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Abstract. We combine a new data model, where the random classifi-
cation is subjected to rather weak restrictions which in turn are based
on the Mammen−Tsybakov [E. Mammen and A.B. Tsybakov, Ann.
Statis. 27 (1999) 1808–1829; A.B. Tsybakov, Ann. Statis. 32 (2004)
135–166.] small margin conditions, and the statistical query (SQ) model
due to Kearns [M.J. Kearns, J. ACM 45 (1998) 983–1006] to what we
refer to as PAC + SQ model. We generalize the class conditional con-
stant noise (CCCN) model introduced by Decatur [S.E. Decatur, in
ICML ’97: Proc. of the Fourteenth Int. Conf. on Machine Learn. Mor-
gan Kaufmann Publishers Inc. San Francisco, CA, USA (1997) 83–91]
to the noise model orthogonal to a set of query functions. We show
that every polynomial time PAC + SQ learning algorithm can be ef-
ficiently simulated provided that the random noise rate is orthogonal
to the query functions used by the algorithm given the target con-
cept. Furthermore, we extend the constant-partition classification noise
(CPCN) model due to Decatur [S.E. Decatur, in ICML ’97: Proc. of
the Fourteenth Int. Conf. on Machine Learn. Morgan Kaufmann Pub-
lishers Inc. San Francisco, CA, USA (1997) 83–91] to what we call the
constant-partition piecewise orthogonal (CPPO) noise model. We show
how statistical queries can be simulated in the CPPO scenario, given
the partition is known to the learner. We show how to practically use
PAC+SQ simulators in the noise model orthogonal to the query space
by presenting two examples from bioinformatics and software engineer-
ing. This way, we demonstrate that our new noise model is realistic.
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1. Introduction and overview

The Probably Approximately Correct model of learning (PAC learning), intro-
duced by Valiant [48], has proven an interesting model of machine learning from
an algorithmic point of view. PAC learning is concept learning. A concept is a rule
to divide input vectors from Rn into positive and negative examples. The problem
is to infer an unknown target concept g∗ from a known concept class Cn such that
positive and negative training examples obey that rule. In this paper, we prefer the
functional scenario of PAC learning considered in [27] to Valiant’s oracle model. In
the functional setting, the training data consist of m independent instantiations
of a random pair U = (X,Y ), where the random input vector (or observation)
X takes value in the the input space Xn ⊆ Rn, and the random classification (or
label) Y is from {0, 1}. The distribution PU induced by U on the so-called learning
universe Un := Xn × {0, 1} describes the frequency of how often particular pairs
occur in practice. That is why we denote U as generic data element. The learning
algorithms are assumed to perform well with respect to any target distribution
PX induced by the random observation X on the input space Xn. This means
that the (test) error defined as the probability that the target concept differs from
the hypothesis learned is minimized given the training sample length m tends to
infinity.

Valiant’s original model takes a noise-free view of the concepts to be learned.
This means Y = g∗(X). To make algorithms robust, several noise models have been
studied. In the malicious error model introduced by Valiant [49] and further stud-
ied in [32], an adversary is allowed to corrupt any instance of the noise-free learning
sample with some probability that may depend on the index of the instance but
not on the instance itself. Moreover, probabilistic concepts can be considered in
the context of noisy data [33].

Goldman and Sloan studied in [24] the impact of random noise affecting only
the attributes of the observation and not the classification when the input space
is {0, 1}n. They presented a PAC learner for monomials that tolerates uniform at-
tribute noise, where every observation bit is independently flipped with the same
probability. In contrast, they showed that product random attribute noise, where
each attribute is corrupted with its own probability, is nearly as harmful as mali-
cious noise.

In this paper, we study PAC learning with classification noise. The random
noise rate ν(X) is defined to be the conditional probability

ν(X) := P (Y �= g∗(X) | X ), (1.1)

where we always assume that ν(x) ≤ 1/2 for all x ∈ Xn.
Angluin and Laird [2] were the first who considered constant classification noise

(CN) in which the noise rate ν(X) equals a constant ν ≤ ν(b) < 1/2, where the
upper bound ν(b) is known to the learner.

This model was generalized by Decatur [18] via the class-conditional classifica-
tion noise (CCCN) model to the constant-partition classification noise (CPCN)



A GENERALIZED MODEL OF PAC LEARNING AND ITS APPLICABILITY 211

model. In the CCCN model the random noise rate is constant given the classifica-
tion of the target concept. This means that there are two constants ν0, ν1 ∈ [0, 1/2)
such that ν(x) = νy0 given g∗(x) = y0, for y0 = 0, 1. The CPCN model allows a
constant number of blocks of the input space having constant noise rates. In [44]
it is proved that any concept class that is efficiently learnable in the CN model, is
efficiently learnable in the CPCN model, too.

Nettleton et al. presented in [39] a survey of how attribute noise or classification
noise in the training data or in the training data and the test data can affect the
precision of naive Bayes classifiers [30], C 4.5 decision trees [43], IBk instance-based
learners [1] and SMO support vector machines [42]. According to their findings,
naive Bayes classifies are most robust, though the empirical behavior of these four
techniques varies depending the noise type. The classification noise utilized is a
variant form of the CCCN model.

Cesa–Bianchi et al. combined in [14] attribute noise with classification noise
in the context of kernel-based online learning. The hypotheses are of the form
x �→ 〈w, ψ(x)〉, where ψ is a fixed feature mapping into some kernel reproducing
Hilbert space, and the vector w represents the current hypothesis. The learning
protocol is a repeated game between the learner and an adversary. When it is the
adversary’s turn, it chooses an example (xi, yi), a zero-mean random vector Nx

i ,
and a zero-mean random variable Ny

i . When it is the learner’s move, it is given
access to an oracle returning independent instantiations of (xi + Nx

i , yi + Ny
i ). It

then picks a (random) hypothesis Wi+1. It is the goal to minimize the expected
regret. Cesa-Bianchi et al. showed that this is tractable, if a random, essentially
constant number of noisy copies of each instance is accessible. Moreover, the more
is known about the noise distribution, the better are the conditions for learning.
In contrast, if nothing is known about the noise distribution and only one noisy
copy of each instance is available the setting becomes intractable.

In the statistical query model introduced by Kearns [31] the learning algorithms
are restricted in their use of the training data. They are only allowed to make
statistical queries (SQs). A SQ is a request for a sufficiently accurate estimate of
the expectation E (χ(X, g∗(X))) with respect to the target distribution PX and
the target concept g∗, where the polynomially computable query function χ maps
the learning universe Un to the interval [0, 1].

Statistical queries can be simulated in the PAC model in the presence of constant
classification noise, malicious error noise and even hybrid models combining this
noise models [15, 16, 19, 31]. In [5] a SQ model based on relative error bounds is
introduced. Highly efficient PAC simulations of the algorithms are presented there.

Our first contribution is the introduction of a type of learning algorithms, which
we call PAC+ SQ learners, that are allowed to directly access the training data in
addition to making statistical queries.

In [31] a weaker variant was considered, where the learner only is given access
to an unclassified sample of observations.

As our second contribution we allow random noise rates that are observation-
dependent rather than block-wise constant. We show that a PAC + SQ learner
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can be efficiently and consistently simulated as long as the random noise rate is
conditionally uncorrelated to the query functions used by the algorithm given the
target concept (see Thms. 6.1 and 7.3). From a geometric point of view this means
that the random noise rates allowed are orthogonal to the query functions used.

The simulator devised in order to prove Theorem 6.1 has an empirical risk
minimization part. Moreover, when it comes to devising learning algorithms for
particular problems empirical risk minimization techniques is useful. In the PAC
learning setting deviation from the Bayes classifier is measured. Under which ad-
ditional conditions empirical risk minimization is guaranteed to work there?

Mammen and Tsybakov [35, 47] have given a comprehensive answer. This is
the case if and only if the distribution of the generic data element U = (X,Y ) is
subject to a small margin condition restricting the probability that the random
noise rate ν(X) is close to 1/2 (see Sect. 2). Our third contribution is to integrate
a small margin condition into the data model of PAC learning.

Haussler’s covering method [26] to learn monomials consisting of at most s
clauses is our vehicle for demonstrating how these ideas work. Compared with a
variant of Haussler’s algorithm due to Kearns [31], we modify the cover phase such
that the risk on the negatively declared data is minimized rather than the error
on the true negatives, whereas the prune phase minimizing the error on the true
positives by means of statistical queries remains more or less unchanged. As our
fourth contribution we prove consistency of such a mixed strategy of learning (see
Sect. 4.3).

The worst-case sample length of our modified algorithm is reduced. Its depen-
dence on the target concept size Θ (s) is quadratic in the noise model orthogonal
to the queries used in contrast to the cubic dependence of Kearns’ algorithm in
the CN model [31]. The main advantage is, however, that the data demand of
our PAC + SQ learner is much less in practice. There are two reasons for that.
First, a worst-case scenario hardly ever comes to pass in practice. Second, a factor
r = O (s log(1/ε)) of Kearns’ sample length bound is an exception to this rule, be-
cause his cover phase falls into r stages where each of these needs a fresh learning
sample, not just in the worst case but in every case. In contrast, our cover phase
only requires a single sample.

Finally, we present two examples of the way our new model can be applied in
practice. Thus, we confirm that our noise model is reasonable. It is unlikely to
infer relevant information only from differences in noise rate.

Leveraging our PAC+SQ variant of Haussler’s covering method, we compute a
powerful discriminator between protein-protein interfaces and random sets of pairs
of protein surface residues. A SVM with RBF kernel functions has as a slightly
better classification rate when solving the same problem. In contrast to the SVM
classifier, our PAC + SQ discriminator has a convincing biological interpretation.

We sketch how we applied PAC learning to problems from software engineering
by means of PAC learning in [28].
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1.1. Organization of the paper

In Section 2 we introduce the basic notions of pattern classification, define
uniform convergence, Rademacher averages and Vapnik−Chervonenkis dimension,
and expose the small margin conditions due to Mammen and Tsybakov [35, 47].

A general definition of classification noise models as well as of efficient PAC
learnability with respect to such noise models is presented in Section 3. Moreover,
statistical queries as a building blocks for such learners are introduced there.

Section 4 presents our new model of PAC learning. Therein, we introduce our
new generalized model of PAC learning with classification noise. It comprises a
type of learning algorithms we refer to as PAC + SQ learners and random noise
rates orthogonal to a set of query functions given the target concept. Notions from
Sections 2 and 3 are brought together.

