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A GENERAL FRAMEWORK FOR THE DERIVATION
OF REGULAR EXPRESSIONS

Pascal Caron1, Jean-Marc Champarnaud1

and Ludovic Mignot1

Abstract. The aim of this paper is to design a theoretical frame-
work that allows us to perform the computation of regular expression
derivatives through a space of generic structures. Thanks to this for-
malism, the main properties of regular expression derivation, such as
the finiteness of the set of derivatives, need only be stated and proved
one time, at the top level. Moreover, it is shown how to construct an
alternating automaton associated with the derivation of a regular ex-
pression in this general framework. Finally, Brzozowski’s derivation and
Antimirov’s derivation turn out to be a particular case of this general
scheme and it is shown how to construct a DFA, a NFA and an AFA
for both of these derivations.
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1. Introduction

The (left) quotient of a language L over an alphabet Σ with respect to a word w
in Σ∗ is the language obtained by stripping the leading w from the words in L that
are prefixed by w. The quotient operation plays a fundamental role in language
theory and is especially involved in two main issues. First, checking whether a
word w belongs to a language L turns out to be equivalent to checking whether
the empty word belongs to the quotient of L w.r.t. w. Secondly it was proved by
Myhill [17] and Nerode [18] that a language is regular if and only if the set of its
quotients w.r.t. all the words in Σ∗ is finite. In the case of a regular language L,

Keywords and phrases. Regular expressions, alternating automata, derivation, partial
derivation.
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the different quotients are the states of the so-called quotient automaton of L that
is isomorphic to its minimal deterministic automaton.

Since the equality of two languages amounts to the isomorphism of their min-
imal deterministic automata, the construction of the quotient automaton via the
computation of the left quotients is intractable. The seminal work of Brzozowski [4]
that introduced the notion of a word derivative of a regular expression and the
construction of the associated DFA, gave rise to a long series of studies (see for
example [1, 3, 7, 9, 13]) that are all based on the simulation of the computation of
a language quotient by the one of an expression derivative. In all these research
works, the first rule is that if the expression E denotes the language L, then the
derivative of E w.r.t. w, for any w, denotes the quotient of L w.r.t. the word w.
Thus, checking whether a word w belongs to the language denoted by the expres-
sion E is equivalent to checking if the empty word belongs to the language denoted
by the derivative of E w.r.t. w. The second rule is that as far as the set D of all
the derivatives of E is finite, a finite automaton recognizing the language denoted
by E can be constructed, admitting D as a set of states.

Let us notice that Brzozowski derivatives [4] handle unrestricted regular ex-
pressions and provide a deterministic automaton; Antimirov derivatives [1] only
address simple regular expressions and provide both a deterministic automaton
and a non-deterministic one; Antimirov derivatives have been recently extended
to regular expressions [7] and this extension provides a deterministic automaton, a
non-deterministic one and, as shown in this paper, an alternating automaton. Berry
and Sethi continuations [3] are based on the linearization of the (simple) input ex-
pression and allow the construction of its Glushkov (non-deterministic) automa-
ton. Champarnaud and Ziadi c-continuations [9] and Ilie and Yu derivatives [13]
allow both the construction of the Glushkov automaton and of the Antimirov
non-deterministic automaton. Let us mention that derivation has been extended
to expressions with multiplicity [8, 15].

As mentioned by Antimirov [1], derivatives of regular expressions have proved
to be a productive concept to investigate theoretical topics such as the algebra of
regular expressions [11] or of K-regular expressions [14], the systems of language
equations [6], the equivalence of simple regular expressions [12] or of regular ex-
pressions [2]. More recently, Brzozowski introduced a new approach for finding
upper bounds for the state complexity of regular languages, based on the counting
of their quotients (or of their derivatives) [5].

Moreover, derivatives provide a useful tool to implement regular matching algo-
rithms: Brzozowski’s DFA and Antimirov’s NFA turn out to be competitive match-
ing automata [21], compared for instance with Thompson’s ε-automaton [22]. The
derivative-based techniques are well-suited to functional languages, that are char-
acterized by a good support for symbolic term manipulation. As an example, two
derivative-based scanner generators have been recently developed, one for PLT
Scheme and one for Standard ML, as reported in [19]. Similarly, Brzozowski’s
derivatives are used in the implementation of the XML schema language RELAX
NG [10]. Finally, let us notice that derivatives can be extended to context-free
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grammars, seen as recursive regular expressions, yielding a system for parsing
context-free grammars [16].

The aim of this paper is to design a general framework where the computation of
the set of derivatives of a regular expression, called derivation, is performed over a
space of generic structures. Of course Brzozowski’s derivation and Antimirov’s one
appear as particular cases of this general scheme. A first benefit of this formalism
is that the properties inherent to the mechanism of derivation, such as the equality
between the language denoted by a derivative and the corresponding quotient, the
finiteness of the set of derivatives and the way for constructing the associated
automata, need only be stated and proved one time, at the top level. A second
benefit is that the general framework allows us to design the construction of an
AFA from the set of derivatives. As a consequence, we show how to construct a
DFA, a NFA and an AFA for any finite derivation, including both Brzozowski’s
one and Antimirov’s one.

