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CONDITIONAL LINDENMAYER SYSTEMS
WITH SUBREGULAR CONDITIONS:

THE NON-EXTENDED CASE

Jürgen Dassow
1

and Stefan Rudolf
2

Abstract. We consider conditional tabled Lindenmayer sytems with-
out interaction, where each table is associated with a regular set and
a table can only be applied to a sentential form which is contained in
its associated regular set. We study the effect to the generative power,
if we use instead of arbitrary regular languages only finite, nilpotent,
monoidal, combinational, definite, ordered, union-free, star-free, strictly
locally testable, commutative regular, circular regular, and suffix-closed
regular languages. Essentially, we prove that the hierarchy of language
families obtained from conditional Lindenmayer systems with subregu-
lar conditions is almost identical to the hierarchy of families of subreg-
ular languages.

Mathematics Subject Classification. 68Q42, 68Q45.

1. Introduction

In the theory of formal languages one imposes very often conditions to perform
a step in the generation of words. By practical reasons – but also by theoretical
considerations – it is very useful that one can check the condition by an efficient
procedure. Thus one relates the condition to regular languages, for which the
membership problem can be decided in linear time. We mention here as examples:
• regularly controlled context-free grammars, where a word only belongs to the

generated languages if it can be derived by applying a sequence of rules which
belongs to a given regular language (introduced in [19], see [13] for details),
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• conditional context-free grammars, where pairs of rules and regular sets are
given, and the rule can be applied if and only if the current sentential form
belongs to the regular set associated with the rule (introduced in [18], see [13]
for details),

• tree controlled context-free grammars, where a word only belongs to the gener-
ated languages if it has a derivation tree such that all levels of the tree belong
to a given regular language (introduced in [3]),

• networks of evolutionary processors, where sets of words are associated with
nodes of a graph, in derivation steps local mutations are modelled, and in
communication steps words associated with one node are sent to other nodes
according filters, i.e., the word can leave the node if it belongs to some regular
language which corresponds to the node, and it can enter the other node, if
it belongs to the regular set corresponding to that node (introduced in [1, 2],
see [28] for details),

• contextual grammars with selection languages, where a context can only be
wrapped around a word if and only if it belongs to a regular set associated
with the context (introduced in [24, 27], see [31] for details).

In these cases the process of checking the condition given by a regular language
or some regular languages is now very simple and efficient, however, the increase
of generative power is considerable (for instance, for the first three devices, one
has an increase from context-free languages to recursively enumerable languages).
Since on the one hand practical requirement do not ask for arbitrary regular lan-
guages and on the other hand theoretical studies – for instance proofs – show that
only special regular languages are used, it is very natural to study the devices with
subregular languages for the control. Investigations on the change of the generative
power, if subregular restrictions defined by combinatorial and algebraic properties
are done in [4] for regularly controlled grammars, in [8, 10] for conditional gram-
mars, in [16] for tree controlled grammars, in [11,25] for networks with evolutionary
processors, and in [7,12] for contextual grammars. Results on the effect of subregu-
lar restrictions given by bounds on the number of states/nonterminals/productions
necessary to accept/generate the regular language can be found in [6] for regularly
controlled grammars, in [5] for conditional grammars, in [15] for tree controlled
grammars, in [17] for networks with evolutionary processors, and in [12, 26] for
contextual grammars.

In this paper we discuss conditional tabled Lindenmayer systems (conditional
T0L systems, for short). The conditions given as regular sets are used as in the
case of conditional context-free grammars, i.e., a table can only be applied to a
word, if the word is contained in the regular set associated with the table. In the
papers [34] (for the extended case) and [9], conditional Lindenmayer systems were
studied, where the conditions require that certain letters occur or some letters do
not occur in their words.

In this paper we consider conditional T0L systems where the conditions
are taken from the following subregular families: finite, nilpotent, monoidal,
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combinational, definite, ordered, union-free, star-free, strictly locally testable, com-
mutative regular, circular regular, and suffix-closed regular languages.

We prove that the hierarchy of these families almost coincides with the hierarchy
obtained by the conditional T0L systems.

2. Definitions

We assume that the reader is familiar with the basic concepts of the theory of
formal languages and automata. In this section we only recall some notations
and some definitions such that a reader can understand the results. We refer
to [13, 32, 33].

For an alphabet V , i.e., V is a finite non-empty set, the set of all words and
all non-empty words over V are denoted by V ∗ and V +, respectively. The empty
word is denoted by λ. For a language L, let alph(L) be the minimal set V such
that L ⊆ V ∗. For a word w ∈ V ∗ and a subset C of V , the number of occurrences
of letters of C in w is denoted by #C(w). If C only consists of the letter a, we
write #a(w) instead of #{a}(w).

The families of finite and regular languages are denoted by FIN and REG,
respectively.

2.1. Subregular families of languages

The aim of this section is the definition of the subregular families of languages
considered in this paper and the relation between them.

For a language L over V , we set

Comm(L) = {ai1 . . . ain | a1 . . . an ∈ L, n ≥ 1, {i1, i2, . . . , in} = {1, 2, . . . , n}} ,

Circ(L) = {vu | uv ∈ L, u, v ∈ V ∗} ,

Suf(L) = {v | uv ∈ L, u, v ∈ V ∗}

We consider the following restrictions for regular languages. For a language L
with V = alph(L), we say that L is

• combinational iff it can be represented in the form L = V ∗A for some subset
A ⊆ V ,

• definite iff it can be represented in the form L = A ∪ V ∗B where A and B are
finite subsets of V ∗,

• nilpotent iff L is finite or V ∗ \ L is finite,
• commutative iff L = Comm(L),
• circular iff L = Circ(L),
• suffix-closed (or fully initial or multiple-entry language) iff Suf(L) = L,
• union-free iff L can be described by a regular expression which is only built by

product and star,
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• star-free (or non-counting) iff L can be described by a regular expression which
is built by union, product, and complementation,

• monoidal iff L = V ∗,

Definite, star-free (or non-counting regular), and suffix-closed regular (or multi-
ple-entry) were introduced in the papers [21,29,30], respectively. Some properties
of the above mentioned types of languages can be found in [20, 36, 38].