In Section 5 we show how to efficiently simulate (conditional) statistical queries
using query functions orthogonal to the random noise rate given the target concept.
Thus we extend the corresponding results presented in [31].

We use the results of Section 5 to prove Theorem 6.1 as our main result in
Section 6.

In Section 7 we generalize Decatur’s CPCN scenario to what we call the
constant-partition piecewise orthogonal (CPPO) noise model. We prove that every
efficient PAC + SQ learner can be efficiently simulated in this model, too.

In Section 8 we transform Haussler’s covering method [26] fitted by Kearns to
the CN scenario [31] into a PAC + SQ learner.

In Section 9 and in Section 10 we present two examples of the way our new
PAC learning framework can be used in practices.

1.2. Terminology and notation

We use latin uppercase letters such as X , Y , G or H when referring to random
aspects of the object denoted by them. Unless otherwise specified, expectations
are always taken over such variables.

For b a Boolean value, b̄ = ¬b denotes the negation of b. For any hypothesis h,
the hypothesis h̄ is the complement of h.

For any measurable set A, let �A denote the indicator function of A.

2. Pattern classification

Let U = (X,Y ) be the generic data element consisting of the random obser-
vation X taking values in an input space Xn ⊆ Rn and a random classification
Y ∈ {0, 1}.

The problem of pattern classification is to predict the classification Y of the
observation X of length n by means of a measurable hypothesis that maps the
input space Xn to {0, 1}.

The accuracy of a hypothesis h is measured by its risk.
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Definition 2.1. The risk of a hypothesis h is defined to be

r(h) := P (h(X) �= Y ) .

The posterior probability of the classification on the observation x ∈ Xn is a key
notion in statistical learning theory. It is defined by

η(x) := P (Y = 1 | X = x) (x ∈ Xn).

It is easy to prove, that the pair (PX , η), where PX is the probability distribution
induced by the random observation X on the input space Xn, fully determines the
distribution PU of the generic data element (see [20]).

Definition 2.2. The classifier

g∗(x) =

{
1 if η(x) > 1/2
0 otherwise,

is called the Bayes classifier, the risk r(g∗) the Bayes risk.

According to equation (1.1) and Definition 2.1 the Bayes risk is equal to the
expected noise.

r(g∗) = E (ν(X)) =: ν

In the PAC learning scenario outlined in Section 1 the target concept is always
equal to the Bayes classifier and therefore we denote both as g∗.

Hypotheses are calculated from an i.i.d. learning sample

Um = (U1, U2, . . . , Um) ,

where the generic data element U is independent of Um and Ui = (Xi, Yi), for
i = 1, 2, . . . ,m, induces the same distribution as U on Un. As a transform of the
learning sample, these hypotheses, denoted by Ĥm, are random and parameterized
by the length m. The whole sequence Ĥm is called a discrimination rule.

The risk associated with a discrimination rule Ĥm is given by the random
variable

r
(
Ĥm

)
:= P

(
Ĥm(X) �= Y | Um

)
.

Definition 2.3. A discrimination rule Ĥm is defined to be consistent, if r(Ĥm)−
r(g∗) stochastically converges to zero when m tends to ∞.

To deal with the convergence rate of consistent discrimination rules according
to Definition 2.3, the standard representation of the difference

r(h) − r(g∗) =
∫
{x |h(x) �=g∗(x)}

|2 η(x) − 1| dPX(x) (2.1)

is important, where h is any hypothesis.
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The empirical risk minimization (ERM) is a prominent discrimination rule,
which is denoted by ÊRMm. It has the form

Ĥm = argmin
h∈Hn

R̂m (h) , where R̂m (h) :=
1
m

m∑
i=1

�{h(Xi) �=Yi},

is the empirical risk of the hypothesis h on the learning sample Um, and Hn is
the hypotheses class over which the empirical risk is minimized.

Empirical risk minimization is not always consistent. The capacity of the hy-
potheses class Hn to capture pure chance has to be restricted. The Rademacher
averages and the Vapnik−Chervonenkis dimension are such capacity measures.

Let T be a class of measurable functions from the learning universe Un =
Xn × {0, 1} to a closed interval [a, b]. The Rademacher averages of the class T
were introduced into learning theory in [6, 34, 37], and further studied in [9]. Let
us recall the key notions and properties.

Let R(m) := (R1, R2, . . . , Rm) be a sequence ofm independent Rademacher ran-
dom variables. They take values in {−1,+1}, where P (Ri = −1) = P (Ri = +1) =
1/2. The Rademacher average of T given the learning sample Um is

am (T ) :=
1
m

E

(
sup
θ∈T

m∑
i=1

θ(Ui)Ri

)
. (2.2)

For θ ∈ T , let

Êθ,m :=
1
m

m∑
i=1

θ(Ui)

be the sample mean of (θ(U1), θ(U2), . . . , θ(Um)) that is an estimator of eθ :=
E (θ(U)), whose distribution is exponentially tailed.

To prove consistency of empirical risk minimization by means of Rademacher
averages, uniform convergence rates according to the following lemma are cru-
cial [8, 12].

Lemma 2.4. Given a finite function class T the elements of which take values in
the real interval [a, b]. With probability greater than or equal to 1− δ the following
inequality is satisfied.

sup
θ∈T

∣∣∣eθ − Êθ,m

∣∣∣ < 2 am (T ) + (b− a)

√
ln(2/δ)

2m
·

Based on Massart’s Lemma [36], the following well-known Lemma bounds the
Rademacher averages of finite classes.

Lemma 2.5. For a finite function class T as in Lemma 2.4, the Rademacher

averages am (T ) can be bounded from above by (b − a)
√

ln |T |
2m .
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Let us briefly recapitulate the classical VC dimension of a class T of 0/1-
valued functions and its relation the Rademacher averages. Given any sequence
(u1, u2, . . . , um) of length m over the learning universe Un, we consider the pro-
jection of T onto this sequence defined by

Tu1,u2,...,um := {(θ(u1), θ(u2), . . . , θ(um)) | θ ∈ T }.

Definition 2.6. The growth function ST (m) is defined to be

ST (m) = sup
u1,u2,...,um

∣∣Tu1,u2,...,um

∣∣.
The VC dimension vc-dim(T ) of a class T is the largest m such that

ST (m) = 2m.

As a consequence of Dudley’s entropy bound along with Haussler’s upper bound
on the so called covering numbers, we have

am (T ) = O
(√

vc-dim(T )
m

)
· (2.3)

See [11] for an overview on such methods.
Let

P(Hn) :=
{
θ
∣∣∃h ∈ Hn : ∀(x, y) ∈ Un : θ(x, y) = �{h(x) �=y}

}
.

The following theorem states under which conditions ERM works. Its proof is
based on well-known techniques to decompose the risk [11] and on Lemma 2.4.
Variants, partly based on other capacity measures, can be found in the literature
(see e.g. [12, 45]).

Theorem 2.7. For any δ ∈ (0, 1) and any sample length m > 0 with probability
at least 1 − δ the inequality

r
(
ÊRMm

)
− ν < 2 am (P(Hn)) +

√
2 ln(2/δ)

m
(2.4)

is satisfied.

In many cases it is intractable to efficiently implement ÊRMm. If there is only
a parameterized learning algorithm Ak that implements a discrimination rule
ÊRMk,m approximately minimizing the empirical risk on Um with performance
ratio (1 + 1/k), one gets instead of Theorem 2.7 the following one.

Theorem 2.8. For any δ ∈ (0, 1) and any sample length m > 0 with probability
at least 1 − δ the inequality

r
(
ÊRMk,m

)
− ν < 2 am (P(Hn)) +

(
1 +

1
k

)√
2 ln(2/δ)

m
+

1
k

is satisfied.
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A great deal of work has been done in statistical learning theory to achieve fast
convergence rates for consistent discrimination rules according to Definition 2.3.
They depend on the complexity of the class G∗ of possible Bayes classifiers and the
margin parameter. In this paper we are only interested in the latter one. Starting
point is here the intuition that fast convergence rates presuppose that the posterior
probability η(X) is very unlikely to be close to 1/2. Having defined the neighbor-
hood of the boundary ∂g∗ = {x | η(x) = 1/2} as margin of the Bayes classifier,
Mammen and Tsybakov [35, 47] gave an elegant formulation of what they called
small margin conditions.

Definition 2.9. The joint distribution PU of observation X and classification Y
satisfies the small margin conditionMβ for some small margin condition parameter
0 < β <∞, if there is a small margin condition constant c > 0 such that for every
0 < ε < 1/2

P

(∣∣∣∣η(X) − 1
2

∣∣∣∣ ≤ ε

)
≤ c · εβ . (2.5)

The joint distribution PU satisfies the small margin condition M∞, if there is a
small margin condition constant 0 < c < 1/2 such that

P

(∣∣∣∣η(X) − 1
2

∣∣∣∣ ≤ c

)
= 0. (2.6)

Definition 2.10. The joint distribution PU has margin parameter 0 < κ ≤ 1, if
there is a margin constant d > 0 such that for every hypothesis h

P (h(X) �= g∗(X)) ≤ d · (r(h) − r(g∗))κ
. (2.7)

Lemmas 2.11, 2.12 and 2.13 show that the small margin conditions and the
existence of a margin parameter are equivalent. See [7] for an elegant proof.

Lemma 2.11. The joint distribution of observation and classification has margin
parameter 1 with margin constant d if and only if it satisfies the small margin
condition M∞ with small margin condition constant c = 1/(2d).

Lemma 2.12. If the joint distribution of observation and classification has mar-
gin parameter κ < 1 with margin constant d, then it satisfies the small margin
condition Mβ, where β = κ/(1 − κ), and the small margin condition constant can
be chosen as c = 2κ/(1−κ)d1/(1−κ).

Lemma 2.13. If the joint distribution of observation and classification satisfies
the small margin condition Mβ (β < ∞) with small margin condition constant
c, then it has margin parameter κ = β/(1 + β) with margin constant d = (1 +
β)c1+β(2β)−β/(1+β).
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3. PAC learning with classification noise

A functional learning algorithm of a concept class Cn by a representation class
Hn of Cn is specified as follows. It takes the learning sample Um, the desired error
bound ε ∈ (0, 1) and confidence δ ∈ (0, 1) as input. Moreover, it knows an upper
bound of the representation size s of the target concept g∗ with respect to the
representation class. It outputs a hypothesis Ĥm ∈ Hn that ε-approximates the
target concept with probability at least 1 − δ in the sense of equation (3.1).