The next section is a preliminary section; it gathers classical notions concerning
regular languages, regular expressions and finite automata, as well as boolean for-
mulas and alternating automata. The notion of a regular expression derivation via
a support is defined in Section 3, and the properties of the corresponding deriva-
tives are investigated. Section 4 is devoted to the construction of the alternating
automaton associated with the derivation of a regular expression via a support.
This construction is illustrated in Section 5, where the support is based on the set
of clausal forms over the alphabet of the regular expressions.

2. Preliminaries

Let B = {0, 1}. A boolean formula φ over a set X is inductively defined by
φ = x where x ∈ X , or φ = fB(φ1, . . . , φk), where fB is the operator associated
to the k-ary boolean function f from Bk to B and φ1, . . . , φk are boolean formulas
over X . The set of the boolean formulas over X is denoted by BoolForm(X).
Let v be a function from X to B. The evaluation of φ with respect to v is the
boolean evalv(φ) inductively defined by: evalv(x) = v(x), evalv(fB(φ1, . . . , φk)) =
f(evalv(φ1), . . . , evalv(φk)). The set Atom(φ) is the subset of X inductively defined
by Atom(x) = {x} and Atom(fB(φ1, . . . , φk)) =

⋃
1≤j≤k Atom(φj).

Let Σ be an alphabet, w be a word in Σ∗ and L be a language over Σ. The empty
word is denoted by ε. Deciding whether w belongs to L is called the membership
problem for the language L. We denote by rw(L) the boolean equal to 1 if w ∈ L,
0 otherwise. Let L1, . . . , Lk be k languages. We denote by ·, ∗ and fL for any
k-ary boolean function f the operators defined as follows: L1 · L2 = {w1 · w2 ∈
Σ∗ | rw1(L1) ∧ rw2(L2) = 1}, L∗

1 = {ε} ∪ {w1 · · ·wn ∈ Σ∗ | n ∈ N ∧ ∀k ∈
{1, . . . , n}, rwk

(L1) = 1}, fL(L1, . . . , Lk) = {w ∈ Σ∗ | f(rw(L1), . . . , rw(Lk)) = 1}.
The quotient of a regular language L with respect to a word w, that is defined
as the set w−1(L) = {w′ ∈ Σ∗ | rww′(L) = 1} can be inductively computed as
follows: ε−1(L) = L, and for a ∈ Σ,
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a−1(L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a−1(L1) · L2 ∪ a−1(L2) if L = L1 · L2 ∧ ε ∈ L1,

a−1(L1) · L2 if L = L1 · L2 ∧ ε /∈ L1,

a−1(L1) · L∗
1 if L = L∗

1,

fL(a−1(L1), . . . , a−1(Ln)) if L = fL(L1, . . . , Ln),
{ε} if L = {a},
∅ otherwise.

(a · w′)−1(L) = w′−1(a−1(L)) for w′ ∈ Σ+.

An Alternating Automaton (AA) is a 5-tuple A = (Σ, Q, I, F, δ) where Σ is an
alphabet, Q is a set of states, I is a boolean formula over Q, F is a function from Q
to B and δ is a function from Q × Σ to BoolForm(Q). The function δ is extended
from BoolForm (Q) × Σ∗ to BoolForm(Q) as follows:

δ(φ, ε) = φ,

δ(φ, aw) = δ(δ(φ, a), w),
δ(fB(φ1, . . . , φk), a) = fB(δ(φ1, a), . . . , δ(φk, a)),

where a is any symbol in Σ, w is any word in Σ∗ and φ1, . . . , φk are any k boolean
formulas over Q.

The accessible part of A is the AA (Σ, Q′, I, F ′, δ′) defined by:

Q′ = {q ∈ Q | ∃w ∈ Σ∗, q ∈ Atom(δ(I, w))};
∀q ∈ Q′, F ′(q) = F (q);

∀a ∈ Σ, ∀q ∈ Q′, δ′(q, a) = δ(q, a).

The language recognized by the alternating automaton A is the subset L(A) of
Σ∗ defined by L(A) = {w ∈ Σ∗ | evalF (δ(I, w)) = 1}. Whenever Q is a finite set,
A is said to be an Alternating Finite state Automaton (AFA).

A regular expression E over an alphabet Σ is inductively defined by: E = a,
E = 1, E = 0, E = (E1) · (E2), E = (E1)∗ or E = fe(E1, . . . , En), where ∀k ∈ N,
Ek is a regular expression, a ∈ Σ and fe is the operator associated to the n-
ary boolean function f, e.g. + is the operator associated to ∨. Parenthesis are
omitted when there is no ambiguity. In the following, we assume that the regular
expression operators as well as the boolean formula operators have no specific
algebraic properties, unlike the boolean functions. For instance, the operator + is
not associative, not commutative, nor idempotent. A regular expression is said to
be simple if the only boolean operator used is the sum.

The set of the regular expressions over an alphabet Σ is denoted by Exp(Σ). We
denote by PF(Exp(Σ)) the set of ordered finite subsets of Exp(Σ). By extension
we denote by PF (X) the set of ordered finite subsets of the set X . The language
denoted by E is the subset L(E) of Σ∗ inductively defined as follows: L(E · F ) =
L(E) ·L(F ), L(E∗) = (L(E))∗, L(fe(E1, . . . , En)) = fL(L(E1), . . . , L(En)), L(a) =
{a}, L(0) = ∅, and L(1) = {ε} with E and F any two regular expressions, a
any symbol in Σ and fL the operator associated with f (e.g. ∪ is associated to ∨).
Whenever two expressions E1 and E2 denote the same language, E1 and E2 are said
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to be equivalent (denoted by E1 ∼ E2). In the following, we denote by rw(E) the
boolean rw(L(E)). Notice that the boolean rε(E) is straightforwardly computed
as follows:

∀α ∈ Σ ∪ {1, 0}, rε(α) =
{

1 if α = 1,
0 otherwise,

rε(fe(E1, . . . , Ek)) = f(rε(E1), . . . , rε(Ek)),

rε(E1 · E2) = rε(E1) ∧ rε(E2),

rε(E∗
1 ) = 1.