It is obvious that combinational, definite, nilpotent, union-free and star-free
languages are regular, whereas non-regular languages of the other types mentioned
above exist.

We mention the characterization of star-free languages (as non-counting lan-
guages). A language L is k-non-counting iff, for all words x, y, z ∈ V ∗, xykz ∈ L if
and only if xyk+1z ∈ L. A regular language L is star-free if and only if there is a
natural number k ≥ 1 such that L is k-non-counting.

If L is an infinite star-free language over the unary alphabet V = {a}, then
there is a word ap ∈ L with p ≥ k. By the mentioned characterization, we get
ap−kak ∈ L and hence ap−kak+1 = ap+1 ∈ L. Thus, there is a natural number
s ≥ 0 such that L = F ∪ {an | n ≥ s} where F is a finite set of words of length
≤ s − 2.

For a natural number k ≥ 1, a language L is strictly locally k-testable iff there
are three subsets A, B and C of V k such that a1a2 . . . an with n ≥ k and ai ∈ V ,
1 ≤ i ≤ n, belongs to L iff a1a2 . . . ak ∈ A, aj+1aj+2 . . . aj+k ∈ B for 1 ≤ j ≤
n − k − 1, and an−k+1an−k+2 . . . an ∈ C. Moreover, a language L is called strictly
locally testable iff it is strictly locally k-testable for some k ≥ 1.

Obviously, strictly locally testable languages can be accepted by finite automata,
and hence they are regular.

A set R ⊂ V ∗ is strictly locally 1-testable if and only if there are sets A ⊆ V ,
B ⊆ V , and C ⊆ V such that R = AC∗B ∪ (A ∩ B) (see for instance [8]).

By COMB , DEF , NIL, COMM , CIRC , SUF , UF , SF , MON , LOC k, k ≥ 1,
and LOC , we denote the families of all combinational, definite, nilpotent, regular
commutative, regular circular, regular suffix-closed, union-free, star-free, monoidal,
strictly locally k-testable, and strictly locally testable languages, respectively. We
set

G = {FIN ,MON ,COMB ,DEF ,NIL,COMM ,CIRC ,SUF ,UF ,SF ,LOC }
∪ {LOC k | k ≥ 1}.

The relations between families of G are investigated e.g. in [23, 39] and their set-
theoretic relations are given in Figure 1.

2.2. Conditional Lindenmayer systems

We start with some definitions concerning Lindenmayer systems and introduce
then conditional Lindenmayer systems.

A tabled Lindenmayer system without interaction (T0L system, for short) is an
(r + 2)-tuple H = (V, P1, P2, . . . , Pr, w), where
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REG

SF
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LOC 2 SUF COMM UF

LOC 1

NIL COMB

FIN MON

Figure 1. Hierarchy of subregular languages (an arrow from X to
Y denotes X ⊂ Y , and if two families are not connected by a
directed path then they are incomparable).

• V is an alphabet (called the underlying alphabet),
• for 1 ≤ i ≤ r, Pi is a finite set of rules a → v with a ∈ V and v ∈ V ∗ such

that, for any b ∈ V , there is a word vb with b → vb ∈ Pi,
• w ∈ V +.

The sets Pi, 1 ≤ i ≤ r, are called tables. For simplicity, for a table, we shall give
only the rules for the letters a for which a rule a → w with w 
= a exists in the
table, i.e., for all letters b, for which no rules are mentioned, there is only the rule
b → b in the table.

For x ∈ V + and y ∈ V ∗, we say that x derives y in H , written as x =⇒H y, iff

• x = a1a2 . . . an with ai ∈ V for 1 ≤ i ≤ n,
• y = y1y2 . . . yn,
• ai → yi ∈ Pj for 1 ≤ i ≤ n and some j, 1 ≤ j ≤ r.

The language L(H) generated by H is defined as

L(H) = {z | w =⇒∗
H z}

where =⇒∗
H is the reflexive and transitive closure of =⇒H .
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A T0L system is called propagating if no table contains a rule a → λ.
By T0L and PT0L, we denote the families of all languages generated by T0L

systems and propagating T0L systems, respectively.

Definition 2.1. A conditional T0L system is an (n + 2)-tuple

H = (V, (P1, R1), (P2, R2), . . . , (Pn, Rn), w),

where

• H ′ = (V, P1, P2, . . . , Pn, w) is a T0L system, and,
• for 1 ≤ i ≤ n, Ri is a regular language over some alphabet U ⊆ V .

For x ∈ V + and y ∈ V ∗, we say that x derives y in H , written as x =⇒H y, if and
only if there is a number j, 1 ≤ j ≤ n

• x = a1a2 . . . at with ai ∈ V for 1 ≤ i ≤ t,
• y = y1y2 . . . yt,
• ai → yi ∈ Pj for 1 ≤ i ≤ t, and
• x ∈ Rj .

The language L(H) generated by H is defined as

L(H) = {z | w =⇒∗
H z}

where =⇒∗
H is the reflexive and transitive closure of =⇒H .

By definition, in a conditional T0L system, a regular set Rj is associated with
any table Pj , and a table Pj is only applicable to a sentential form x, if x belongs
to the associated conditional language Rj .

In this paper, we study the generative power of conditional T0L systems, if one
restricts to a class X ∈ G of regular languages. For X ∈ G, we define CL(X) and
CPL(X) as the families of all languages which can be generated by conditional
T0L and conditional propagating T0L system (V, (P1, R1), . . . , (Pn, Rn), w), where
all languages Ri, 1 ≤ i ≤ n, are in X .

The following relations follow immediately from the definitions.

Lemma 2.2. For all X, Y ∈ G with X ⊆ Y ,

CL(X) ⊆ CL(Y ), CPL(X) ⊆ CPL(Y ), and CPL(X) ⊆ CL(X).

3. Some special languages

In this subsection we present some languages, which belong or do not belong to
some language families.

Lemma 3.1. Let
L1 = {a2n | n ≥ 0} ∪ {a3n | n ≥ 0}.