Let us give a definition of a general classification noise model and a definition
of efficient PAC learnability for any such classification noise model that subsume
all special cases mentioned in Section 1 including our own new model introduced
in Section 4 in a canonical way.

Definition 3.1. A classification noise model Nn with respect to a concept class
Cn consists for every target concept g∗ ∈ Cn of the set Ng∗ of random noise rates
ν(X) defined in equation (1.1) that are admitted for g∗.

Definition 3.2. A functional learning algorithm A is called an efficient PAC
learner of a concept class Cn by a representation class Hn in the noise model
Nn, if

• for any ε, δ ∈ (0, 1), for any length n, for any target concept size bound s,
and for any expected noise rate bound ν(b) < 1/2, there is minimal sample
length mA(ε, δ, n, s, ν(b)) such that for every m ≥ mA(ε, δ, n, s, ν(b)), for any
distribution PX of the input element X on Xn, for any target concept g∗ ∈ Cn

of size at most s, and any noise rate ν(X) ∈ Ng∗ whose expectation is less than
or equal to ν(b) it returns a hypothesis Ĥm such that with probability at least
1 − δ

err
(
Ĥm

)
:= P

(
Ĥm(X) �= g∗(X) | Um

)
≤ ε; (3.1)

• the minimal sample length mA(ε, δ, n, s, ν(b)) is polynomial in 1/ε, ln(1/δ), n,
s, and 1/(1/2− ν(b));

• its running time is polynomial in m, 1/ε, ln(1/δ), n, s, and 1/(1/2− ν(b)).

Statistical queries are an important building block of PAC learning with classi-
fication noise.

Definition 3.3. Given a measurable and efficiently computable query function

χ : Xn × {0, 1} → [0, 1]

and an accuracy 1/τ , where τ > 1, making a statistical query [χ, 1/τ ], the algo-
rithm requests for an estimate êχ,g∗ of the expected value

eχ,g∗ := E (χ(X, g∗(X))) (3.2)
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such that |eχ,g∗ − êχ,g∗ | ≤ 1/τ . For y0 ∈ {0, 1}, a conditional statistical query
(CSQ) [χ, 1/τ, y0] is a request for an estimate êχ,g∗,y0 of the conditional expectation

eχ,g∗,y0 := E (χ(X, y0) | g∗(X) = y0 ) (3.3)

with accuracy 1/τ .

Let us call the learning algorithms in Kearns’ SQ model SQ learning algorithms.
They are specified as follows. A SQ learning algorithm of a concept class Cn by
a representation class Hn is given the error bound ε as input, and it knows the
length n of the observations as well as an upper bound s of the size of the target
concept g∗ ∈ Cn. It is given access to an oracle STAT (PX , g

∗). The oracle answers
queries [χ, 1/τ ] for expected values defined in equation (3.2) or queries [χ, 1/τ, y0]
for conditional expected values defined in equation (3.3). The algorithm A outputs
a hypothesis H ∈ Hn.

As we have seen, SQ learning algorithms are restricted when using the training
data. They make queries rather than scanning individual instances of the learning
sample.

Definition 3.4. The set of query functions Qn used on observations of length n
is called the query space of the algorithm.

The effective query space Qε,n,s consists of those query functions used when
additionally the target concept size is bounded from above by s, and the algorithm
is given input to ε as error bound.

In many cases efficient SQ learning algorithms in the sense of Definition 3.5
have query spaces of size polynomial in n.

If a subspace Q′ of a query space Qn is under study, for the sake of simplifying
notations we refer to the Rademacher averages as well as to the VC dimension of
the set{

θ
∣∣∃χ ∈ Q′ : ∃y0, y1 ∈ {0, 1} : ∀(x, y) ∈ Un : θ(x, y) = �{y=y0}χ(x, y1)

}
as Rademacher averages and VC dimension of the query subspace Q′.

According to [31], in the SQ model efficient consistency is defined as follows.

Definition 3.5. A SQ learning algorithm A is called an efficient and consistent
learner of a concept class Cn by a representation class Hn, if for any error bound
ε, any observation length n, any target size bound s, any distribution PX of the
input element X on Xn, and any target concept g∗ ∈ Cn of size s

• the output h ∈ Hn satisfies

err(h) := P (h(X) �= g∗(X)) ≤ ε; (3.4)

• for every statistical query made the reciprocal τ of the accuracy is bounded
from above by what is referred to as the tolerance bound tb(ε, n, s), which in
turn is a polynomial in 1/ε, n, and s;

• the evaluation time of every query function used is polynomial in 1/ε, n, and s;
• the running time is polynomial in 1/ε, n, and s.



220 T. BRODAG ET AL.

4. Generalizing the probabilistic model of PAC learning

We base our new generalized model of PAC learning a concept class Cn by a hy-
pothesis class Hn on the Mammen−Tsybakov small margin conditions presented in
Section 2. That is why a closer look to the definition of the observation-dependent
noise rate ν(x) (see Eq. (1.1)) and the posterior probability η(x) is useful. It reveals
that if η(x) > 1/2, then P (Y = 1 | X = x) = 1 − ν(x). If, however, η(x) ≤ 1/2,
then P (Y = 1 | X = x ) = ν(x). Consequently, we get

1
2
− ν(x) =

∣∣∣∣12 − η(x)
∣∣∣∣ (x ∈ Xn). (4.1)

In particular, equation (2.1) and all definitions and lemmas concerning small mar-
gin conditions and margin parameters can be reformulated in terms of the noise
rate.

At the first glance it seems that PAC learning algorithms according to Defini-
tion 3.2 and the statistical-learning-theory-based approach to pattern classification
outlined in Section 2 have different objective functions. On the supposition that a
Mammen−Tsybakov small margin condition is imposed, it turns out that this is
not the case. On the one hand we have

r
(
Ĥm

)
− r
(
g∗
)
≤ err

(
Ĥm

)
(4.2)

by equation (2.1). On the other hand, Lemma 2.13 states that

err
(
Ĥm

)
≤ d ·

(
r
(
Ĥm

)
− r
(
g∗
))κ

,

where κ ∈ (0, 1] is the margin parameter, and d > 0 is the margin parameter
constant.

The remainder of this section is organized as follows. The random noise rate
ν(X) is a conditional probability. The key features of conditional probabilities and
conditional expectations we need to prove our results are compiled in Section 4.1.

In Section 4.2 we explain the assumptions for the joint distribution PU . They
are given by the equations (4.6)−(4.8).

In Section 4.3 we prove consistency of our mixed strategy of learning. The results
of this subsections are subsumed in Lemma 4.4 and Corollary 4.5.

As a useful tool to present generic learning algorithms when the data are noisy
we introduce PAC + SQ learners in Section 4.4. These algorithms have access to
the learning sample Um as well as to an oracle STAT (PX , g

∗).
PAC + SQ learners are not always operational, since it is not clear how to

perform the (conditional) statistical queries in general. In Section 4.5 we define the
noise model orthogonal to a set of query functions Qn that allows us to efficiently
simulate PAC + SQ learners using Qn as query space given the joint distribution
of observation and classification is obeying that noise model.

The advantage of our model is the following. Theorem 2.8 will not help to learn
a concept class, if the empirical risk minimization problem for the corresponding
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learning samples does not have a polynomial time approximation scheme, or such
a scheme has not been devised yet. From a practical point of view we can then
proceed as follows. First, we devise a discrimination rule Ĥm implemented by a
PAC + SQ learner B with query space Qn presented in Section 4. Second, we
simulate B by a PAC learner A in the noise model Q⊥

n according to Definitions 3.2
and 4.7 as exposed in Sections 5 and 6. Thus we have got consistency in that model
though ERM cannot be efficiently carried out for all possible inputs. The price we
have to pay in practice is the model error.

4.1. Conditional probabilities and conditional expected values

Let N be a measurable subset of the probability space on which all random
elements of this paper are defined, and let X′ be a measurable subset of the input
space Xn. Then the conditional probability P (N | X ) satisfies the following key
equation.

P ({X ∈ X′} ∩ N ) =
∫

X′
P (N | X = x) d PX (x) (4.3)

Having denoted P (N | X ) by ζ(X), according to equation (4.3) and the defi-
nition of expected values conditioned on measurable events the following equation
holds true. ∫

X′
ζ(x) d PX (x) = P (X ∈ X′) · E (ζ(X) | X ∈ X′ ) (4.4)

4.2. Distribution assumptions and their consequences

We assume the random classification to satisfy the equation

Y = g∗(X) ⊕ f(X,G), (4.5)

where “⊕” denotes the exclusive or, and g∗ is the unknown Bayes classifier, which
is referred to as target concept, that belongs to a known target concept class Cn.
Therein, G ∈ [0, 1] is uniformly distributed and independent of the random input
element X ∈ Xn. The measurable function f is given by

f(x, g) =

{
1 if g ≥ 1 − ν ′(x);
0 otherwise,

(4.6)

where x ∈ Xn, g ∈ [0, 1], and ν′ is a function from the input space Xn to the
interval [0, 1/2]. It is plain that ν′(X) equals the random noise rate ν(X) defined
by equation (1.1).

We assume the joint distributions PU under study to uniformly have a margin
parameter κ and margin parameter constant d.
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By Lemmas 2.11 and 2.12 the distribution PU then satisfies the small margin
condition Mβ, where the small margin condition parameter equals

β = κ/(1 − κ). (4.7)

The small margin condition constant can be chosen as

c =

{
2κ/(1−κ)d1/(1−κ) if κ < 1;
1
2d if κ = 1.

(4.8)

Taking pattern from [31], we assume without loss of generality that

P (g∗(X) = y0) ≥ ε (y0 ∈ {0, 1}), (4.9)

when analyzing a learning algorithm, where ε is the error bound the algorithm is
given as input. Otherwise a trivial hypothesis that outputs a Boolean constant is
of sufficient accuracy.

Let us turn to some consequences of the foregoing assumptions.
Using equation (4.1) in combination with the fact that PU satisfies the small

margin condition Mβ with small margin condition constant c (see Eqs. (4.7)
and (4.8)), it follows by means of analytic standard techniques that

ν ≤ ν(b) :=

⎧⎨⎩ 1
2 − 1

2

(
β+1
2c

)1/β

if κ < 1;
1
2 − c if κ = 1.

