⇐⇒ (ii) one can conlude
that M is injective with some delay if and only if

∑u
i=0 ni = l, that is, E has

maximal rank. �

5. Post-initial linear transducers

The search for inverses of linear transducers led us to a new class of transducers
that includes the linear transducers with memory as given in Definition 2.8, and
for which all the previous results still apply. We call them PILTs (post-initial
linear transducers), and in this Section we show, among other things, that a left
invertible PILT has a left inverse that is also a PILT.

Let F be a finite field, X � Fl and Y � Fm, and V = Mm,l(F), R = Mm,m(F).
In what follows we will regard Y and V as left R-modules. Consider the map
Θ : Xω → Yω given by

yt =
n∑

i=1

(αt,i−1 xt+1−i + βt,i yt−i) (t ≥ 0) (5.1)

where, n ∈ N, αt,i−1 ∈ V, βt,i ∈ R, and

∀t ≥ i− 1, αt,i−1 = ai−1 and ∀t ≥ i, βt,i = bi,

with ai−1 ∈ V , bi ∈ R, for i ∈ {1, . . . , n}. The variables with negative indices are
free and the map Θ is determined by their values, which one should think of as
a set of initial values. The map Θ is determined by the array of constants (its
coefficients) presented in Table 1, together with those initial values.

For any given set of initial values, the corresponding map Θ is a linear affine
map of vector spaces over F, and in the case they are all zero it is, of course, linear,
and the fact that the sequences (αt,i)t and (βt,i)t are eventually constant implies
that Θ is then what Nerode calls an automaton transformation, i.e. is induced by a
finite transducer, by a straightforward generalization of ([5], Lem. 3) to our setting.
We note that this result still holds in the general case of arbitrary initial values,
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Table 2. Coefficients of the PILT given in Example 5.

t ICs OCs
0 2 1 2 0
≥1 1 1 1 1

since one can still use the same argument as in ([5], Lem. 3) to show that Θ has a
finite number of what Nerode calls intrinsic states, and then ([5], Lem. 2) applies.
These initial values that can also be thought of as states of the transducer, using
a construction completely analogous to the transducer with memory of Tao [9].

All of the above shows that the following definition makes sense.

Definition 5.1. A post-initial linear transducer (PILT) is a transducer induced
by a recurrence relation as in (5.1). If h is the largest value of i ∈ {1, . . . , n} such
that αt,i−1 
= 0, ∀t ≤ i − 1, and k is the largest value of j ∈ {1, . . . , n} such that
βt,j 
= 0, ∀t ≤ j, then one calls the corresponding transducer a PILT with memory
(h, k).

Observation: If one represents a PILT with order (h, k) by a table similar to
Table 1, then h is the index minus 1 of the highest column containing the input
coefficients that has a non-zero entry. And, k is the index of the highest column
containing the otput coefficients that has a non-zero entry. Of course, the linear
finite transducers with memory defined in the previous Section correspond to the
special case where the sequences (αt,i)t and (βt,i)t are constant.

Example 5. Taking n = 2, X = Y = F3, and the map given by the coefficients
on Table 2, one gets a PILT induced by the following recurrence relation:{

y0 = 2x0 + x−1 + 2y−1

yt = xt + xt−1 + yt−1 + yt−2, t ≥ 1,

which has memory of order (1, 2). Taking, for example, q = 〈1, 2, 0〉, one has
λ(q, 11201) = 02200.

In what follows, given a set S, we use the notation Pn(S[z]) to denote the set
of polynomial with coefficients in S that have degree less than n.