Then L1 ∈ CL(COMM ), L1 /∈ CL(SF ) and L1 /∈ CL(SUF ).
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Proof.
i) L1 ∈ CL(COMM ). The language L1 is generated by the T0L system

({a}, ({a → a2}, {a} ∪ {a2}+
)
,
({a → a3}, {a} ∪ {a3}+

)
, a

)

with commutative conditions.

ii) L1 /∈ CL(SF ). We start with some considerations which are independent of the
type of the conditions.

Let G = (V, (P1, R1), (P2, R2), . . . (Pn, Rn), ω) be a conditional T0L system
which generates L1. Obviously, V = {a} and that all rules occurring in the pro-
duction sets have the form a → ap for some p ≥ 1 (the existence of a → λ would
imply that the empty word λ /∈ L1 can be obtained if the rule is applicable, or the
rule is not applicable and can be deleted). Let

h = max {|p| | a → ap ∈ Pi, 1 ≤ i ≤ n} .

First, we note that, for any number r, there are a word as ∈ L1 with r < s and
a component (Pi, Ri) which can be applied to as. If this would not hold, then we
can apply components only to words of a length ≤ r. Since we can generate from
ar′

with r′ ≤ r only words of length ≤ r · h, the language L(G) cannot be infinite.
Next we prove that any production set Ri, 1 ≤ i ≤ n, which is applicable to

a word at with t > 2h only contains one rule. Assume that Pi contains two rules
a → ap and a → aq with p < q. We consider the words w1, w2, and w3 which are
obtained by t, t−1 and t−2 applications of a → ap and no, one or two applications
of a → aq, respectively. Then

w1 = atp, w2 = atp+q−p, and w3 = atp+2q−2p.

Because the generated word belongs to the language, w1 ∈ L1 and hence tp = 2k

or tp = 3k for some k. We only discuss the first case; the second one can be handled
analogously.

Clearly,
2k = tp > hp ≥ h (3.1)

because p ≥ 1. If tp + q − p is also a power of 2, say tp + q − p = 2l, then we get
q − p = 2l − 2k This implies h ≥ q − p = 2l − 2k ≥ 2l−1 ≥ 2k (because k ≤ l − 1)
which contradicts (3.1). If tp+q−p is a power of 3, say tp+q−p = 3l, we consider
additionally w3 ∈ L1. If tp+2q− 2p = 2m for some m, we get q− p = (2m − 2k)/2
and a contradiction as above. If tp+2q−2p = 3m for some m, then q−p = 3m−3l

and we obtain analogously a contradiction, again.
We now prove that the only rule in Pi has the form a → a2g

or a → a3g

with
g ≥ 1. This can be seen as follows. First we note that we can assume without loss
of generality that the only rule is different from a → a since a component with
only a → a does not change the sentential forms and can be deleted. If t = 2x for
some x, then the only word derivable from at using a → ap is ap2x

. If p2x = 2y for
some y, then p = 2y−x. Setting g = y −x, we have that the only rule has the form
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a → a2g

for some g ≥ 1. If p2x = 3y for some y, we get p = 3y

2x which is impossible
since the right hand side is not an integer. Analogously, for t = 3x for some x, we
obtain that the rule has the form a → a3g

with g ≥ 1.
If Ri is a star-free condition, then there are a finite set F ⊂ {a}∗ and an integer

z ≥ 1 such that Ri = F ∪ {aj | j ≥ z}. Without loss of generality we can assume
that t ≤ z. If Pi = {a → a2g}, then we choose u such that 3u ≥ t and get a3u ∈ Ri.
Hence we can apply a → a2g

to a3u

and obtain the word a3u2g

which is not in L1.
Thus we have a contradiction to L(G) = L1. If Pi = {a → a3g}, we choose u such
that 2u ≥ t and derive a contradiction analogously.

Since we obtain a contradiction in all cases, L1 cannot be generated by a T0L
system with star-free conditions.

iii) L1 /∈ CL(SUF ). As above we can show that there are components which are
applicable to long words and that theses components only have the form ({a →
a2g}, R) or ({a → a3g}, R) where g ≥ 1 and R is a suffix-closed regular language.
Let at ∈ L1 be a sufficiently long word. If t = 2x and the only rule is a → a3g

,
then we derive a2x3g

/∈ L1 and thus a contradiction. If t = 2x and the only rule is
a → a2g

, then we can apply the rule to a3y

with 3y ≤ 2x, too, since a2x ∈ R and
R is suffix-closed, get a3y2g

/∈ L1 and a contradiction, again. �

Lemma 3.2. Let

L2 = {b} ∪
{

a2n

c2n

a2n | n ≥ 1
}
∪

{
a2n

c3n

a2n | n ≥ 1
}

.

Then L2 ∈ CL(SUF ) and L2 /∈ CL(SF ).

Proof.
i) L2 ∈ CL(SUF ). The T0L system

({a, b, c}, ({b → a2c2a2, a → a2, c → c2}, Suf
({b} ∪ {a}+{c2}+{a}+

))
({b → a2c3a2, a → a2, c → c3}, Suf

({b} ∪ {a}+{c3}+{a}+
))

, b
)

generates L2 (note that the only words of the control languages which occur as
sentential forms are b, a2n

c2n

a2n

and a2n

c3n

a2n

with n ≥ 1).

ii) L2 /∈ CL(SF ). Let us assume that L2 ∈ CL(SF ). Then L2 = L(G) holds for
some T0L system G = ({a, b, c}, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω) with star-free
conditions. Analogously to the proof of Lemma 3.1 we can show that each table
(Pi, Ri), 1 ≤ i ≤ n, applicable to a sufficiently long word has only one rule with
the left hand side a and c, and these rules are a → a2p

and c → c2p

or c → c3p

where p ≥ 1.
Let r be sufficiently large. If a table Pi with c → c2p

is applicable to a word
a2r

c3r

a2r

, then we derive the word a2r+p

c3r2p

a2r+p

which is not in L2. Hence such
a table can only be applicable to words a2r

c2r

a2r

. However, since Ri is star-free,
there is a k such that a2r

ckc2r−ka2r ∈ Ri implies a2r

ck+jc2r−ka2r ∈ Ri for any
j ≥ 0. Because r is sufficiently large, we can assume that 2r ≥ k. If we now choose
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j = 3r − 2r, we obtain that a2r

c3r

a2r ∈ Ri. Then Pi is applicable to a2r

c3r

a2r

which leads to a contradiction as shown above. Therefore tables with c → c2p

are
not applicable to sufficiently long words.