. (4.10)

(The full proof of Eq. (4.10) is presented in the appendix.)
For y0 ∈ {0, 1}, the conditional expected noise rate given {g∗(X) = y0} is

denoted by

νy0 := E (ν(X) | g∗(X) = y0 ) . (4.11)

It follows from ν = E (ν(X)) = P (g∗(X) = 0) ν0 + P (g∗(X) = 1) ν1 and equa-
tion (4.10) that ν0 + ν1 ≤ 1/2 + ν(b), whence

1 − ν0 − ν1 ≥ 1
2
− ν(b) . (4.12)

Lemma 4.1 (Observed classification probabilities vs. Bayes ones). For y0 ∈ {0, 1}
and any target concept g∗,

P (g∗(X) = y0) =
P (Y = y0) − ν ȳ0

1 − ν1 − ν0
· (4.13)

Proof. It suffices to study case Y = 1. Since∫
Xn

P (Y = 1 | X = x) d PX (x) =
∫
{x|g∗(x)=1}

P (Y = 1 | X = x)︸ ︷︷ ︸
=1−ν(x)

d PX (x)

+
∫
{x|g∗(x)=0}

P (Y = 1 | X = x )︸ ︷︷ ︸
=ν(x)

d PX (x) ,
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equations (4.3) and (4.4) entail

P (Y = 1) = P (g∗(X) = 1) · (1 − ν1) + P (g∗(X) = 0) · ν0 .

Replacing P (g∗(X) = 0) by 1−P (g∗(X) = 1) and solving for P (g∗(X) = 1), equa-
tion (4.13) follows. �
Corollary 4.2. For y0 ∈ {0, 1}, the observed classification probabilities can be
bounded from below as follows.

P (Y = y0) − νȳ0 ≥ (1/2 − ν(b))ε. (4.14)

Proof. Equation (4.14) follows on grounds of equation (4.9) by means of
equations (4.12) and (4.13). �

4.3. Substantiating a mixed strategy of learning

In order to find a hypothesis of small error, it is standard

• either to minimize the error given {g∗(X) = 1} and then the error given
{g∗(X) = 0} by means of (conditional) statistical queries;

• or to minimize the risk given {Y = 1} and then the risk given {Y = 0} by
ERM techniques.

In what follows we show, that the following mixed strategy is also promising:
minimize the error given {g∗(X) = 1} and then minimize the risk given {Y = 0}.

For y0 ∈ {0, 1} and for any hypothesis h ∈ Hn,

err (h | g∗(X) = y0 ) := P (h(X) = ȳ0 | g∗(X) = y0 )

denotes the conditional error of h given {g∗(X) = y0}, and

r (h | Y = y0 ) := P (h(X) = ȳ0 | Y = y0 )

the conditional risk of h given {Y = y0}, where ȳ0 is the negation of y0 ∈ {0, 1}.

Lemma 4.3. For y0 ∈ {0, 1},

r (g∗ | Y = y0 ) =
νȳ0 ·P (g∗(X) = ȳ0)

P (Y = y0)
; (4.15)

P (g∗(X) = y0 | Y = y0 ) =
(1 − νy0) · P (g∗(X) = y0)

P (Y = y0)
· (4.16)

Proof. Clearly, it suffices to prove equation (4.15), which in turn follows immedi-
ately from

ν ȳ0 = P (Y = y0 | g∗(X) = ȳ0 ) . (4.17)

Having replaced N by {g∗(X) �= Y } and X′ by {x ∈ Xn

∣∣ g∗(x) = ȳ0} in equa-
tions (4.3) and (4.4), equation (4.17) follows by bringing equations (4.3) and (4.4)
together. �
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Lemma 4.4. For any hypothesis h ∈ Hn,

P (h(X) = 1, g∗(X) = 0)
< 2(r (h | Y = 0) − r (g∗ | Y = 0)) + P (h(X) = 0, g∗(X) = 1) . (4.18)

Proof. By definition

r (h | Y = 0) =
1

P (Y = 0)
E
(
h(X)�{Y =0}

)
.

Since Y = 0 if and only if either g∗(X) = 0 and G < 1 − ν(X) or g∗(X) = 1 and
G ≥ 1 − ν(X), we get

r (h | Y = 0) =
1

P (Y = 0)
E
(
h(X)�{g∗(X)=0}�{G<1−ν(X)}

)
+

1
P (Y = 0)

E
(
h(X)�{g∗(X)=1}�{G≥1−ν(X)}

)
.

Using the independence of X and G, it follows that

r (h | Y = 0) =
1

P (Y = 0)
E
(
h(X)�{g∗(X)=0}(1 − ν(X))

)
+

1
P (Y = 0)

E
(
h(X)�{g∗(X)=1} ν(X)

)
.

We obtain

r (h | Y = 0) =
P (g∗(X) = 0)

P (Y = 0)
E (h(X)(1 − ν(X)) | g∗(X) = 0)

+
P (g∗(X) = 1)

P (Y = 0)
E (h(X) ν(X) | g∗(X) = 1) .

By equation (4.15)

r (h | Y = 0) − r (g∗ | Y = 0) =
P (g∗(X) = 0)

P (Y = 0)
E (h(X)(1 − ν(X)) | g∗(X) = 0)

− P (g∗(X) = 1)
P (Y = 0)

E
(
h̄(X) ν(X) | g∗(X) = 1

)
.

Since ν(X) is less than or equal to 1/2, we get

err (h | g∗(X) = 0) <
2 P (Y = 0)

P (g∗(X) = 0)
(r (h | Y = 0) − r (g∗ | Y = 0))

+
P (g∗(X) = 1)
P (g∗(X) = 0)

err (h | g∗(X) = 1) , (4.19)

whence the claim follows. �
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From equation (4.19) we immediately get the following corollary, which is use-
ful when it comes to implementing the mixed strategy of learning by means of
conditional queries.

Corollary 4.5. Given miny0∈{0,1} P (g∗(X) = y0) ≥ ε, for any hypothesis h ∈ Hn,

err (h | g∗(X) = 0) <(
2(r (h | Y = 0) − r (g∗ | Y = 0)) + err (h | g∗(X) = 1)

)
/ε. (4.20)

4.4. PAC + SQ learning algorithms

A learning algorithm of a target concept class Cn by a representation class Hn

in this combined model takes the learning sample Um and the parameters er-
ror accuracy ε ∈ (0, 1) and confidence δ ∈ (0, 1) as input. It knows the size s of
the target concept g∗ ∈ Cn, the margin parameter κ and the margin parameter
constant d. Moreover, it has access to an oracle STAT (PX , g

∗) to make (condi-
tional) statistical queries [χ, 1/τ ] and [χ, 1/τ, y0] for expected values defined in
equations (3.2) and (3.3), where χ is a query function, τ is the tolerance of the
query, and y0 ∈ {0, 1} is a classification. It outputs a hypothesis Ĥm that belongs
to the representation class Hn.

The following definition joins Definition 3.2 with Definition 3.5 in such a way
that each efficient PAC learner as well as each efficient and consistent SQ learner
is an efficient PAC + SQ learning algorithm, too.

Definition 4.6. A learning algorithm specified as above is called an efficient
PAC + SQ learning algorithm of the target concept class Cn by the representa-
tion class Hn, if

• for any ε, δ ∈ (0, 1), for any length n, for any target concept size bound s,
and for any expected noise rate bound ν(b) < 1/2, there is a minimal sample
length mA(ε, δ, n, s, ν(b)) and a tolerance bound tbA(ε, n, s) such that for every
m ≥ mA(ε, δ, n, s, ν(b)), for any distribution PX of the input element X on Xn,
for any target concept g∗ ∈ Cn of size at most s, and for any noise rate ν(X)
whose expectation ν is less than or equal to ν(b)

P

(
err
(
Ĥm

)
≤ ε
)
≥ 1 − δ,

where the reciprocal of the accuracy of every (conditional) statistical query
made is bounded from above by the tolerance bound tbA(ε, n, s);

• the minimal sample length is polynomial in 1/ε, ln(1/δ), n, s, and 1/(1/2−ν(b));
• the tolerance bound is polynomial in 1/ε, n, and s;
• the evaluation time of every query function χ is polynomial in n;
• the overall running time is polynomial in m, 1/ε, ln(1/δ), n, s, and

1/(1/2− ν(b)).
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The problem of learning rectangles in n dimensions in the noise free model
was solved in [10]. Their algorithm computes the smallest axis-aligned rectangle
consistent with the learning sample. As an example of a PAC + SQ learner, let us
briefly expose the algorithm presented in [31], where ideas from [33] were used.

Let U = (X,Y ) = ((X1, X2, . . . , Xj, . . . , Xn), Y ) be the generic data element of
the learning sample Um, and let ε and δ be sufficiently small.

Taking the learning sample Um as input, the algorithm divides for every di-
mension j = 1, 2, . . . , n the xj-axis into 4n/ε interval that are all approximately
equally likely to be met by a random observation.

Applying the uniform convergence result of Theorem 2.7 along with equa-
tion (2.3), where T is the set of intervals, we get the following. If m =
Ω
(
(n2/ε2) ln(n/δ)

)
, then for every j = 1, 2, . . . , n and every such interval I on the

xj -axis with probability at least 1 − δ the number P (Xj ∈ I) is at most ε/(2n).
Next, for every dimension j = 1, 2, . . . , n and every interval I on the xj-axis,

the algorithm makes a query for

pI := P (Xj ∈ I, g∗(X) = 1)

with accuracy ε2/(16n2). It classifies an interval I as significant, if the estimate of
pI is greater than ε2/(16n2).

Finally, the boundaries of the intervals whose cross-product forms the target
concept are estimated separately for each dimension. Moving on the xj -axis from
the left to the right and then vice versa, the algorithm searches for the first signif-
icant interval to place the corresponding boundary in it.

4.5. The noise model orthogonal to a query space

For g∗ ∈ Cn and y0 ∈ {0, 1}, let us define the L2-space L2
(
Xn, g

∗, y0
)
. We equip

the set {x ∈ Xn | g∗(x) = y0} with the probability measure PX conditioned on
{g∗(X) = y0}. Then L2

(
Xn, g

∗, y0
)

is the space of all measurable functions

f : {x ∈ Xn | g∗(x) = y0} → R,

whose absolute value raised to the second power have a finite integral∫
|f(x)|2 d PX (x | g∗(X) = y0 ) .