Given a regular expression E over an alphabet Σ and two distinct symbols a, b
in Σ, the Brzozowski derivative of E w.r.t. a is the expression d

da
(E) inductively

defined by:
d
da

(a) = 1,
d
da

(b) =
d
da

(1) =
d
da

(0) = 0,

d
da

(fe(E1, . . . , Ek)) = fe

(
d
da

(E1), . . . ,
d
da

(Ek)
)

,
d
da

(E∗
1 ) =

d
da

(E1) · E∗
1 ,

d
da

(E1 · E2) =

⎧⎪⎪⎨
⎪⎪⎩

d
da

(E1) · E2 +
d
da

(E2) if rε(E1) = 1,

d
da

(E1) · E2 otherwise,

where b is any symbol in Σ \ {a}, E1, . . . , Ek are any k regular expressions over
Σ, and fe is the operator associated with the k-ary boolean function f. Notice
that Brzozowski defines the dissimilar derivative of E as the expression d′

d′
a
(E)

inductively computed by substituting the operator +ACI to the + operator in the
derivative formulas, where +ACI is the associative, commutative and idempotent
version of +.

Given a simple regular expression E over an alphabet Σ and two distinct sym-
bols a, b in Σ, the Antimirov partial derivative of E w.r.t. a is the set of expression
∂
∂a

(E) inductively defined by:
∂

∂a
(a) = {1}, ∂

∂a
(b) =

∂

∂a
(1) =

∂

∂a
(0) = ∅,

∂

∂a
(E1 + E2) =

∂

∂a
(E1) ∪ ∂

∂a
(E2),

∂

∂a
(E∗

1 ) =
∂

∂a
(E1) · E∗

1 ,

∂

∂a
(E1 · E2) =

⎧⎪⎨
⎪⎩

∂

∂a
(E1) · E2 ∪ ∂

∂a
(E2) if rε(E1) = 1,

∂

∂a
(E1) · E2 otherwise,

where b is any symbol in Σ \ {a}, E1 and E2 are any two regular expressions
over Σ, and for any finite set E of regular expression, for any regular expression F ,
E ·F =

⋃
E∈E{E ·F}. See [20] for a survey of expression to automaton construction

using partial derivatives.
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3. Derivation via a support

We now introduce the notion of a derivation via a support. Recall that a
Brzozowski derivative is an expression, whereas an Antimirov derivative is a set of
expressions. In our framework, a derivative is more generally an element of an ar-
bitrary set, called the structure set. For example, a structure can be an expression,
a set of expressions or a set of set of expressions. A support is essentially made
of a structure set equipped with operators, and of a mapping that transforms a
structure into an expression.

Definition 3.1. Let Σ be an alphabet. Let E be a set and h be a mapping from
E to Exp(Σ). Let O be a set containing:

• for any k-ary boolean function f, an operator fE from E
k to E;

• an operator ·E from E × Exp(Σ) to E.

Let 1E and 0E be two elements in E. The 6-tuple S = (Σ, E, h,O, 1E, 0E) is said to
be a support if the three following conditions are satisfied:

(1) for any k elements E1, . . . , Ek in E:
h(fE(E1, . . . , Ek)) ∼ fe(h(E1), . . . , h(Ek));

(2) for any element E in E, for any expression E in Exp(Σ):
h(E ·E E) ∼ h(E) · E;

(3) h(1E) ∼ 1 and h(0E) ∼ 0.

Notice that the expressions h(fE(E1, . . . , Ek)) and fe(h(E1), . . . , h(Ek)) need not to
be identical. They are only required to define the same language. A support is based
on a set of generic structures that can be used to handle regular expressions. We
now define the notion of regular expression derivation via a support.

Definition 3.2. Let S = (Σ, E, h,O, 1E, 0E) be a support. The derivation via S

is the mapping D from Σ+ × Exp(Σ) to E inductively defined for any a ∈ Σ, for
any word u in Σ+ and for any expression E in Exp(Σ) by:

D(a, E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fE(D(a, E1), . . . , D(a, Ek)) E = fe(E1, . . . , Ek),

(D(a, E1) ·E E2) ∨E D(a, E2) E = E1 · E2 ∧ ε ∈ L(E1),

D(a, E1) ·E E2 E = E1 · E2 ∧ ε /∈ L(E1),

D(a, E1) ·E E∗
1 E = E∗

1 ,

1E E = a,

0E E ∈ Σ \ {a} ∪ {1, 0}.
D(au, E) = D(u, h(D(a, E))).

Lemma 3.3. Let D be the derivation via a support S = (Σ, E, h,O, 1E, 0E). Let a
be any symbol in Σ and u a word in Σ+. Then:

D(ua, E) = D(a, h(D(u, E))).
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Proof. By recurrence over the length of u.