By analogous arguments we can show that also tables with c → c3p

are not
applicable to sufficiently large words.

Thus no table is applicable to sufficiently long words which is impossible because
we have to generate an infinite language. �

Lemma 3.3. Let
L3 =

{
a2b2, b2a2, a4b4

}
.

Then L3 ∈ CL(SUF ), L3 ∈ CL(FIN ), L3 ∈ CL(COMB), and L3 /∈ CL(CIRC ).

Proof.
i) L3 ∈ CL(SUF ), L3 ∈ CL(FIN ), L3 ∈ CL(COMB). The language L3 is generated
by the T0L systems

({a, b}, ({a → b, b → a}, Suf({a2b2})), ({a → a2, b → b2}, Suf({a2b2})) , a2b2
)

with conditions in SUF (since the productions can only be applied to the axiom
because the other words from Suf({a2b2}) do not occur),

({a, b}, ({a → b, b → a}, {a2b2}), ({a → a2, b → b2}, {a2b2}) , a2b2
)

with finite conditions, and
({a, b}, ({a → b, b → a}, {a, b}∗{a}) ,

({a → b2, b → a2}, {a, b}∗{a}) , b2a2
)

with conditions in COMB .

ii) L3 /∈ CL(CIRC ). Assume that L3 is in CL(CIRC ). Then there is a T0L system
G = ({a, b}, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω) with circular conditions such that
L(G) = L3. We discuss the possibilities for the generation of b4a4.

Case 1. a4b4 is the axiom ω. In order to generate L3 there is a table (Pi, Ri)
which is applicable to the axiom and produces one of the other two words in L3.
Obviously, the rules of Pi delete at least four letters. If a → λ and b → λ are in Pi,
then we can also derive the empty word, which is not in L3. Let us assume that
a → λ is in Pi and that the rules for b derive non-empty words. Then a2b2 or b2a2

has to be derived from b4. This is only possible if b → a and b → b are in Pi. But
then we can also generate b4 /∈ L3. Analogously we get a contradiction if b → λ is
in Pi. Hence b4a4 cannot be the axiom.

Case 2. a4b4 is derived in one step from a2b2. Let a2b2 =⇒ x1x2x3x4 = a4b4

using a table (Pi, Ri) with a → x1, a → x2, b → x3, and b → x4. Then we can also
derive the word x1x1x3x3. We discuss some subcases:

Subcase 2.1. x1x1x3x3 = b2a2. If x1 = λ, then x3x3 = b2a2 which is impossible.
Thus x1 is non-empty and begins with a b. But then x1x2x3x4 starts with b, too,
which contradicts x1x2x3x4 = a4b4.
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Subcase 2.2. x1x1x3x3 = a2b2. Again, x1 and x3 are different from the empty
word. Therefore, x1 = a and x3 = b. This implies x2 = a3bz for some z ≥ 0.
Since we can generate x2x2x3x3, too, we can generate a word with at least six
occurrences of a, which is not in L3.

Subcase 2.3. x1x1x3x3 = a4b4. We get a4b4 = x1x1x3x3 = x1x2x3x4. Again, x1

and x3 are different from the empty word. It is now easy to see that x1 = x2 = a2

and x3 = x4 = b2 follows. Since a2b2 ∈ Ri, we also have b2a2 ∈ Ri and can derive
the word x3x3x1x1 = b4a4 which is not in L3.

Case 3. a4b4 is derived in one step from b2a2. We get contradictions as in Case 2.
Thus L3 /∈ CL(CIRC ). �

Lemma 3.4. Let

L4 =
{
aa, b8, b10, b4c3, b5c3, c3b4, c3b5, c6, d15e9

}
.

Then L4 ∈ CL(FIN ) and L4 /∈ CL(SUF ).

Proof.
i) L4 ∈ CL(NIL). The system

({a, b, c, d, e}, (P1,1, R1), (P1,2, R1), (P2, R2), aa)

with
P1,1 =

{
a → b4, a → c3

}
, R1 = {aa},

P1,2 =
{
a → b5, a → c3

}
,

P2 =
{
b → d3, c → e3

}
, R2 =

{
b5c3

}
,

has finite conditions and generates the language L4.

ii) L4 /∈ CL(SUF ). Suppose that there is a system G′ with suffix-closed conditions
which also generates this language. If the word aa is not the axiom of the system
G′, then it is derived from one of the other words. This can only be achieved if an
erasing rule exists for every letter occurring in the word from which aa is derived.
Then, however, also the empty word can be obtained which does not belong to
the language L4. Thus, the word aa is the axiom of the system G′. Since the
word d15e9 is not the axiom, it is derived from one of the other words. It can be
obtained from the word b5c3 by the rules b → d3 and c → e3. If it is derived from
another word, then the corresponding table is not deterministic (it contains at
least two rules for some letter) and hence another word consisting of the letters d
and e could be generated which does not belong to the language L. Thus, the word
d15e9 can only be obtained from the word b5c3. Hence, the system G′ contains a
pair (P, R) where the table P contains the rules b → d3 and c → e3 (other rules
for b or c would yield a word which does not belong to the language L4) and where
the set R contains the word b5c3. Since the set R is suffix-closed, also the word
b4c3 ∈ L4 belongs to it and the table P can be applied to this word which yields
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the word d12e9. This word, however, does not belong to the language L4 which
proves that the language L4 cannot be generated by a system with suffix-closed
conditions. �

Lemma 3.5. Let

L5 = {d} ∪
{
ab2n

c | n ≥ 1
}
∪

{
bc2n

a | n ≥ 1
}
∪

{
ca2n

b | n ≥ 1
}

.

Then L5 ∈ CL(COMB) and L /∈ CL(NIL).