It is known that then

〈f1, f2〉 :=
∫
f1(x)f2(x) d PX (x | g∗(X) = y0 )

is a positive semidefinite bilinear form.
By conditioning on {g∗(X) = y0}, every real-valued L2-transform t(X) of the

input element X gives rise to an element of the space L2
(
Xn, g

∗, y0
)
. For the sake

of simplicity, it is denoted by t(X), too.
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For Qn being any set of query functions, and y0 ∈ {0, 1}, let spany0

(
Qn

)
be the

subspace of L2
(
Xn, g

∗, y0
)

spanned by the transforms χ(X, 0) and χ(X, 1) of the
random observation X , where χ ranges over all query functions belonging to Qn.

Definition 4.7. Let Cn be a target concept class, and Qn be a set of query
functions.

• A noise rate ν(X) is called orthogonal to Qn given a target concept g∗ ∈ Cn,
if, for y0 ∈ {0, 1}, and for every f ∈ spany0

(
Qn

)
,

〈ν(X) − νy0 , f(X) − E (f(X) | g∗(X) = y0 )〉 = 0, (4.21)

where νy0 is the conditional expectation of ν(X) given {g∗(X) = y0}.
• For every g∗ ∈ Cn, the noise model Q⊥

n orthogonal to Qn consists of the set
Q⊥

g∗ of all noise rates that are orthogonal to Qn given g∗.

The following lemma is obvious.

Lemma 4.8. Let Cn be a target concept class, and Qn be a set of query functions.
A noise rate ν(X) is orthogonal to Qn given a target concept g∗ ∈ Cn if and

only if

E (ν(X) · χ(X, 1) | g∗(X) = y0 ) = νy0 ·E (χ(X, 1) | g∗(X) = y0 ) (4.22)
E (ν(X) · χ(X, 0) | g∗(X) = y0 ) = νy0 ·E (χ(X, 0) | g∗(X) = y0 ) , (4.23)

for every χ ∈ Qn and every y0 ∈ {0, 1}.

5. Simulating SQ and CSQ with respect to orthogonal

noise rates given the target concept

For any query function χ : Xn × {0, 1} → [0, 1], χ(x, ȳ) is denoted by χ̄(x, y).
Let us turn to the centerpiece of the proof of Theorem 6.1.

Theorem 5.1. Let χ be a query function, g∗ ∈ Cn be a target concept, and ν(X)
be a noise rate such that the equations (4.22) and (4.23) are satisfied.

Then, for y0 ∈ {0, 1},

E (χ(X, g∗(X))) =
(1 − ν0) E

(
�{Y =1}χ(X, 1)

)
− ν0 E

(
�{Y =0}χ(X, 1)

)
1 − ν0 − ν1

+
(1 − ν1) E

(
�{Y =0}χ(X, 0)

)
− ν1 E

(
�{Y =1}χ(X, 0)

)
1 − ν0 − ν1

, (5.1)

and

E (χ(X, y0) | g∗(X) = y0 )

=
(1 − νȳ0) E

(
�{Y =y0}χ(X, y0)

)
− νȳ0 E

(
�{Y =ȳ0}χ(X, y0)

)
P (Y = y0) − νȳ0

· (5.2)
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Proof. Because of the fact that X and G are independent and G is uniformly
distributed on [0, 1], we have

E (χ(X,Y )) =
∫ (∫ 1

0

χ(x, g∗(x) ⊕ f(x, γ)) d γ
)

d PX(x),

whence

E (χ(X,Y )) = E ((1 − ν(X))χ(X, g∗(X))) + E (ν(X)χ(X,¬g∗(X))) . (5.3)

Taking pattern from [4], we proceed as follows. Conditioning both summands
of the right-hand side of the foregoing equation on g∗(X) and applying (4.22)
and (4.23), it follows that

E (χ(X,Y )) = P (g∗(X) = 0) (1 − ν0) E (χ(X, 0) | g∗(X) = 0)
+ P (g∗(X) = 1) (1 − ν1) E (χ(X, 1) | g∗(X) = 1)
+ P (g∗(X) = 0) ν0 E (χ(X, 1) | g∗(X) = 0)
+ P (g∗(X) = 1) ν1 E (χ(X, 0) | g∗(X) = 1) . (5.4)

Applying equation (5.4) to �{y=y0}χ(x, y0) and to �{y=ȳ0}χ(x, y0), where y0 ∈
{0, 1} is fixed, we get

E
(
�{y=y0}χ(x, y0)

)
= P (g∗(X) = ȳ0) νȳ0 E (χ(X, y0) | g∗(X) = ȳ0 )

+ P (g∗(X) = y0) (1 − νy0) E (χ(X, y0) | g∗(X) = y0 )
(5.5)

and

E
(
�{y=ȳ0}χ(x, y0)

)
= P (g∗(X) = ȳ0) (1 − νȳ0) E (χ(X, y0) | g∗(X) = ȳ0 )

+ P (g∗(X) = y0) νy0 E (χ(X, y0) | g∗(X) = y0 ) , (5.6)

respectively. Multiplying equation (5.5) by 1 − νȳ0 and equation (5.6) by νȳ0 , we
obtain

(1−νȳ0)E
(
�{y=y0}χ(x, y0)

)
=P (g∗(X)= ȳ0)νȳ0(1 − νȳ0)E (χ(X, y0) | g∗(X) = ȳ0 )

+ P (g∗(X) = y0) (1 − ν0)(1 − ν1)
× E (χ(X, y0) | g∗(X) = y0 ) (5.7)

and

νȳ0 E
(
�{y=ȳ0}χ(x, y0)

)
= P (g∗(X) = ȳ0) ν ȳ0(1 − νȳ0) E (χ(X, y0) | g∗(X) = ȳ0 )

+ P (g∗(X) = y0) ν0 ν1 E (χ(X, y0) | g∗(X) = y0 ) .
(5.8)
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Substracting (5.8) from (5.7) yields

(1 − νȳ0) E
(
�{Y =y0}χ(X, y0)

)
− νȳ0 E

(
�{Y =ȳ0}χ(X, y0)

)
= P (g∗(X) = y0) (1 − ν0)(1 − ν1) E (χ(X, y0) | g∗(X) = y0 )
− P (g∗(X) = y0) ν0 ν1 E (χ(X, y0) | g∗(X) = y0 ) . (5.9)

Solving for E (χ(X, y0) | g∗(X) = y0 ) and using equation (4.13), we obtain equa-
tion (5.2).

Using the definition of the conditional expectation, we obtain from equa-
tion (5.2)

E
(
�{g∗(X)=y0} · χ(X, y0)

)
=

(1 − ν ȳ0) E
(
�{Y =y0}χ(X, y0)

)
− νȳ0 E

(
�{Y =ȳ0}χ(X, y0)

)
1 − ν0 − ν1

· (5.10)

Since χ(X, g∗(X)) = �{g∗(X)=1}χ(X, 1) + �{g∗(X)=0}χ(X, 0), equation (5.10) en-
tails equation (5.1). �

Guessing is a usual technique when PAC learning is involved. This means,
given we have to put into operation a discrimination rule Ĥm that depends on a
r-dimensional real parameter vector ρ =

(
ρ1, ρ2, . . . , ρr

)
that cannot be directly

observed, where ρ belongs to a solution cube [a1, b2] × [a1, b2] × . . . × [ar, br], we
want to guess all entries of ρ with accuracy 1/τ . We divide the solution cube
into �2τ(b1 − a1)� · �2τ(b2 − a2)� · · . . . �2τ(br − ar)� axis-parallel equally sized
subcubes, compute a hypothesis on each of their geometric centers, which we call
the candidates for the parameter vector ρ, and select that one that has the least
empirical risk on a freshly drawn learning sample.

Now it is simple to get estimates êg∗,y0 , êχ,g∗ and êχ,g∗,y0 of eg∗,y0 , eχ,g∗ and
eχ,g∗,y0 . First, we estimate the two conditional expected noise rates by guessing.
Second, we swap these guesses and standard ML-estimates for the exact con-
ditional noise rates and the observable building blocks, respectively, into equa-
tions (4.13), (5.1), and (5.2).

In what follows, we provide the sensitivity analysis of these equations to deter-
mine the accuracy with which the various quantities must be estimated. We make
use of the following lemma due to Aslam [4].

Lemma 5.2. Let 0 ≤ p, q, r ≤ 1, τ ≥ 1 and let p be equal either to q/r or to q · r
or to q − r. Then to obtain an estimate of p within additive accuracy bound 1/τ ,
it suffices to estimate q and r within tolerance r/(3τ), (

√
2 − 1)/τ , and 1/(2τ), if

p = q/r, p = q · r, and p = q − r, respectively.

Sensitivity analysis of equation (4.13). Assume that we are given estimates êy0, ν̂0,
and ν̂1 of the quantities ey0 , ν0 and ν1 with accuracy (1/2 − ν(b))/(6τ). Then by
Lemma 5.2 the estimate êg∗,y0 for eg∗,y0 obtained from equation (4.13) is within
accuracy bound 1/τ of eg∗,y0 (see Eq. (4.12)).
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Sensitivity analysis of equation (5.1). Assume that we are given estimates êy, ν̂y,
êχ,y, and êχ̄,y with accuracy (1/2 − ν(b))(

√
2 − 1)/(12τ). Then the estimate êχ,g∗

from equation (5.1) is of accuracy 1/τ (see Eq. (4.12)).
Sensitivity analysis of equation (5.2). Assume that we are given estimates êy0 , ν̂ȳ0 ,
êχ,y0 , and êχ̄,y0 of accuracy ε(1/2− ν(b))(

√
2− 1)/(6τ), where ε is the error bound

the learner is given as input. Using equation (4.14), the estimate êχ,g∗,y0 of eχ,g∗,y0

from equation (5.2) is within accuracy bound 1/τ of eχ,g∗,y0.

6. Simulating PAC + SQ learners in the noise model

orthogonal to the query space used

Let B be an efficient PAC+SQ learner according to Definition 4.6 of a concept
class Cn by a representation class Hn with query space Qn. Formalizing ideas taken
from [4,17,31,33], we construct a PAC learner A in the noise model Q⊥

n orthogonal
to the query space Qn that simulates algorithm B.

It is not surprising, that if the simulator A is to ensure error ε and confidence
1− δ, the PAC + SQ learner B to be simulated has to be a little bit better. As we
shall see in the course of our analysis,

ε′ :=
ε1/κ

2d1/κ
and δ′ :=

δ

4
(6.1)

are sufficient for B, where κ is the margin parameter of the joint distribution of
observation and classification, and d is the margin constant.