• If u = b with b ∈ Σ the by definition, D(ba, E) = D(a, h(D(b, E))).
• If u = bv then D(bva, E) = D(va, h(D(b, E))). According to the recur-

rence hypothesis, D(va, h(D(b, E))) = D(a, h(D(v, h(D(b, E))))). By defi-
nition, D(v, h(D(b, E))) = D(bv, E). Finally it holds that D(bva, E) =
D(a, h(D(bv, E))) �

As a direct consequence of this lemma, we will use, as a reference of D(w, E) both
Definition 3.2 or its direct lemma (Lem. 3.3).

Furthermore, if for all expression E in Exp(Σ), the set {D(w, E) | w ∈ Σ+} is
finite, the derivation D is said to be a finite derivation.

3.1. Classical derivations are derivations via a support

This subsection illustrates the fact that both Antimirov’s derivation and
Brzozowski’s one are derivations via a support.

Definition 3.4. We denote by SA = (Σ, E = PF(Exp(Σ)), hA,OA, {1}, ∅) the
6-tuple defined by:

• for any E ∈ E, hA(E) =
∑

E∈E E,
• OA = {fE | f is a k-ary boolean function} ∪ {·E} where for any elements

E1, . . . , Ek in E,
– E ·E F =

⋃
E∈E{E · F},

– fE(E1, . . . , Ek) = E1 ∪ E2 if k = 2 and f = ∨,
– fE(E1, . . . , Ek) = {fe(hA(E1), . . . , hA(Ek))} otherwise.

Proposition 3.5. The 6-tuple SA is a support. Furthermore, for any simple reg-
ular expression E over Σ, for any symbol a, it holds DA(a, E) = ∂

∂a
(E), where DA

is the derivation via SA.

Proof. Let E1 and E2 be two sets of simple regular expressions and E be a simple
regular expression. The condition (1) of Definition 3.1 is satisfied since: p

(a) if k = 2 and f = ∨,

L (hA (E1 ∪ E2)) = L(
∑

E∈E1∪E2
E)

=
⋃

E∈E1∪E2
L(E)

=
⋃

E1∈E1
L(E1) ∪

⋃
E2∈E2

L(E2)

= L
(∑

E1∈E1
E1 +

∑
E2∈E2

E2

)
= L (hA(E1) + hA(E2))

(b) and otherwise,

L(hA(fE(E1, . . . , Ek)) = L (hA ({fe(hA(E1), . . . , hA(Ek))}))
= L (fe(hA(E1), . . . , hA(Ek)))
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The condition (2) of Definition 3.1 is satisfied since:

L(hA(E1 ·E E)) = L(hA(
⋃

E1∈E1
{E1 · E}))

= L(
∑

E1∈E1
E1 · E)

= L(
∑

E1∈E1
E1) · L(E)

= L(hA(E1)) · L(E).

The condition (3) of Definition 3.1 is satisfied since:

L(hA({1})) = L(1)

L(hA(∅)) = ∅ = L(0).

Consequently, SA is a support. Moreover, since the operators ∪ and ·E in OA are
the operations used in partial derivation, it can be shown by induction that for any
simple regular expression E over Σ and for any symbol a, DA(a, E) = ∂

∂a
(E). �

Definition 3.6. We denote by SB = (Σ, E′ = Exp(Σ), hB,OB, 1, 0) the 6-tuple
defined by:

• for any E ∈ Exp(Σ), hB(E) = E;
• OB = {fE′ | f is a k-ary boolean function} ∪ {·E′}, where for any E1, . . . , Ek

elements in Exp(Σ);
– E ·E′ F = E · F ;
– fE′(E1, . . . , Ek) = E1 + E2 if k = 2 and f = ∨;
– fE′(E1, . . . , Ek) = fe(E1, . . . , Ek) otherwise.

Proposition 3.7. The 6-tuple SB is a support. Furthermore, for any regular ex-
pression E over Σ, for any symbol a, it holds DB(a, E) = d

da
(E), where DB is the

derivation via SB.

Proof. Since hB is the identity and E′ = Exp(Σ), it is obvious that SB is a support.
Moreover, since the operators in OB are the operators of regular expressions, it
can be shown by induction that for any regular expression E over Σ and for any
symbol a, DB(a, E) = d

da
(E). �

Let us notice that, by definition, the derivation DA more generally addresses
unrestricted expressions ; therefore it provides a natural extension for Antimirov
derivation. See [7] and Section 5 for alternative extensions.

3.2. Main properties of supports

We now show that the language denoted by the expression associated with any
derivative D(w, E) is equal to the corresponding quotient.

Proposition 3.8. Let D be the derivation via a support S = (Σ, E, h,O, 1E, 0E).
Then for any word w in Σ+, for any expression E in Exp(Σ), it holds:

L(h(D(w, E))) = w−1(L(E)).
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Proof. By recurrence over the length of w.

(1) Let w = a ∈ Σ. By induction over the structure of E.
L(h(D(a, a))) = L(h(1E)) = {ε} = a−1(L(a))

L(h(D(a, b))) = L(h(D(a, 1))) = L(h(D(a, 0)))

= L(h(0E)) = ∅ = a−1(L(b)) = a−1(L(1)) = a−1(L(0))

L(h(D(a, E∗
1 ))) = L(h(D(a, E1) ·E E∗

1 ))

= L(h(D(a, E1))) · L(E∗
1 ) = a−1(L(E1)) · L(E∗

1 ) = a−1(L(E∗
1 ))

L(h(D(a, fe(E1, . . . , Ek)))) = L(h(fE(D(a, E1), . . . , D(a, Ek))))

= fL(L(h(D(a, E1))), . . . , L(h(D(a, Ek))))

= fL(a−1(L(E1)), . . . , a−1(L(Ek)))

= a−1(fL(L(E1), . . . , L(Ek))) = a−1(L(fe(E1, . . . , Ek))).