Proof.
i) L5 ∈ CL(COMB). The language L5 is generated by the T0L system

({a, b, c, d}, ({a → a, b → b2, c → c, d → abc}, {a, b, c, d}∗{c, d}),
({a → a, b → b, c → c2, d → bca}, {a, b, c, d}∗{a, d}),
({a → a2, b → b, c → c, d → cab}, {a, b, c, d}∗{b, d}), d)

with combinational conditions.

ii) L5 /∈ CL(NIL). Let us assume that L5 is in CL(NIL). Then there is a T0L
system G = ({a, b}, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω) with nilpotent conditions
and L5 = L(G). If all sets Ri, 1 ≤ i ≤ n, are finite, then the generated set is
finite, too, in contrast to L(G) = L5. Thus there is a number k, 1 ≤ k ≤ n, such
that Ri with 1 ≤ i ≤ k is infinite and Rj with k + 1 ≤ j ≤ n is finite. Obviously,
Ri with 1 ≤ i ≤ k can be given as Ri = Fi ∪ {w | |w| ≥ ri} with some integer
ri ≥ 0. Let r be a number such that r > ri for 1 ≤ i ≤ k and r > |v| for all
v ∈ Rk+1 ∪ Rk+2 ∪ · · · ∪ Rn.

Obviously, for any integer m ≥ 1, there is a word wm of length at least m and
a table (Pim , Rim) such that the application of (Pim , Rim) to wm yields a word
which is longer than wm since we cannot generate an infinite language, otherwise.
Therefore Pim contains a rule x → y with x ∈ {a, b, c}, y ∈ {a, b, c}∗, and |y| ≥ 2.
We choose m ≥ r and discuss the possibilities for y.

Case 1. y = w1z1w2z2w3 for two different letters z1 and z2 of {a, b, c}. Since
m ≥ r, Rim contains all words of length ≥ r. Therefore we can also apply Pim to
x′x2r

x′′ which yields a word y′(w1z1w2z2w3)2
r

y′′ /∈ L5 where x′ → y′ ∈ Pim and
x′′ → y′′ ∈ Pim .

Case 2. y = zp for some z ∈ {a, b, c} and p ≥ 2. Again, we can apply Pim to
x′(x′′)2

r

x which yields a word ending with zz. Thus the generated word does not
belong to L5.

In both cases we were able to generate words not in L5 which contradicts L5 =
L(G). �

Lemma 3.6. Let

L6 = {d} ∪
{

ab2n | n ≥ 0
}
∪

{
b3n | n ≥ 1

}
.

Then L6 ∈ CL(LOC k) for any k ≥ 1, L6 /∈ CL(DEF ), and L6 /∈ CL(SUF ).
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Proof.
i) L6 ∈ CL(LOC k) for k ≥ 1. It is sufficient to show that L6 ∈ LOC 1. By the
characterization mentioned in Subsection 2.1 and choosing A = {a, d}, B = {b, d},
C = {b}, the set R1 = AC∗B ∪ (A ∩ B) = {d} ∪ {a, d}{b}∗{b, d} is strictly locally
1-testable. Analogously, we can obtain that R2 = {b, d}∪{b, d}{b}∗{b, d} is strictly
locally 1-testable. Therefore the T0L system

({a, b, d}, ({a → a, b → b2, d → ab
}

, R1

)
,
({

a → a, b → b3, d → b3
}

, R2

)
, d

)

has conditions in LOC 1. Moreover, it generates L6.

ii) L6 /∈ CL(DEF ). Let us assume that the language L6 is generated by a T0L
system G = ({a, b}, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω) with definite conditions.
Then, for 1 ≤ i ≤ n, Ri = Fi ∪ U∗

i Ai for some finite sets Fi, Ai ⊂ U∗. Let k and
h be numbers such that k ≥ |u| for u ∈ ⋃n

i=1(Fi ∪ Ai) and h is larger than the
length of all right hand sides in rules of

⋃n
i=1 Pi. Now we consider the word ab2r

for r ≥ k ·h ·(|ω|+3). Then there is a derivation w =⇒ ab2r

with |w| ≥ 3, w 
= ab2r

using some table (Pi, Ri), 1 ≤ i ≤ n. Thus w contains at least two occurrences
of b.

Assume that w = b3j

for some j ≥ 1. To generate ab2r

there is a rule b → ax
in Pi. Then axaxaxz ∈ L(G) using this rule for the first three letters b. Because
axaxaxz /∈ L6, we have a contradiction.

Assume that w = ab2j

for some j ≥ 1. Note that 2j ≥ k. Therefore abf ∈ Ri

and bf ∈ Ri for f ≥ 2j. Moreover, Pi contains rules a → abp and b → bq with
p ≥ 0 and q ≥ 1. We choose p and q maximal with respect to the rules in Pi. Then
we also have the derivations

ab2j

=⇒ abp+q2j

, ab2j+1
=⇒ abp+q2j+1

, and ab2j+2
=⇒ abp+q2j+2

.

By our choices and the structure of L6,

p + q2j = 2r, p + q2j+1 = 2s, and p + q2j+2 = 2t

for some r < s < t. Therefore

2t − 2s = q2j+1 = 2q2j = 2(2s − 2r),

from which 2t + 2r = 32s follows. Since s < t, we get t = s + 1 and 2t − 2s = 2s =
q2j+1. Therefore q = 2u for some j. Now the application to b3j

gives b3j2u ∈ L(G).
This is a contradiction since b3j2u

/∈ L6.

iii) L6 /∈ CL(SUF ) can be shown analogously, because ab2j

has a suffix b3 to which
we can apply b → b2u

, too. �

Lemma 3.7. Let k be an integer with k ≥ 2 and

Sk =
{
akbkck, akb2kck

}
.