The simulator A of the PAC + SQ learner B is subdivided into two parts. In
particular, the minimal sample length of Definition 3.2 then equals

mA(ε, δ, n, s, ν(b)) = mB(ε′, δ′, n, s, ν(b)) + mA,1(ε, δ, n, s, ν(b))

+ mA,2(ε, δ, n, s, ν(b)), (6.2)

where mA,1 and mA,2 are the numbers of instances needed in the first and in the
second part of A additional to the sample used by B.

In the first part, which we call the selection part, A selects a finite subset from
Hn of size polynomial in 1/ε, ln(1/δ), n, s, and 1/(1/2 − ν(b)) that satisfies the
following condition. Given the sample length m1 of this part is greater than or
equal to mB(ε′, δ′, n, s, ν(b))+mA,1(ε, δ, n, s, ν(b)), with probability at least 1−δ/2
the best hypothesis Ĥopt this subset contains has error at most ε′, whence by
equation (4.2)

r
(
Ĥopt

)
− r
(
g∗
)
≤ ε′. (6.3)

Moreover, mA,1 has to be bounded from above by a polynomial in 1/ε, ln(1/δ), n,
s, and 1/(1/2 − ν(b)).

In the minimization part the algorithm A chooses a hypothesis Ĥm from the
finite set selected out of the hypothesis class Hn in the first part such that with
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probability 1 − δ/2

r
(
Ĥm

)
− r
(
Ĥopt

)
≤ ε′, (6.4)

given the sample length m2 of this part is greater than or equal to
mA,2(ε, δ, n, s, ν(b)), where again mA,2 is polynomially bounded in 1/ε, ln(1/δ),
n, s, and 1/(1/2− ν(b)).

Adding up the equations (6.3) and (6.4) and applying Definition 2.10 as well as
equation (6.1) yields with probability at least 1 − δ

err
(
Ĥm

)
≤ ε. (6.5)

Finally, the running time of both parts has to be a polynomial in 1/ε, ln(1/δ),
n, s, and ν(b).

Let us explain now, how these aims of the two parts of the simulator A are
achieved.
Selection Part. Let mB := mB(ε′, δ′, n, s, ν(b)) be the minimal sample length of
algorithm B, and let tbB := tbB(ε′, n, s) be its tolerance bound.

Principally, algorithm A results from B by simulating B’s SQ and CSQ as de-
scribed in Section 5. In order to determine the accuracy needed for the build-
ing blocks êy, ν̂y, êχ,y, and êχ̄,y (χ ∈ Qn, y ∈ {0, 1}) of these simulations,
we make use of the sensitivity analysis of the equations (5.1) and (5.2) made
at the end of Section 5: if all queries that B makes are unconditional ones,
Θ
(
(1/2 − ν(b))/ tbB

)
suffices as accuracy. If, however, B makes at least one con-

ditional query, Θ
(
(1/2 − ν(b))ε/ tbB

)
is sufficient.

In order to be able to guess the conditional expected noise rates, algorithm A
first computes a list of candidates in such a way that this list contains an approxi-
mately correct candidate pair within the sufficient accuracy. Let us refer to this list
length as branching factor bfA(ε, δ, n, s, ν(b)). In general, the solution cube equals
[0, 1/2] × [0, 1/2]. If, however, it is only necessary to guess either ν0 or ν1, then
it equals [0, 1/2]. Thus the branching factor bfA(ε, δ, n, s, ν(b)) is either equal to
Θ
(
tb2

B /(1/2 − ν(b))2
)

or to Θ
(
tb2

B /((1/2 − ν(b))2ε2)
)

according to whether algo-
rithm B makes only unconditional queries or this is not the case. If, moreover, algo-
rithm B makes only conditional queries, where either {g∗(X) = 0} or {g∗(X) = 1}
occurs as condition, then bfA(ε, δ, n, s, ν(b)) reduces to Θ

(
tbB /((1/2 − ν(b))ε)

)
,

where the list consists either of candidates for ν0 or of candidates for ν1, as the
case may be.

Note that in the case of the constant classification noise model in [4, 5, 17] the
branching factor is reduced from order of magnitude Θ

(
tb(ε, n, s)/(1 − 2 ν(b))

)
down to Θ

(
tb(ε, n, s) ln(1/(1 − 2 ν(b)))

)
when it comes to using unconditional

queries only. This result is important, if 1/2 − ν(b) is small. For our purposes
it suffices to use the above approach.

The simulator A of B goes through the list of candidate pairs of conditional
expected noise rates following the line of B on each of them. However, each query
call is replaced by an application of equation (5.1) or (5.2), where instead of the
true conditional expected noise rates the current candidate pair is used.
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We apply the uniform convergence rate result formulated in Lemma 2.4 to the
class Q(ε/(2d))1/κ,n,s. Because of the fact that all quantities eχ,y and eχ̄,y (χ ∈
Q(ε/(2d))1/κ,n,s, y ∈ {0, 1}) needed in the course of the entire simulator do not
depend on the conditional noise rates, they can be estimated on a common sample
of length mA,1(ε, δ, n, s, ν(b)). By additionally using equation (2.3), we obtain the
following.

If B makes only unconditional queries, then

O
(
tb2

B(1/2 − ν(b))−2
(
vc-dim

(
Q(ε/(2d))1/κ,n,s

)
+ ln(1/δ)

))
(6.6)

is an upper bound on mA,1(ε, δ, n, s, ν(b)).
If B makes at least one conditional query, then

O
(
tb2

B(1/2 − ν(b))−2ε−2
(
vc-dim

(
Q(ε/(2d))1/κ,n,s

)
+ ln(1/δ)

))
(6.7)

is an upper bound on mA,1(ε, δ, n, s, ν(b)).
That way A computes for every candidate pair of conditional expected noise

rates one proposal for a hypothesis. This motivates to refer to the length of
the candidate list as branching factor of the selection part. It is denoted by
bfA(ε, δ, n, s, ν(b)) and abbreviated by bfA.

There are two possibilities for the selection part of A to fail. First, the learner
B fails on its data in computing a hypothesis of error less than or equal to ε′.
Second, the simulator fails in estimating one of the quantities eχ,y and eχ̄,y (χ ∈
Q(ε/(2d))1/κ,n,s, y ∈ {0, 1}) it needs within the desired accuracy. Having bounded
these two failure probabilities by δ′ = δ/4, we get confidence 1−δ/2 for the selection
part. If it does not fail, the error of proposal computed on the approximately correct
candidate pair is at most ε′.

In order to control the running time of the selection phase, we think of it as an
interlaced simulation of B for each candidate pair of conditional expected noise
rates. At the first glance it seems that there is a problem, since B’s polynomially
bounded running time is only guaranteed when queries get correct answers. The
other way round, the learning sample the algorithm B uses in addition to the
queries is in most cases an i.i.d. instantiation of a generic data element U = (X,Y )
with Y being drawn under a wrong posterior probability from the point of view
of the queries. But a closer look reveals the following. According to Definition 4.6,
the running time of algorithm B is guaranteed for all noise rates ν(X) whose
conditional expectations are less than or equal to ν(b) and all compatible learning
sample instances. An instance of the learning sample in turn is compatible if it has
a nonzero probability to be drawn in the true distribution. The latter is still fulfilled
when the sample is drawn from a distribution with true observation distribution
and wrong conditional expected noise rates greater than zero (see Eqs. 4.6 and 4.5).
Minimization Part. Taking m2 freshly drawn instances of the learning sample as
input. The algorithm A computes a hypothesis ÊRMm2 that minimizes the em-
pirical risk in the subset of Hn of cardinality bfA(ε, δ, n, s, ν(b)) computed in the
selection part.
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By Lemma 2.5 and Theorem 2.7, we easily get that the term

O
(
d2/κ lnbfA + ln(1/δ)

ε2/κ

)
(6.8)

is an upper bound on the minimal sample length mA,2(ε, δ, n, s, ν(b)) of the mini-
mization part, where κ and d are the margin parameter and the margin constant.

Plugging our branching factor analysis into the equations (6.6−6.8), and apply-
ing equation (6.2) we complete the proof of the following theorem.

Theorem 6.1. Let B be an efficient PAC+SQ learner of a concept class Cn by a
representation class Hn having effective query spaces Qε,n,s, minimal sample size
mB(ε, δ, n, s, ν(b)), and tolerance bound tbB(ε, n, s), and let

mB := mB((ε/(2d))1/κ, δ/4, n, s, ν(b)), tbB := tbB((ε/(2d))1/κ, n, s),

where κ and d are the margin parameter and the margin constant.
Then this algorithm B can be simulated by an efficient PAC learner A of Cn by

Hn in the noise model Q⊥
n orthogonal to the query space Qn of B such that the

minimal sample size mA(ε, δ, n, s, ν(b)) of A can be bounded from above by

O
(

mB +
tb2

B

(
vc-dim

(
Q(ε/(2d))1/κ,n,s

)
+ ln(1/δ)

)
(1/2 − ν(b))2

+ (d/ε)2/κ ln
tbB

(1/2 − ν(b))δ

)
,

given B uses unconditional queries only, and by

O
(

mB +
tb2

B

(
vc-dim

(
Q(ε/(2d))1/κ,n,s

)
+ ln(1/δ)

)
(1/2 − ν(b))2ε2

+ (d/ε)2/κ ln
tbB

(1/2 − ν(b))εδ

)
otherwise.

7. Simulating statistical queries in the CPPO noise

model

For the sake of completeness, let us recapitulate Decatur’s CPCN model. It
assumes a set of known 0/1-valued partition functions π = {π1, π2, . . . , πk} on the
learning universe Un such that

∑k
i=1 πi is the all-one function, and a sequence of

non-negative constants ν̃1, ν̃2, . . . , ν̃k all less than 1/2. For every target concept
class Cn, we get a noise model by

ν(x) = ν̃i ⇐⇒ πi(x, g∗(x)) = 1,

where x ∈ Xn, i = 1, 2, . . . , k, and g∗ ∈ Cn.
According to [44], this partition of the labelled data gives rise to the partition

π̃ij (i, j = 1, 2, . . . , k) of the input space Xn defined by

π̃ij(x) = πi(x, 1) · πj(x, 0).



234 T. BRODAG ET AL.

For all x ∈ Xn satisfying π̃ij(x) = 1, we get

ν(x) =

{
ν̃i if g∗(x) = 1;
ν̃j if g∗(x) = 0.