Let us consider that ε ∈ L(E1):

L(h(D(a, E1 · E2))) = L(h((D(a, E1) ·E E2) ∨E D(a, E2)))

= L(h(D(a, E1) ·E E2)) ∪ L(h(D(a, E2)))

= L(h(D(a, E1))) · L(E2) ∪ L(h(D(a, E2)))

= a−1(L(E1)) · L(E2) ∪ a−1(L(E2))

= a−1(L(E1) · L(E2)) = a−1(L(E1 · E2)).

Let us consider that ε /∈ L(E1):

L(h(D(a, E1 · E2))) = L(h(D(a, E1) ·E E2)) =

L(h(D(a, E1))) · L(E2) = a−1(L(E1)) · L(E2) =

a−1(L(E1) · L(E2)) = a−1(L(E1 · E2)).

(2) Let w = au with a ∈ Σ and u ∈ Σ+. According to the recurrence hypothesis,

L(h(D(w, E))) = L(h(D(u, h(D(a, E))))) =

= u−1(L(h(D(a, E)))) = u−1(a−1(L(E)))=(au)−1(L(E)). �

From Proposition 3.8 we deduce that rε(h(D(w, E))) = rε(w−1L(E)). This
property does not depend whether the derivation is finite or not and since the
boolean rε(E) can be inductively computed for any regular expression E, any
support defines a syntactical solution of the membership problem of the language
L(E).

Corollary 3.9. For a given regular expression E, any derivation via a support
can be used to solve the membership problem for L(E).
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As an example, the support SB of Definition 3.6 can be used to solve the mem-
bership test, even if the associated derivation is not finite.

Given an expression, the finiteness of the set of its derivatives is a necessary
condition for the construction of an associated finite automaton. It is well-known
that the set of Brzozowski’s derivatives is not necessarily finite whereas the set of
dissimilar derivatives and the set of Antimirov’s derived terms are finite sets. We
now give two sufficient conditions of finiteness in the general case. The first one
has already been stated in the case of Brzozowski derivatives [4]. The second one is
related to the mapping h of the support, that needs to satisfy specific properties.

Proposition 3.10. Let D be the derivation via a support S = (Σ, E, h,O, 1E, 0E).
The following set of conditions is sufficient for the mapping D to be a finite deriva-
tion:

(1) ∨E is associative, commutative and idempotent (H1);
(2) for any k-ary boolean function f, for any k elements E1, . . . , Ek in E,

D(a, h(fE(E1, . . . , Ek))) = fE(D(a, h(E1)), . . . , D(a, h(Ek))) (H2).

Proof. Let us show by induction over the structure of regular expressions that for
any expression E in Exp(Σ), the set {D(w, E) | w ∈ Σ+} is finite.

If E ∈ Σ ∪ {1,0}: According to the definition of derivation, the proposition
holds.

If E = E∗
1: Let w be a word in Σ+. Let us show by recurrence over the length of

w that D(w, E∗
1 ) is a finite ∨E-combination of elements in the set {D(w′, E1) ·E E∗

1 |
w′ 
= ε is a suffix of w}.
(1) Let w = a ∈ Σ. Since D(a, E∗

1 ) = D(a, E1) ·E E∗
1 , the property holds.

(2) Let w = ua with a ∈ Σ and u ∈ Σ+. By definition, D(ua, E∗
1 ) =

D(a, h(D(u, E∗
1 ))). By the recurrence hypothesis, D(u, E∗

1 ) is a finite ∨E-
combination of elements in the set {D(w′, E1) ·E E∗

1 | w′ 
= ε is a suffix of u}.
According to hypothesis H2, D(a, h(D(u, E∗

1 ))) is a finite ∨E-combination
of elements in the set {D(a, h(D(w′, E1))) ·E E∗

1 | w′ 
= ε is a suffix of u} ∪
{D(a, E1) ·E E∗

1}. So, D(ua, E∗
1 ) is a finite ∨E-combination of elements in the

set {D(w′, E1) ·E E∗
1 | w′ 
= ε is a suffix of ua}.

As a consequence, since the set {D(w, E1) | w ∈ Σ+} is a finite set by
induction hypothesis, since Card(

⋃
w∈Σ+{D(w′, E1) | w′ 
= ε is a suffix of

w}) = Card(
⋃

w∈Σ+{D(w, E1)}) and since ∨E is associative, commutative and
idempotent, we get:

Card({D(w, E∗
1 ) | w ∈ Σ+}) ≤ 2Card({D(w,E1)|w∈Σ+}).

If E = fe(E1, . . . ,Ek): Let w be a word in Σ+. Let us show by recurrence over
the length of w that D(w, fe(E1, . . . , Ek)) = fE(D(w, E1), . . . , D(w, Ek)).