Put X(z) =
∑

t≥0 xtz
t ∈ Fl[[z]] � F[[z]]l and Y (z) =

∑
t≥0 ytz

t ∈ Fm[[z]] �
F[[z]]m. Multiplying (5.1) by zt and adding for all t ≥ 0, one obtains

g(z)Y (z) − f(z)X(z) = r(q), (5.2)

where g(z) = I −∑n
i=1 biz

i ∈ Pn+1(R[z]), f(z) =
∑n

i=0 ai z
i ∈ Pn+1(V [z]), and

r : Q→ Pn(F[z]m) is given by:

r(q) =
n−1∑
t=0

(
n∑

i=t+2

αt,i−1xt+1−i +
n∑

i=t+1

βt,iyt−i

)
zt, (5.3)
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Table 3. Coefficients of the PILT given in Example 6.

t ICs OCs

0

⎡
⎣0 1

0 0

0 1

⎤
⎦
⎡
⎣0 0

0 0

0 0

⎤
⎦
⎡
⎣1 0

0 0

0 1

⎤
⎦
⎡
⎣0 0 0

0 0 0

0 0 0

⎤
⎦
⎡
⎣0 0 0

0 0 0

0 0 0

⎤
⎦
⎡
⎣1 0 0

0 1 0

0 0 0

⎤
⎦

1

⎡
⎣0 1

0 0

0 1

⎤
⎦
⎡
⎣1 1

1 1

1 1

⎤
⎦
⎡
⎣1 1

0 0

0 0

⎤
⎦
⎡
⎣1 0 0

0 0 0

1 0 0

⎤
⎦
⎡
⎣0 0 0

0 0 0

0 0 0

⎤
⎦
⎡
⎣0 0 0

0 0 0

0 0 0

⎤
⎦

≥ 2

⎡
⎣0 1

0 0

0 1

⎤
⎦
⎡
⎣1 1

1 1

1 1

⎤
⎦
⎡
⎣1 0

0 0

0 0

⎤
⎦
⎡
⎣1 0 0

0 0 0

1 0 0

⎤
⎦
⎡
⎣0 0 0

0 0 0

0 0 0

⎤
⎦
⎡
⎣1 1 0

0 0 0

0 1 0

⎤
⎦

if q = 〈x−(n−1), . . . , x−1, y−n, . . . , y−1〉. We will say that q gives the initial condi-
tions, or the initial state.

It is clear that the two forms of inducing a transducer, either by an equation of
the form (5.1) or by one of the form (5.2), are equivalent.

Example 6. Take l = 2, m = 3 and n = 3. Let M =
〈
(F2)2, (F2)3, (F2)5, δ, λ,

〉
be the PILT with memory of order (2, 3) induced by

yt =
3∑

i=1

(αt,i−1 xt+1−i + βt,i yt−i) (t ≥ 0) (5.4)

whose coefficients are given in Table 3.
Then, the series of inputs and outputs that satisfy this equation are the same as
the ones that satisfy

g(z)Y (z) − f(z)X(z) = r(q),

with

f(z) =

⎡
⎣ 0 1

0 0
0 1

⎤
⎦ +

⎡
⎣ 1 1

1 1
1 1

⎤
⎦ z +

⎡
⎣ 1 0

0 0
0 0

⎤
⎦ z2,

g(z) =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ +

⎡
⎣ 1 0 0

0 0 0
1 0 0

⎤
⎦ z +

⎡
⎣ 1 1 0

0 0 0
0 1 0

⎤
⎦ z3,

r(q) =

⎡
⎣ 1 0

0 0
0 1

⎤
⎦ x−2 +

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ y−3 +

⎡
⎣ 1 1

0 0
0 0

⎤
⎦ x−1z +

⎡
⎣ 1 1 0

0 0 0
0 1 0

⎤
⎦ y−1z

2.

We are now ready to state a result that will allow us to give a necessary and
sufficient condition for the left invertibility of PILTs, and consequently of linear
transducers with memory.

Proposition 5.2. Let f ∈ Mm,l(F)[z], g ∈ Mm,m(F)[z] with g(0) = I, and let r :
Q→ F[z]m be given by an expression of the form (5.3), and let M = 〈X ,Y, Q, δ, λ〉
be a PILT induced by the equation gY − fX = r(q), as described above. Then the
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series of inputs and outputs of M , for some initial conditions q, satisfy an equation
of the form uX − vY = s, for some u ∈ Ml,l(F)[z] with u ≡ zτI (mod zτ+1),
v ∈ Ml,m(F)[z], and s ∈ F[z]l, if and only if

∃ p ∈ Ml,m(F)[z] : pf ≡ zτI (mod zτ+1).