Let us now define the constant-partition piecewise orthogonal (CPPO) noise
model that canonically generalizes the CPCN model.

Definition 7.1. Let Qn be a set of query functions.
A noise rate ν(X) is called piecewise orthogonal to Qn with respect to π given

a target concept g∗ ∈ Cn, if

E (ν(X) · χ(X, y0) | g∗(X) = 1, π̃ij(X) = 1)
= ν̃i · E (χ(X, y0) | g∗(X) = 1, π̃ij(X) = 1) (7.1)

E (ν(X) · χ(X, y0) | g∗(X) = 0, π̃ij(X) = 1)
= ν̃j · E (χ(X, y0) | g∗(X) = 0, π̃ij(X) = 1) , (7.2)

for all i, j ∈ {1, 2, . . . , k}, every y0 = 0, 1, and every χ ∈ Qn, where

ν̃i = E (νij(X) | g∗(X) = 1, π̃ij(X) = 1)

and

ν̃j = E (νij(X) | g∗(X) = 0, π̃ij(X) = 1) .

For every g∗ ∈ Cn, the noise model Q⊥
n (π) piecewise orthogonal to Qn with re-

spect to π consists of the set Q⊥
g∗(π) of all noise rates that are piecewise orthogonal

to Qn with respect to π given g∗.

Let χ be any query function. Then

χ(x, y) =
k∑

i,j=1

χij(x, y) ((x, y) ∈ Un), (7.3)

where

χij(x, y) := π̃ij(x) · χ(x, y).

We next study (conditional) statistical queries associated with the query function
χij in the noise model Q⊥

n (π).
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Theorem 7.2. Let g∗ ∈ Cn be any target concept.
Then

E (χij(X, 0) | g∗(X) = 0)

=
1 − ν0 − ν1

1 − ν̃i − ν̃j
·
(1 − ν̃i) E

[
�{Y =0}χij(X, 0)

]
− ν̃i E

[
�{Y =1}χij(X, 0)

]
P (Y = 0) − ν1

, (7.4)

E (χij(X, 1) | g∗(X) = 1)

=
1 − ν0 − ν1

1 − ν̃i − ν̃j
·
(1 − ν̃j) E

[
�{Y =1}χij(X, 1)

]
− ν̃j E

[
�{Y =0}χij(X, 1)

]
P (Y = 1) − ν0

, (7.5)

and

Eχij(X, g∗(X)) =
(1 − ν̃j) E

[
�{Y =1}χij(X, 1)

]
− ν̃j E

[
�{Y =0}χij(X, 1)

]
1 − ν̃i − ν̃j

+
(1 − ν̃i) E

[
�{Y =0}χij(X, 0)

]
− ν̃i E

[
�{Y =1}χij(X, 0)

]
1 − ν̃i − ν̃j

. (7.6)

Proof. Starting point is equation (5.3). Again conditioning both summands of the
right-hand side of this equation on g∗(X) and applying (7.1) and (7.2) instead
of (4.22) and (4.23), it follows that

Eχij(X,Y ) = P (g∗(X) = 0) (1 − ν̃j) E (χij(X, 0) | g∗(X) = 0)
+ P (g∗(X) = 1) (1 − ν̃i) E (χij(X, 1) | g∗(X) = 1)

+ P (g∗(X) = 0) ν̃j E (χij(X, 1) | g∗(X) = 0)
+ P (g∗(X) = 1) ν̃i E (χij(X, 0) | g∗(X) = 1) . (7.7)

The remaining part of this proof can be carried over from the proof of
Theorem 5.1. �

Applying the well-known principle of linearity of expectation to equation (7.3),
we get Equations analogous to (5.1) and (5.2). Carrying over the proof of
Theorem 6.1 in a straightforward way, we obtain the second theoretical main
result of this paper.

Theorem 7.3. Let Hn be a representation class of a concept class Cn.
Every efficient PAC + SQ learner of Cn by Hn having query space Qn can be

simulated by an efficient PAC learner of Cn by Hn in the noise model Q⊥
n (π),

provided that the partition π is known to the learner.

As a corollary of Theorem 7.3, we get another proof of the known fact that every
concept class efficiently learnable in Kearns’ SQ model, is efficiently learnable in
Decatur’s CPCN model, too.
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8. Haussler’s covering method as PAC + SQ algorithm

Let us devise a PAC + SQ algorithm to efficiently learn Boolean conjunctions
of clauses that uses only unconditional queries. A clause is here an efficiently
computable 0/1-valued function on the input space. Each target concept g∗ is
then some conjunction of at most s elements from a set

Cn := {c1(X), c2(X), . . . , cnγ (X)}

of nγ clauses, where n is the length of the random observation X ∈ Xn, and γ is
some positive constant. We regard the number s to be the size parameter of the
target concept.

A solution of this problem in Valiant’s noise-free mode was given by Haussler [26]
who made use of a covering method. In [31] it is adapted to the constant classi-
fication noise model. As in [26] and in [31], our algorithm is subdivided into two
phases, the prune phase and the cover phase.
The prune phase. It mainly differs from Kearns’ algorithm in the fact that only
unconditional queries are used. For every clause c ∈ Cn, a query is made to get
an estimate of the failure probability P (c(X) = 0, g∗(X) = 1) of c within accuracy
Θ
(
ε2/s

)
. Only those clauses whose estimate of the failure probability is an O

(
ε2/s

)
are retained as candidates. Let us refer to these clauses as survivors of the prune
phase in the sequel.

Note that

• the true failure probability of each survivor of the prune phase equals O
(
ε2/s

)
;

• the clauses forming the target concept g∗ belong to the survivors of the prune
phase;

• no matter the way we select the clauses from the set of survivors of the prune
phase to form the hypothesis Ĥm, we have

P

(
Ĥm = 0, g∗(X) = 1

)
= O (ε) (8.1)

as long as their number is an O (s/ε).

The cover phase. It needs only negative examples and does not make any statistical
query. Thus the overall query space used is determined by the prune phase. It
equals

Qn = {ci(x) ∧ y | i = 1, 2, . . . , nγ}. (8.2)

Taking a sample of negative instances of length m drawn according to the
distribution P (X = � | Y = 0) as input, our cover phase routine first computes
the subset of the input covered by the negations of all candidates retained in the
prune phase. Then by means of the standard greedy algorithm this set is covered as
far as this is possible in r = Θ (s log(1/ε)) iterations. Only those clauses involved
in this covering are used to form the output hypothesis Ĥm. Thus our cover phase
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acts on the negative examples in the same manner as Kearns’ one on the true
negatives [31].

A reader who insists on drawing the input sample of the cover phase according
to PU has to discard the positive examples.

According to Lemma 4.4 it suffices to get with probability greater than or equal
to 1 − δ a hypothesis Ĥm such that

r
(
Ĥm | Y = 0

)
− r (g∗ | Y = 0) = O (ε) .

For every survivor of the prune phase c, let FNc be the number of falsely nega-
tively declared instances covered by c. Then

E (FNc) = P (c(X) = 0, g∗(X) = 1 | Y = 0) ·m = O
(

ε2

sP (Y = 0)
·m
)
· (8.3)

All truly negatively declared instances can be covered by the set of the at most
s true clauses. Consequently, in each iteration i = 1, 2, . . . , r of the cover phase
as long as a percentage of at least ε of the truly negatively declared instances has
not been covered yet, the expectation of the number TNi of these true negatives
that would become covered if we added the best true clause is by equation (4.16)
greater than or equal to

ε · (1 − ν0) P (g∗(X) = 0)
P (Y = 0) s

·m.

By equation (8.3) and the fact that P (g∗(X) = 0) ≥ ε, we have in each iteration
i = 1, 2, . . . , r of the cover phase for any survivor c of the prune phase

E (TNi) = Ω (E (FNc)) . (8.4)

Using the multiplicative Chernoff bounds, it follows from equation (8.4) that

m = O
(
(s/ε2)(log(1/δ) + logn)

)
suffices to ensure, that with probability greater than or equal to 1 − δ for any
iteration i = 1, 2, . . . , r of the cover phase and any survivor c of the prune phase
TNi = Ω (FNc), and with probability at least 1 − δ the clause selected in each
iteration of the cover phase covers at least an Ω (1/s)-percentage of the truly
negatively declared instances.

Finally, in order to justify the size of the number r of iterations, we proceed
exactly in the same way as in [31]. We solve (1 − c/s)r = O (ε), where c is some
constant, for r to obtain that r = O (s log(1/ε)).

Thus, our PAC + SQ learner for Boolean conjunctions of s clauses taken from
a query space of cardinality nγ has sample complexity O

(
(log(1/δ) + logn)s/ε2

)
,

and tolerance bound O
(
s/ε2

)
.

In order to compare our algorithm with the adaptation of Haussler’s covering
method presented in [31], we recapitulate the sample size of the latter. Its depen-
dence on n is logn, on s is s3, on ε is 1/ε4, on 1/(1/2 − ν(b)) is quadratic and
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on ln(1/δ) is linear. According to Theorem 6.1 our overall sample size dependence
differs on s, where it is only quadratic, and on ε, where it is ε−4 only if the the
margin parameter κ ≥ 1/2, and ε−2/κ otherwise.

Note, that in the standard classification noise model used by Kearns κ = 1.

9. Studying hotspots of protein-protein interfaces

In order to understand cellular processes it is crucial to identify protein-protein
interactions, where we think of a protein as being a sequence of amino acid residues,
and of an interaction of two or more proteins as of a spatial complex of them. In this
section, we restrict our attention to complexes of two proteins, so-called dimers.

One of the major challenges in bioinformatics is the prediction of protein-protein
interactions and the recognition of their binding sites, the so-called interfaces.
Several networks of protein-protein interactions in cells have been unraveled by
identifying interfaces in the last decade, and there is a number of approaches to
predict protein-protein interactions. See [38] for an overview.

We use the following definition of an interface of a protein-protein interaction
which is a variant of that given in [25]. It equals the set of pairs of interacting
residues of the two partner proteins, where the one residue is in one partner, the
other one in the other partner. Two residues in turn are defined as interacting if
the distance between any of their atoms is less than the sum of their corresponding
van der Walls radii plus 0.5 Å.

It is beyond dispute that only a few number of the interface residues are essential
for the binding. These so-called hotspots are defined as those residues hampering
the interaction if mutated.