(1) Let w = a ∈ Σ. According to the definition of D, the property holds.
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(2) Let w = ua with a ∈ Σ and u ∈ Σ+. By definition, D(ua, fe(E1, . . . , Ek))
= D(a, h(D(u, fe(E1, . . . , Ek)))). By the recurrence hypothesis, D(u, fe(E1,
. . . , Ek)) = fE(D(u, E1), . . . , D(u, Ek)). According to hypothesis H2,

D(a, h(fE(D(u, E1), . . . , D(u, Ek)))) = fE(D(a, h(D(u, E1))), . . . , D(a, h(D(u, Ek))))
= fE(D(ua, E1), . . . , D(ua, Ek)).

As a consequence, since for all integer j in {1, . . . , k} the set {D(w, Ej) | w ∈
Σ+} is finite by induction hypothesis, we get:

Card({D(w, fe(E1, . . . , Ek)) | w ∈ Σ+})
≤ Card({D(w, E1) | w ∈ Σ+}) × · · · × Card({D(w, Ek) | w ∈ Σ+}).

If E = E1 ·E2: Let w be a word in Σ+. Let us show by recurrence over the length
of w that either D(w, E1 · E2) = D(w, E1) ·E E2 or D(w, E1 · E2) = (D(w, E1) ·E
E2) ∨E E where E is a finite ∨E-combination of elements in the set {D(w′, E2) |
w′ 
= ε is a suffix of w}.
(1) Let w = a ∈ Σ. According to the definition of D, the property holds.
(2) Let w = ua with a ∈ Σ and u ∈ Σ+.

By definition, D(ua, E1 · E2) = D(a, h(D(u, E1 · E2))).
Two cases have to be considered:
(a) D(u, E1 · E2) = D(u, E1) ·E E2. Either D(ua, E1 · E2) = D(a, h(D(u,

E1) ·E E2)), or D(ua, E1 · E2) = (D(a, h(D(u, E1) ·E E2))) ∨E D(a, h(E2)).
According to the recurrence hypothesis, both of these cases satisfy the
proposition.

(b) D(u, E1 · E2) = (D(u, E1) ·E E2) ∨E E where E is a finite ∨E-combination
of elements in the set {D(w′, E2) | w′ 
= ε is a suffix of u}. Either
D(ua, E1 ·E2) = D(a, h(D(u, E1) ·E E2))∨E D(a, h(E)) or D(ua, E1 ·E2) =
D(a, h(D(u, E1) ·E E2)) ∨E D(a, h(E2)) ∨E D(a, h(E)). According to hy-
pothesis H2, E ′ = D(a, h(E)) is a finite ∨E-combination of elements in
the set {D(a, h(D(w′, E2))) | w′ 
= ε is a suffix of u}, set that equals
{D(w′, E2) | w′ 
= ε is a suffix of ua}.

Consequently, D(ua, E1 · E2) = (D(ua, E1) ·E E2) ∨E E where E is a finite
∨E-combination of elements in the set {D(w′, E2) | w′ 
= ε is a suffix of ua}.

As a consequence, since the sets {D(w, E1) | w ∈ Σ+} and {D(w, E2) | w ∈ Σ+}
are finite by induction hypothesis and since ∨E is associative, commutative and
idempotent, we get:

Card({D(w, E1 · E2) | w ∈ Σ+})
≤ Card({D(w, E1) | w ∈ Σ+}) × 2Card({D(w,E2)|w∈Σ+}). �

The derivation DA of Definition 3.4 is an example of finite derivation since ∪ is
associative, commutative and idempotent, and since for any k-ary boolean function
f and for any k elements E1, . . . , Ek in PF(Exp(Σ)), we have:

DA(a, hA(fE(E1, . . . , Ek))) = fE(DA(a, hA(E1)), . . . , DA(a, hA(Ek))).
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On the opposite, since + is not an ACI law, Proposition 3.10 does not allow us
to conclude for the derivation DB of Definition 3.6. Brzozowski showed in [4] that
it is possible to compute a finite set of dissimilar derivatives using a quotient of
the expressions w.r.t. an ACI sum. It can be achieved by considering the support
S′

B defined as follows:

Definition 3.11. We denote by S′
B = (Σ, E′′ = PF(Exp(Σ)), hA,O′

B, {1} , {0})
the 6-tuple defined by:

• for any E ∈ E′′, hA(E) =
∑

E∈E E (Def. 3.4);
• O′

B = {fE′′ | f is a k-ary boolean function} ∪ {·E′′}, where for any E1, . . . , Ek

elements in E′′;
– E1 ·E′′ F =

{
(
∑

E∈E1
E) · F};

– fE′′(E1, . . . , Ek) = E1 ∪ E2 if k = 2 and f = ∨;
– fE′′(E1, . . . , Ek) = {fe(hA(E1), . . . , hA(Ek))} otherwise.

Proposition 3.12. The 6-tuple S′
B is a support. Furthermore, for any regular

expression E and for any symbol a, it holds that hA(D′
B(a, E)) is the dissimilar

derivative of E w.r.t. a, where D′
B is the derivation via the support S

′
B.

Proof. According to Definition 3.4, Definition 3.11 and Proposition 3.5, the con-
ditions (1) and (3) of Definition 3.1 are satisfied by S

′
B .