Then Sk ∈ CL(FIN ) and Sk /∈ CL(LOC k).
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Proof.
i) Sk ∈ CL(FIN ). The T0L system

G =
({a, b, c}, ({a → a, b → b2, c → c

}
,
{
akbkck

})
, akbkck

)

generates Tk.

ii) Sk /∈ CL(LOC k). Let us assume that Sk = L(G) is generated by a T0L system
G = ({a, b, c}, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω) with strictly locally k-testable
conditions. There has to be a table (Pi, Ri) which is applicable to the axiom. If
there is a rule x → w such that x ∈ {a, b, c} and w contains occurrences with two
letters, then we can derive a word containing the subword ww which is impossible
by the structure of Sk. Thus all rules have the form x → yp for some x, y ∈ {a, b, c}
and p ≥ 0. If p = 0 for some rule, then we can derive a word with occurrences of at
most two letters which does not belong to Sk. Thus p ≥ 1. Moreover, if x 
= y, then
we can derive words which are not in {a}+{b}+{c}+ and therefore not in Sk. This
implies that akbkck is the axiom and the only possible rules are a → a, b → b2,
c → c. Now let Ri be described by Ai, Bi and Ci. Then ak ∈ Ai, arbs, bscr ∈ Bi

for r + s = k, r ≥ 0, s ≥ 1, and ck ∈ Ci. This implies that akb2kck ∈ Ri, too. Thus
we can derive akb4kck /∈ Sk. �

Lemma 3.8. Let k be an integer with k ≥ 1 and

Tk = {c} ∪ {bap | p ≤ k} ∪
{

ba(k+2)5n | n ≥ 0
}

.

Then Tk /∈ CL(LOC k) and Tk ∈ CL(LOC k+1).

Proof.
i) Tk ∈ CL(LOC k+1). The finite language U1 = {c} ∪ {abr | r ≤ k − 1} is strictly
locally (k+1)-testable, because there is no requirement for words of length < k+1
by the definition of strictly locally (k+1)-testable languages. Moreover, if we choose
A = {bak}, B = C = {bk+1}, then U2 = {baq | q ≥ k + 1} is in LOC k+1. Hence

({a, b, c}, ({
a → a, b → ba, c → ba, c → bak+2

}
, U1

)
,({

a → a5, b → b, c → c
}

, U2

)
, c

)

is a T0L system with conditions in LOC k+1 and derives Tk.

ii) Tk /∈ CL(LOC k). Let us assume that Tk = L(G) is generated by a T0L sys-
tem G = ({a, b}, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω) with strictly locally k-testable
conditions. Again, there is table (Pi, Ri), 1 ≤ i ≤ n, that can be applied to a suf-
ficiently long word w, that Pi contains at most one rule with left hand side a and
that this rule has the form a → a5p

for some p ≥ 1, and that the only rule with left
hand side b in Pi is b → b. Since w = ba(k+2)5n ∈ Ri, we get bak−1 ∈ Ai, ak ∈ Bi,
and ak ∈ Ci, where Ai, Bi, and Ci are the sets describing Ri. Hence bak ∈ Ri and
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the application of Ri gives bak·5p

. By the structure of L6, k · 5p = (k + 2)5q for
some q ≥ 1. Obviously, q < p. Hence

5p−q = 1 +
2
k
· (3.2)

If k ≥ 3, we get a contradiction since the right side of (3.2) is not an integer
whereas the left side is an integer. If k = 2, the right hand side of (3.2) is 2, and
thus not a divisor of the left side. If k = 1, the right hand side of (3.2) is 3, and
hence not a divisor of the left side.

Therefore we get a contradiction in all cases which proves that our assumption
is false and Tk /∈ CL(LOC k). �

Lemma 3.9. Let

L7 = {ancbn | n ≥ 1} ∪ {ancbnancbn : n ≥ 1} ∪ {
and2bnand2bn : n ≥ 1

}
.

Then L7 ∈ CL(SF ) and L7 /∈ CL(LOC ).

Proof.
i) L7 ∈ CL(SF ). Obviously, L7 is generated by the conditional Lindenmayer system

({a, b, c, d}, ({a → a, b → b, c → cbac, d → d}, {acb}),({a → a, b → b, c → acb, d → d} , {a}+{c}{b}+ ∪ ({a}+{c}{b}+)2
)
,({a → a, b → b, c → dd, d → d} , {a}+{c}{b}+{a}+{c}{b}+

)
, acb

)
.

The three conditions are 2-non-counting and, thus, they are star-free.

ii) L7 /∈ CL(LOC ). Let us assume that L7 is generated by some conditional Linden-
mayer system G = ({a, b, c, d}, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω) with conditions
in LOC . We look on the derivation of and2bnand2bn for sufficiently large num-
bers n.

If amd2bmamd2bm =⇒ and2bnand2bn using some Pi, then – as above – we
can show that there is exactly one rule with left side x for x ∈ {a, b, d} and
a → ak, b → bk, d → d are the unique rules for a, b, d, where k is a positive integer.
From this it follows that from a finite set of words of the form ard2brard2br we
cannot derive all words of this form.

A derivation amcbm =⇒ and2bnand2bn is impossible for sufficiently large n since
it requires a rule c → ard2anbnd2bs (because rules with left hand side a or b and
d in the right side allow the derivation of words with more than four occurrences
of d) which is impossible for large enough n.

Thus there is a derivation amcbmamcbm =⇒ and2bnand2bn with m, n sufficiently
large by some set Pi. It is easy to see that a → at, b → bt′ , c → ard2bs ∈ Pi for
some numbers r, s, t, t′ with 0 ≤ r, 0 ≤ s, 1 ≤ t, and 1 ≤ t′. Let Ri be the
condition. Then Ri is a strictly locally k-testable language for some k. Clearly, we
can assume that k ≤ m. Then amcbmamcbm ∈ Ri implies that amcbm is in Ri,
too. Therefore we can derive the word amt+rd2bmt′+s which is not in L7. Thus we
get a contradiction to L(G) = L7. �
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Lemma 3.10. Let L8 = {aabb, ababbb, abbabb, baabbb, bababb, baaaabbb}. Then
L8 ∈ CL(CIRC ), L8 ∈ CL(SUF ), L8 /∈ CL(COMM), and L8 /∈ CL(COMB).

Proof.
i) L8 ∈ CL(CIRC ). The conditional Lindenmayer system

({a, b}, ({a → ab, a → ba, b → b}, Circ({aabb})),
({a → a2, b → b}, Circ({ba2b3}), aabb)

with circular conditions generates L8.

ii) L8 ∈ CL(SUF ). If we replace Circ by Suf in the system given in i), then we
obtain that L8 is generated by a Lindenmayer system with conditions in SUF .

iii) L8 /∈ CL(COMM). Let us assume that L8 is generated by a conditional Lin-
denmayer system G = ({a, b}, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω) with commuta-
tive conditions. We now discuss the generation of ba4b3 ∈ L8.