Proof. One direction is obvious. If there exists p ∈ Ml,m(F)[z] such that pf ≡ zτI
(mod zτ+1), then just by multiplying both sides of equation gY − fX = r(q) by
p, on the left, one immediately gets the desired result.

To prove the only if part, assume that there are u, v, s in the conditions described
in the statement of the theorem. Since u ≡ zτI (mod zτ+1), there is a polynomial
w, such that u = zτw and w(0) = I.

From gY−fX = r(q) and g(0) = I, one gets Y = g−1fX+g−1r(q). Substituting
this into uX − vY = s, one gets(

zτw − vg−1f
)
X = vg−1r(q) + s.

Since this must be true for all X ∈ Xω � F[[z]]l, it follows that zτw− vg−1f must
be the zero matrix, which then implies that

zτI = w−1vg−1f,

where I is the identity matrix of the appropriate size. Moreover, since f is a
“polynomial”, one concludes that w−1vg−1 is also a “polynomial”, more precisely,
an element of Ml,m(F)[z]. Therefore, putting p = w−1vg−1, one gets the claimed
result. �

Theorem 5.3. Let M be a PILT induced by f ∈ Mm,l(F)[z], g ∈ Mm,m(F)[z]
with g(0) = I, and r : Q→ F[z]m, as above. Then M has a left inverse with delay
τ if and only if

∃ p ∈ Ml,m(F)[z] : pf ≡ zτI (mod zτ+1).

In that case, if w ∈ Ml,l(F)[z] is such that pf = zτw, with w(0) = I, then an
inverse with delay τ of M is the transducer induced by wY − pgX = −pr(q).
Proof. Suppose M has a left inverse with delay τ , M ′. Let wY − vX = s(q′), with
w(0) = I, be an equation that induces M ′. Then, for any input-output pair (X,Y )
of M , and for any initial conditions q, there are initial conditions q′ of M ′ and a
polynomial γ ∈ Pτ (F[z])l such that (Y, zτX + γ) is an input-output pair of M ′.
This implies that

wzτX − vY = s(q′) − wγ,

and the previous proposition then applies to show the desired congruence.
Conversely, assume the existence of p as stated, and let u be such that pf = zτu.

Then u(0) = I, and multiplying by p the equation defining M , one gets:

pgY − pfX = pr(q), (5.5)
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which is equivalent to
u (zτX) − pgY = −pr(q), (5.6)

where −pr(q) is an expression of the form

n−1∑
t=0

ϕt(x−(n−1), . . . , x−1, y−n, . . . , y−1)zt,

with ϕt(x−(n−1), . . . , x−1, y−n, . . . , y−1) being linear forms. Now, any expression of
this form can be written in the form (5.3) by introducing new variables with zero
coefficients, if necessary. This is better seen through an example – see Example 7
below. It follows that −pr(q) = s(q′) for some s : Q′ → F[z]l of form (5.3) and
q′ ∈ Q. Since equation (5.5) is verified for any input-output pair (X,Y ) of M , one
concludes that the transducer M ′ defined by uY − pgX = s(q′) is a left inverse of
M with delay τ . �

Note that the left inverse whose existence is here shown outputs zeros before
starting to recover the input. Also, this result immediately gives an algorithm to
find such inverse, namely:

(1) find p ∈ M�,m(F)[z] such that pf ≡ zτI (mod zτ+1);
(2) determine w ∈ M�,�(F)[z] such that pf = zτw, with w(0) = I;
(3) compute pg and pr(q);

To find p satisfying (5) one uses the proof of the following result, in which M(S)
will denote the union of all rings of matrices over the ring S.

Theorem 5.4. Let F be a field, and F ∈ M(F[z]). Then

∃P ∈ M(F[z]) : PF ≡ zτI (mod zτ+1) ⇐⇒ zτ+1 � d,

where d is the invariant factor with the highest degree of F in Smith’s normal
form, and I is the appropriate identity matrix.