The condition (2) of Definition 3.1 is satisfied since:

L(hA(E1 ·E′′ E)) = L(hA({(∑F∈E1
F ) · E}))

= L((
∑

F∈E1
F ) · E)

= L(
∑

F∈E1
F ) · L(E)

= L(hA(E1)) · L(E).
Consequently, S′

B is a support.
Moreover, since the operator ∪ is an ACI law and since the catenation product

·E′′ returns a singleton, it can be shown by induction that for any regular expression
E and for any symbol a, it holds that hA(D′

B(a, E)) is the dissimilar derivative of
E w.r.t. a. �

4. From derivation via a support to automata

Computing the set of derivatives of a regular expression E w.r.t. a derivation D
is similar to computing the transition function δ of an automaton, where δ(E, w) =
h(D(w, E)). As far as alternating automata are concerned, the resulting expression
h(D(w, E)) needs to be transformed into a boolean formula. This computation is
performed through a base function defined as follows.

Definition 4.1. Let Σ be an alphabet. A base function B is a mapping from
Exp(Σ) to BoolForm(Exp(Σ)) such that for any expression E and for any word
w in Σ∗:

w ∈ L(E) ⇔ evalrw (B(E)) = 1.
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Definition 4.2. Let B be a base function and D be the derivation via the support
S = (Σ, E, h,O, 1E, 0E). Let E be an expression in Exp(Σ). Let A = (Σ, Q, I, F, δ)
be the automaton defined by:

• Q = Exp(Σ);
• I = E;

• ∀q ∈ Q, F (q) =
{

1 if ε ∈ L(q);
0 otherwise;

• ∀a ∈ Σ, ∀q ∈ Q, δ(q, a) = B(h(D(a, q))).

The accessible part of A is said to be the (D, B)-alternating automaton of E.
Notice that there may exist an infinite number of states.

Theorem 4.3. The (D, B)-alternating automaton of a regular expression E rec-
ognizes L(E).

Proof. Let A = (Σ, Q, I, F, δ) be the (D, B)-alternating automaton of E. Let D
be the derivation via the support S = (Σ, E, h,O, 1E, 0E). Let w be a word in
Σ+. Let us show by recurrence over the length of w that for any boolean formula
φ = fB(q1, . . . , qk) in FormBool(Q), the following (P) proposition holds:

evalF (δ(φ, w)) = evalrε(fB(B(h(D(w, q1))), . . . , B(h(D(w, qk)))).

(1) If w = a ∈ Σ, by definition of the transition function δ, δ(φ, a) = fB(δ(q1, a),
. . . , δ(qk, a)). By construction, for any integer j in {1, . . . , k}, δ(qj , a) =
B(h(D(a, qj))).
Since for any state q ∈ Q, F (q) = 1 ⇔ ε ∈ L(q), the following proposition
holds: evalF (δ(φ, a)) = evalrε(fB(B(h(D(a, q1))), . . . , B(h(D(a, qk)))).

(2) Let w = au with a ∈ Σ and u ∈ Σ+. Then it holds:
evalF (δ(φ, au))

= evalF (δ(δ(φ, a), u)) (Definition of δ)

= evalF (δ(fB(δ(q1, a), . . . , δ(qk, a))), u)) (Definition of δ(φ, a))

= evalF (fB(δ(δ(q1, a), u), . . . , δ(δ(qk, a), u))) (Definition of δ)

= evalF (fB(δ(B(h(D(a, q1))), u), . . . , δ(B(h(D(a, qk))), u)))

(Construction of δ)

= f(evalF (δ(B(h(D(a, q1))), u)), . . . , evalF (δ(B(h(D(a, qk))), u)))
(Definition of evalF )

= f(evalrε(B(h(D(u, h(D(a, q1)))))),

. . . , evalrε(B(h(D(u, h(D(a, qk)))))))

(Induction hypothesis)

= evalrε(fB(B(h(D(u, h(D(a, q1))))), . . . , B(h(D(u, h(D(a, qk)))))))

(Definition of evalF )

= evalrε(fB(B(h(D(au, q1))), . . . , B(h(D(au, qk)))) (Definition of D)
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Finally, it holds:
w ∈ L(E) ⇔ ε ∈ L(h(D(w, E))) (Prop. 3.8)

⇔ evalrε(B((h(D(w, E))))) = 1 (Def. 4.1)
⇔ evalF (δ(E, w)) = 1 (Proposition (P))
⇔ w ∈ L(A) (Definition of the language of an AA) �

Previous definitions and properties address non necessarily finite automata. We
now give sufficient conditions for the finiteness of the automaton. The basic idea is
that if it is equivalent to derive an expression E or to derive its atoms Atom(B(E)),
then the set of atoms obtained by a finite derivation is finite.

Definition 4.4. Let S = (Σ, E, h,O, 1E, 0E) be a support, let D be the derivation
via S and B be a base function. The couple (D, B) satisfies the atom-derivability
property if for any expression E in Exp(Σ) and for any symbol a in Σ:

Atom(B(h(D(a, E)))) =
⋃

E′∈Atom(B(E)) Atom(B(h(D(a, E′)))).

Theorem 4.5. Let A be the (D, B)-alternating automaton of a regular expression
E. If D is finite and if (D, B) satisfies the atom-derivability property, then:

A is an AFA.

Proof. Let D be the derivation via the support S = (Σ, E, h,O, 1E, 0E). Let w be
a word in Σ+.

(1) Let us show by recurrence over the length of w that for any expression q in Q,
Atom(B(h(D(w, q)))) = Atom(δ(q, w)).
(a) If w = a ∈ Σ, δ(q, a) = B(h(D(a, q))). Then, Atom(B(h(D(a, q)))) =

Atom(δ(q, a)).
(b) If w = ua with a ∈ Σ and u ∈ Σ+, by the recurrence hypothesis,

Atom(δ(q, u)) = Atom(B(D(u, q))).