Case 1. ba4b3 is the axiom.
Since ba4b3 is the longest word in L8, there is an i, 1 ≤ i ≤ n, such that

ba4b3 ∈ Ri, and there is an x ∈ {a, b} such that x → λ ∈ Pi. If a → λ and b → λ
are both in Pi, we can generate the empty word which is not in L8. If a → λ and
b → wb 
= λ or b → λ and a → wa 
= λ are in Pi, we can generate w4

b or w4
a,

respectively. However, L8 contains no word which is a fourth power of some word.
Thus we have a contradiction, again.

Case 2. a2b2 =⇒ ba4b3 by some Pi, and a2b2 ∈ Ri, 1 ≤ i ≤ n.
Assume that a → λ ∈ Pi. If b → λ is in Pi, too, we can generate the empty

word which is not in L8. Thus b → wb 
= λ ∈ Pi. Now we can generate w2
b . Looking

on the words in L8, it follows that wb = abb. If Pi contains only a → λ and
b → abb, then the assumed derivation a2b2 =⇒ ba4b3 is impossible, and we have a
contradiction. If there is a further rule a → wa 
= λ, then w2

aabbabb can be derived
from a2b2, but w2

aabbabb does not belong to L8. Thus a → λ is not in Pi.
Analogously, we can prove that b → λ is not in Pi.
Therefore, there are a → wa and b → wb with wa 
= λ and wb 
= λ in Pi. Then

we can generate z = w2
aw2

b . Looking on the words in L8 it follows that wb = b and
wa ∈ {a, ab, ba}. Hence we can only generate words of length ≤ 6 from a2b2 which
contradicts the assumed derivation a2b2 =⇒ ba4b3.

Case 3. w =⇒ ba4b3 by some Pi, 1 ≤ i ≤ n, and w ∈ Ri is a word of length 6.
We mention that w contains exactly two occurrences of a and four occurrences

of b.
If b → λ is the only rule with left hand side b in Pi and a → wa ∈ Pi, then

wa = abb as above and the only derivation is w =⇒ ab2ab2 and the assumed
derivation w =⇒ ba4b3 does not exist. Thus there is a rule b → wb 
= λ in Pi.

If a → λ is in Pi, then we can generate w4
b which does not belong to L8 as

already mentioned above. Thus a → wa 
= λ for any rule in Pi with left hand side
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a. If |wb| ≥ 2, then we can generate a word of length 4|wb|+2|wa| ≥ 10 which gives
a contradiction since all word in L8 have a length ≤ 8. Thus we get |wb| = 1. If we
take into consideration that all words end with b, we get wb = b. Starting from w
of length 6, we have four derivations: ababbb =⇒ wabwabbb or abbabb =⇒ wabbwabb
or bababb =⇒ bwabwabb or baabbb =⇒ bwawabbb. In the first three cases we only
obtain a word in L8 if wa = a, and the assumed derivation w =⇒ ba4b3 is not
possible. In the fourth case we get wa ∈ {a, a2}. If a → a and a → a2 are in Pi,
we can also derive baa2b3 = ba3b3 /∈ L8. If a → a is the only rule, we do not have
the assumed derivation. Thus we only have a → a2. Since baabbb ∈ Ri, we have
ababbb ∈ Ri by the commutativity. Thus we can also generate a2ba2bbb /∈ L8.

Since we got a contradiction in all cases, our assumption is false, i.e., L8 is not
in CL(COMM ).

iv) L8 /∈ CL(COMB). The proof can be given analogously to iii) (note that the
only possible combinational conditions are {a, b}+{b} and {a, b}∗{a, b} since all
words in L8 end with b). �

Lemma 3.11. Let L9 = {aa, baac}. Then L9 ∈ CL(FIN ), L9 ∈ CL(MON ), and
L9 /∈ CPL(REG).

Proof. The language L9 is generated by the T0L system

({a, b, c}, ({a → a, b → λ, c → λ}, {baac}), baac)

with a finite condition, since the only possible derivation is baac =⇒ aa. Thus
L9 ∈ CL(FIN).

If we replace the finite condition {baac} by the monoidal condition {a, b, c}∗, we
get L9, too (note that in this case the only derivation is baac =⇒ aa =⇒ aa =⇒
aa . . . ). Therefore L9 ∈ CL(MON ).

If L9 is generated by some propagating T0L system G with regular conditions,
then aa is the axiom and we have a derivation aa =⇒ baac. This derivation requires
a rule a → w with w 
= a. Then aa =⇒ ww also holds, but ww /∈ L9 in contrast
to our assumption L9 = L(G). �

4. Hierarchy of T0L systems with subregular conditions

We start with some relations between some language families generated by
conditional T0L systems with subregular conditions.

Lemma 4.1. We have CL(REG) = CL(UF ) and CPL(REG) = CPL(UF ).

Proof. It is known that any regular language is a union of finitely many union-free
languages. Let

G = ( V, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω )
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be a T0L system with regular conditions. Moreover, for 1 ≤ i ≤ n, let

Ri = Ri,1 ∪ Ri,2 ∪ · · · ∪ Ri,ri ,

where Ri,j is union-free for 1 ≤ j ≤ n. It is easy to prove that the T0L system

(V, (P1, R1,1), . . . , (P1, R1,r1), (P2, R2,1), . . . , (Pn, Rn,1), . . . , (Pn, Rn,rn), ω)

with union-free conditions generates L(G). Hence, CL(REG) ⊆ CL(UF ).
The converse inclusion follows by Lemma 2.2 and the inclusions given in the

diagram of Figure 1.
Thus CL(REG) = CL(UF ).
For propagating T0L systems, we have to repeat the proof. �

Lemma 4.2. We have

CL(MON) ⊆ CL(COMB) ⊆ CL(SUF )

and
CPL(MON) ⊆ CPL(COMB) ⊆ CPL(SUF ).