Many approaches to predict protein-protein interactions by predicting the in-
terfaces have a high level of positive accuracy (the number of correctly predicted
interface residues divided by the number of predicted ones) but a poor sensitiv-
ity (residues correctly predicted as percentage of the interface residues observed.)
In [41] some evidence is given to the hypothesis that the reason for that is that a
machine-learning algorithm trained on all protein-protein interface residues only
predicts the hotspot residues, wheras the non-hotspot residues are discarded as
noise. This is done by comparing predictions of the ISIS tool [40] with hotspots
experimentally determined.

Mining the data base ASEdb [46], tryptophan, tyrosine und arginine are found
to be significantly enriched in hotspots.

We study the amino acid content of interfaces that is defined to be the sequence
of relative frequencies of them in sets of pairs of interacting residues forming these
interfaces. We compare it with the amino acid content of ordinary protein surface
by means of our variant of Haussler’s covering method described in Section 8. To
this end, we have first to extract the positive and negative examples from the PDB
database available at http://www.wwpdb.org/.

To get a sequence of interfaces as our negative examples, we used a
non-redundant set of interacting proteins computed by the Nussinov–Wolfson

http://www.wwpdb.org/
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Structural Bioinformatics Group, where pairs are removed that are too similar.
This set is available at http://protein3d.ncifcrf.gov. It is a list of 1835 pairs
of interacting proteins. We computed 1835 interfaces by means of the Biochemi-
cal Algorithms Library (BALL) available at http://www.bioinf.uni-sb.de/OK/
BALL/.

The 1835 positive examples of pair sets of protein surface residues were randomly
chosen according to the cardinality profile of the interface examples and the surface
distribution on the 20 amino acids derived from the PDB database. We used the
cardinality profile of the interface examples for the positive examples to avoid its
implicit usage when computing the discrimination rule.

To any set s of pairs of amino acids, interfaces as well as sets of randomly
chosen surface pairs, and any amino acid a, we compute the frequency psa as the
occurences of a in s divided by 2|s|. To any amino acid a, we assign conditions
cap, for p = 3, 4, . . . , 18, where cap(s) = 1 if and only if psa ≤ p/100. We have
simulated the algorithm of Section 8 in the noise model orthogonal to

{cap | a amino acid, p = 3, 4, . . . , 18},

where we have aborted the cover phase after seven steps. The hypothesis learned
equals

h = cPhe,6 ∧ cTyr,7 ∧ cVal,10 ∧ cMet,5 ∧ cTrp,4 ∧ cThr,13 ∧ cLeu,14, (9.1)

i.e. it classifies a set of pairs of amino acids as a set of random surface pairs if and
only if the phenylalanine, tyrosine, valine, methionine, tryptophan, threonine, and
leucine percentage is less than or equal to 6%, 7%, 10%, 5%, 4%, 13%, and 14%,
respectively. The overall classification rate is 86.7%.

For us, the hypothesis learned is above all an expedient. None the less we had
to compare it with the standard method utilized in bioinformatics. Using support
vector machines (SVM) with Gaussian RBF kernel functions, we obtained a slightly
better classification rate of 89.0%. However, the advantage of the PAC classifier
given by equation (9.1) is the following biological interpretation.

The hypothesis h learned mirrors the fact that at least one of the amino acids
phenylalanine, tyrosine, valine, methionine, tryptophan, threonine, or leucine are
overrepresented in most of the hotspots compared with ordinary protein surfaces
having assumed that the complements of hotspots in interfaces have an inconspic-
uous amino acid content according to [41]. Thus we have confirmed in part and
complemented the findings presented in [46].

For more details of this application, see [13].

10. Studying software metrics

In the assessment of software quality, software metrics [23] play a crucial role
since quality models like the ISO/IEC Standard No. 9126 [29] usually rely on
them for the evaluation of quality attributes. A commonly used technique for

http://protein3d.ncifcrf.gov
http://www.bioinf.uni-sb.de/OK/BALL/
http://www.bioinf.uni-sb.de/OK/BALL/
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metric-based evaluation of quality attributes is the application of thresholds. If
a metric violates a threshold, the related quality attributes is not fulfilled. For
example, consider the metric Number of Critical Bugs (CRITBUG) that measures
the number of bugs deemed to be critical, i.e., will lead to significant failures.
For the evaluation whether the quality of a software is sufficient for release, a
reasonable threshold for CRITBUG is 0, i.e., no critical bugs are allowed. Often,
a single metric is not sufficient to determine the quality, instead a set of metrics
M is used. For example, there should not only be no critical bugs, but also the
total number of bugs should be less than 20. In this scenario the metric Number
of Bugs (BUG) with a threshold of 20 is needed in addition to CRITBUG, and we
have a metric set M = {CRITBUG,BUG}.

The effectiveness of a metric set depends on the selection of software metrics
and the quality of the thresholds values. We call a metric set with thresholds
effective, if it evaluates a quality attribute accurately.

Furthermore, it is desirable to have efficient metric sets, i.e., the sets should
not contain redundant metrics and be as small as possible, to reduce the overall
effort for the measurement.

Our aim is the optimization of metric sets in terms of their efficiency. We assume
that the values of the software metrics in the set under consideration get worse
when they increase. We furthermore assume that all metric values are positive.
Due to these assumptions, we can interpret thresholds as upper bounds and the
value 0 as universal lower bound. If the threshold of all metrics in a set needs to
be fulfilled, this describes a rectangle, as visualized by Figure 1.

Based on this interpretation of metric sets with thresholds as a rectangle, we
we defined an optimization technique for metric sets that relies on the axis-aligned
rectangle learning algorithm outlined in Section 4.4. We assumed that a method
for the assessment of quality attributes is available, which we can use to obtain
a classification of the attributes. We interpret this method as a function class∗ :
S → {0, 1}, where S denotes the space of software entities and the classification
1 means that the quality attribute is fulfilled. Furthermore, we have a metric set
M = {μ1, μ2 . . . , μn} that is under consideration. The metric values of S form a
subset Xn of Rn, where each metric is represented in one dimension.

Let Ssample = (s1, s2 . . . , sm) be a sequence of software entities for which we
want to optimize our metric set, e.g., the classes or methods of a software project.
Through measurement of Ssample we obtain metric data Xi = M(si) and by
applying class∗ to the sample we get classifications Yi = class∗(si). Thus, we
obtain a learning sample Um = (U1, U2 . . . , Um) with instances Ui = (Xi, Yi).

Let M ′ ⊆M be any subset of size n′ ≤ n of the overall metric set M . Applying
the canonical projection from Rn onto Rn′

determined by the coordinates of these
metric values, and renumbering the metrics ofM ′ from 1 to n′, we obtain a learning
sample U′

m from the original sample Um . This learning sample is then used as
input for the simulator of the rectangle learning algorithm in the noise model
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Figure 1. A rectangle described by the thresholds of two software
metrics. The dashed lines mark the thresholds.

orthogonal to{
�{xj∈[aj,bj ]} ∧ y | aj , bj ∈ R, aj < bj, j = 1, 2, . . . , n′}.

The rectangle learned describes the area, where the quality attribute is fulfilled
having eliminated the noise given the model assumptions are fulfilled. Therefore,
the boundaries of the rectangle can be used as thresholds for the metric values.
Through learning rectangles for all M ′ ⊆ M we determine the smallest subset of
the metrics M∗ with thresholds T ∗ that is able to replicate the original classifica-
tion class∗. The result

(
M∗, T ∗) is effective and efficient, if the classification can

be replicated with a low risk, and it is the smallest to do so.
We evaluated this approach in several case studies, conducted based on

data gathered from several large-scale open-source projects, e.g., two Eclipse
Projects [21, 22] and the Apache HTTP Server [3]. The experimental setup was
based upon two different metric sets with four, respectively seven metrics. The
metrics were determined to evaluate the maintainability of software. As classifica-
tion function class we used a rectangle of the above described type, where we used
thresholds we found in the literature. Our goal was the reduction of the size of these
sets to improve their effiency. In a second setup, we relaxed the classification of
the initial metric set and allowed infractions, e.g., only six of the seven thresholds
needed to be fulfilled. In all our experiments, the algorithm yielded good results,
the risk of the optimal metric sets M∗ was below 3% and therefore in the area of
noise. Furthermore, we were able to reduce the size of existing classificators, i.e.,
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existing metric sets with thresholds used for quality classification. The size of the
optimal metric set M∗ was 42-83% smaller than the size of the initial set.

Above we have only outlined the approach for the metric set optimization based
on rectangle learning, how it can be applied, and stated the quality of the overall
results. A detailed presentation of the approach, including the description of three
practical applications, four case studies with a total of nine experiments, as well
as detailed statistical analysis of the capabilities of the approach based on the case
study result is presented in [28].

11. Concluding remark

We have presented new noise models of PAC learning on the basis of Tsybakov’s
and Mammen’s small margin conditions. However, from a practical point of view
it is still rather unrealistic that the Bayes classifier is always a member of a known
hypotheses class. That is why it would be useful to study noise rates beyond the
limit of 1/2.

Acknowledgements. We acknowledge with thanks the valuable suggestions and comments
of the unknown referees.

Appendix. Proof of equation (4.10)

Case κ < 1. We know that

E (ν(X)) =
∫ 1/2

0

P (ν(X) > t) d t.

Using equation (4.1) and the fact that PU satisfies the small margin condition Mβ

(0 < β <∞) with small margin condition constant c, we get

P (ν(x) > t) = P (1/2 − ν(x) < 1/2 − t) ≤ c(1/2 − t)β .

Let ε0 ∈ (0, 1/2) be fixed. Then

∫ 1/2

0

P (ν(X) > t) d t =
∫ 1/2−ε0

0

P (ν(X) > t) d t︸ ︷︷ ︸
≤1/2−ε0

+
∫ 1/2

1/2−ε0

P (ν(X) > t) d t.

Since the anti-derivative of c(1/2 − t)β equals −c/(β + 1)(1/2 − t)β+1, it follows∫ 1/2

1/2−ε0

P (ν(X) > t) d t ≤ c

β + 1
εβ+1
0 .
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Consequently,

E (ν(X)) ≤ 1/2 − ε0 +
c

β + 1
εβ+1
0 .

Having defined

ε0 :=
(
β + 1

2c

)1/β

,

we get

E (ν(X)) ≤ 1/2 − ε0/2.

Case κ = 1. From Lemma 2.11 we get that ν(X) is surely less than or equal to
1/2 − c.
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