Proof. Let F ∈ M(F[z]). Since F[z] is a principal ideal domain, there exist in-
vertible matrices U, V ∈ M(F[z]), with the appropriate dimensions, and such that
D = UFV is the Smith’s normal form of F . One then has,

∃P ∈ M(F[z]) : PF ≡ zτI (mod zτ+1) ⇔
⇔ ∃P ∈ M(F[z]) : PU−1UFV ≡ zτV (mod zτ+1) ⇔
⇔ ∃P ∈ M(F[z]) : V −1PU−1D ≡ zτI (mod zτ+1) ⇔
⇔ ∃P = (hij)i,j ∈ M(F[z]) : PD ≡ zτI (mod zτ+1) ⇔

⇔ ∀i,j ∃ pi,j ∈ F[z] :

{
pij ≡ 0 (mod zτ+1), if i 
= j

piidi ≡ zτ (mod zτ+1), otherwise.
⇔

⇔ zτ+1 � d,

where di are the invariant factors of F , and d is the one with the highest degree. �



124 I. AMORIM ET AL.

This yields the following algorithm to find p satisfying (5) in the previous
algorithm.

(1) Determine the matrices U, V such that UFV = SNF(F ).

(2) Construct a matrix A such that
{
aij ≡ 0 (mod zτ+1), if i 
= j
aiidi ≡ zτ (mod zτ+1), otherwise.

(3) Compute P = V AU .
Example 7 (Continuing Example 6). Let F be the polynomial matrix that cor-
responds to f(z). The Smith normal form of F and the matrices U, V such that
D = UFV are:

D =

⎡
⎣ 1 0

0 z
0 0

⎤
⎦ , U =

⎡
⎣ 1 1 0

0 z + 1 z
1 z2 + z z2 + 1

⎤
⎦ , V =

[
0 1
1 z2

]
.

Choosing τ = 1, and since z2 � z, by the previous theorem, there exists P ∈
M(F[z]) such that PF ≡ zτI (mod zτ+1), and using the algorithm just mentioned,
one has, for example:

P =

[
0 z + 1 z
z z 0

]
.

Let p(z) be the matrix polynomial that corresponds to P . Taking u = pf , v = pg
and s(q′) = −pr(q), one gets that the series of inputs and outputs of M satisfy
the equation uX − vY = s(q′), with

u =

[
1 0
0 1

]
z +

[
0 0
1 0

]
z3,

v =

[
0 1 0
0 0 0

]
+

[
0 1 1
1 1 0

]
z +

[
1 0 0
1 0 0

]
z2 +

[
1 1 0
0 1 0

]
z4,

s(q′) =

[
0 1 0
0 0 0

]
y−3 +

([
0 1
1 0

]
x−2 +

[
0 1 0
1 1 0

]
y−3

)
z +

+

[
0 0
1 1

]
x−1z

2 +

[
0 1 0
1 1 0

]
y−1z

3.

Therefore, by the same result, a left inverse with delay 1 of M is the post-initial
linear transducer M ′ =

〈
(F2)3, (F2)2, (F2)6, δ′, λ′

〉
with memory of order (4, 2)

induced by the equation wY −vX = s(q′), where v, s(q′) are as defined above, and

w =

[
1 0
0 1

]
+

[
0 0
1 0

]
z2.

Finally, from Proposition 5.2, Theorems 5.3 and 5.4 one gets the following neces-
sary and sufficient condition for the left invertibility of PILTs.

Corollary 5.5. Let F be a field. Let f ∈ Mm,l(F)[z], g ∈ Mm,m(F)[z] such that
g(0) = I, and r : Q → F[z]m given by an expression of the form (5.3). Let
M =

〈
Fl,Fm, Q, δ, λ

〉
be a PILT induced by the equation gY − fX = r(q), as

described above. Then, M is left invertible with delay τ if and only if

zτ+1 � d,

where d is the invariant factor with the highest degree of f , when f is seen as an
element of Mm,l(F[z]).
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6. Conclusion

In this paper we give an account of some of the known results on the invertibility
of linear finite transducers. By considering an appropriate extension of the notion
of linear transducer with memory, and working on rings of formal power series and
some associated modules, we were able to get a necessary and sufficient condition
for the invertibility of linear transducers with memory. We also gave a way to
compute inverses of any invertible linear transducer with memory, using the Smith
Normal Form for polynomial matrices.
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