Proof. For any language L ∈ COMB , we have Suf(L) = L ∪ {λ}.
Let G = (V, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω) be a T0L system with conditions

in COMB . If z ∈ L(G), then there is a derivation

ω = z0 =⇒Pi1
z1 =⇒Pi2

z2 =⇒Pi3
. . . =⇒Pin

zn = z (4.1)

such that zj−1 ∈ Rij for 1 ≤ j ≤ n. Since zi−1 ∈ Suf(Rij ), we get that (4.1) is a
derivation according to the T0L system

G′ = (V, (P1, Suf(R1)), (P2, Suf(R2)), . . . , (Pn, Suf(Rn)), ω)

with conditions in SUF , too.
Conversely, if

ω = w0 =⇒Pi1
w1 =⇒Pi2

w2 =⇒Pi3
. . . =⇒Pin

wn = w

with wj ∈ Suf(Rij ) is a derivation in G′, then it is also a derivation according to
G since wj 
= λ and Suf(Rij ) = Rij ∪ {λ}.

This proves L(G) = L(G′). Hence any language of CL(COMB) is in CL(SUF ).
Since X∗ = X∗X ∪ {λ} and X∗X ∈ COMB for any alphabet X , we can prove

the inclusion CL(MON) ⊆ CL(COMB) by analogous arguments.
For propagating T0L systems, we can give the same proof. �

Theorem 4.3. The diagram given in Figure 2 holds.



144 J. DASSOW AND S. RUDOLF

CL(REG)
=CL(UF )

CL(SF ) CPL(REG)
=CPL(UF )

CPL(SF )

CL(LOC )

CL(DEF ) CPL(LOC ) ... CL(CIRC)

CPL(DEF ) ... CL(LOC 3) CPL(CIRC) CL(COMM) CL(SUF )

CPL(LOC 3) CL(LOC 2) CPL(COMM)

CPL(LOC 2) CL(LOC 1) CPL(SUF )

CPL(LOC 1) CL(COMB)

CL(NIL) CPL(COMB)

CPL(NIL)

CL(MON )

CPL(MON )

CL(FIN )

CPL(FIN )

Figure 2. Hierarchy of language families CL(X) with X ∈ G
(an arrow from CL(X) to CL(Y ) denotes CL(X) ⊂ CL(Y ); and if
two families are not connected by a directed path, then they are
incomparable).

Proof. All inclusions of the diagram follow from Lemmas 2.2 and 4.2. By
Lemma 4.1, the equalities of the diagram hold.

By Lemmas 3.2, 3.4, and 3.6, the families CL(X) above CL(FIN ) or CL(LOC k)
and below CL(SF ) are incomparable with CL(SUF ).

By Lemmas 3.1 and 3.3, the families CL(X) above CL(FIN ) or CL(COMB) and
below CL(SF ) or CL(SUF ) are incomparable with CL(COMM ) and CL(CIRC ).

By Lemmas 3.6 and 3.7, CL(FIN), CL(NIL) and CL(DEF ) are incomparable
with CL(LOC k), k ≥ 1.

By Lemmas 3.5 and 3.7, CL(NIL) is incomparable with the families CL(COMB)
and CL(LOCk) for k ≥ 1.

By these incomparabilities it follows that all inclusions CL(X) ⊆ CL(Y ) –
except CL(FIN ) ⊆ CL(NIL), CL(LOC ) ⊆ CL(SF ), CL(COMB) ⊆ CL(SUF ),
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and CL(COMM ) ⊆ CL(CIRC ) – are proper. However, CL(FIN ) ⊆ CL(NIL) is
also a proper inclusion because CL(FIN ) contains only finite languages whereas
CL(NIL) contains the infinite language {a2n |n ≥ 1} generated by the T0L sys-
tem ({a}, ({a → a2}, {a}+), a2) with a nilpotent condition, and the inclusions
CL(LOC ) ⊆ CL(SF ), CL(COMB) ⊆ CL(SUF ), and CL(COMM ) ⊆ CL(CIRC )
are strict by Lemmas 3.9 and 3.10.

In the proofs of Lemmas 3.1–3.10, we have only used propagating systems to
show the membership in a certain family. Thus, for all X, Y ∈ G, CL(X) ⊂ CL(Y )
implies CPL(X) ⊂ CPL(Y ) and the incomparability of CL(X) and CL(Y ) implies
the incomparabilities of CPL(X) and CPL(Y ) and of CPL(X) and CL(Y ).

By Lemma 3.11, we get CPL(X) ⊂ CL(X) for all X ∈ G and the incomparability
of CPL(Y ) and CL(X) for all X, Y ∈ G with CL(X) ⊂ CL(Y ). �

5. Conclusion

If we restrict to sets CL(X) (or CPL(X)) with X ∈ G, then we see that – except
the change from the incomparabilities of MON and COMB and of COMB and
SUF to the inclusions CL(MON ) ⊂ CL(COMB) and CL(COMB) ⊂ CL(SUF ) re-
spectively, and from the inclusion UF ⊂ REG to an equality CL(UF ) = CL(REG)
– we have the same hierarchy for the subregular families (see Fig. 1) and the fam-
ilies obtained by T0L systems with subregular control (see Fig. 2). The first two
changes come from the fact that we also have an inclusion of MON in COMB and
of COMB in SUF , if we ignore the empty word, and that we can derive no word
from the empty word.

Thus we have almost the same situation as for external contextual grammar
where most of the relations in the hierarchy of subregular families also hold in
the hierarchy of external contextual languages with subregular selection languages
(see [7, 12]).

This is a strong contrast to conditional grammars, tree controlled grammars, and
networks of evolutionary processors, where the corresponding hierarchies differ (for
instance, in all cases, star-free, regular suffix-closed, and regular circular languages
are as powerful as arbitrary regular languages; moreover, some further different
subregular families lead to identical families, if used as regular restriction). In [14],
we show that such a situation also holds for extended conditional T0L systems
(where in the language are only words over a subset T of the underlying alphabet
V ; i.e., the letters from V \ T can be considered as nonterminals).

Thus it seems that the use of nonterminals leads to a change of the hierarchy
whereas one gets almost the same hierarchy, if the devices do not use nonterminals.
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