Atom(δ(q, ua))

= Atom(δ(δ(q, u), a)) (Definition of δ)

= Atom(δ(fB(q′1, . . . , q
′
j), a))

(Definition of δ(q, u) with Atom(δ(q, u)) = {q′1, . . . , q′j})
= Atom(fB(δ(q′1, a), . . . , δ(q′j , a)) (Definition of δ)

=
⋃

q′∈{q′
1,...,q′

j} Atom(δ(q′, a)) (Definition of Atom)

=
⋃

q′∈Atom(δ(q,u)) Atom(δ(q′, a)) (Definition of {q′1, . . . , q′j})
=
⋃

q′∈Atom(B(h(D(u,q)))) Atom(B(h(D(a, q′))))

(Induction hypothesis and construction of δ)

= Atom(B(h(D(a, h(D(u, q)))))) (Atom-derivability property)
(2) As a direct consequence of the previous point, since the set {D(w, E) | w ∈

Σ+} is finite, so are the sets {B(h(D(w, E))) | w ∈ Σ+} and
⋃

w∈Σ+ Atom
(B(h(D(w, q)))). Finally, the set Q, that is equal to

⋃
w∈Σ+ Atom(δ(q, w)), is

a finite set. �
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Example 4.6. Let DA and D′
B be the derivations of Definitions 3.4 and 3.11. Let

BA be the base inductively defined for any expression by BA(E +F ) = BA(E) ∨B

BA(F ), BA(E) = E otherwise. Let BB the base defined for any expression by
BB(E) = E. It can be shown that any couple in {DA, D′

B} × {BA, BB} satisfies
the atom-derivability property.

Furthermore, the (DA, BA)-AFA of E can be straightforwardly transformed into
the derived term NFA of E defined by Antimirov in [1]; the (DA, BB)-AFA of E
can be transformed into the partial derivative DFA of E defined by Antimirov
in [1]; the (D′

B , BB)-AFA of E can be transformed into the dissimilar derivative
DFA of E defined by Brzozowski in [4]. Notice that the (D′

B , BA)-AFA of E can
be transformed into a NFA that is different from the NFA of Antimirov.

Finally, the base BC inductively defined by BC(fe(E1, . . . , Ek) = fB(BC(E1),
. . . , BC(Ek)) for any operator fe, BC(E) = E otherwise, provides an AFA con-
struction both from DA and D′

B.

5. Derivation via the set of clausal forms

In this section, we show that the set of clausal forms over the set of regular
expressions and equipped with the right operators is a derivation support and
that the associated DC derivation is finite. Furthermore we prove that the atom-
derivability property is satisfied whenever the DC derivation is associated with a
base function in the set {BA, BB, BC}. Finally we illustrate these results by the
construction of the (DC, BC)-AFA of the expression E = ((ab)∗a)XORe((abab)∗a).

Let us first recall some definitions about clausal forms and their operators.
A clausal form over a set X is an element in C(X) = PF (PF (X ∪ X)) where
X = {x | x ∈ X}. Let ⊕ and ⊗ be the two mappings from C(X) × C(X) to C(X)
and � be the function from C(X) to C(X) defined for any C1, C2 in C(X) by:

• C1 ⊕ C2 = C1 ∪ C2;
• C1 ⊗ C2 =

⋃
(C1,C2)∈C1×C2

{C1 ∪ C2};

• �(C1) =

⎧⎪⎨
⎪⎩

{∅} if C1 = ∅,
∅ if C1 = {∅},
⊗C∈C1 ⊕c∈C {{n(c)}} otherwise,

where n(c) =

{
c′ if c = c′,

c otherwise.
It can be shown that for any element x ∈ X ∪ X, for any clause C1, C2, C3 in

C(X), the following conditions are satisfied:

• C1 ⊗ (C2 ⊕ C3) = (C1 ⊗ C2) ⊕ (C1 ⊗ C3);
• � � {{x}} = {{x}};
• �(C1 ⊕ C2) = �(C1) ⊗�(C2);
• �(C1 ⊗ C2) = �(C1) ⊕�(C2).
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Furthermore, let us notice that there exist clauses C1, C2, C3 such that ��C1 
= C1

or C1 ⊕ (C2 ⊗ C3) 
= (C1 ⊕ C2) ⊗ (C1 ⊕ C3).
Indeed, for example we have for any distinct x, y, z ∈ X

�� {{x, y}, {z}} = �{{x, z}, {y, z}} = {{x, y}, {x, z}, {y, z}, {z}}

= {{x, y}, {z}}.

or
{{x}} ⊕ ({{y}} ⊗ {{z}}) = {{x}, {y, z}}


= ({{x}} ⊕ {{y}})⊗ ({{x}} ⊕ {{z}}) = {{x}, {y}}⊗ {{x}, {z}}
= {{x}, {x, z}, {x, y}, {y, z}}.

From now on, we will consider the set C = C(Exp(Σ)) of the clausal forms over
the set of regular expressions. We now explain how a clausal form over the set of
regular expressions is transformed into a regular expression. Let us consider the
function hC defined from C to Exp(Σ) for any element C in C by:

hC(C) =

⎧⎪⎨
⎪⎩

0 if C = ∅,
∑

C∈C

{¬e0 if C = ∅,∧
eE∈Cc(E) otherwise,

otherwise.

where c(E) =

{
¬e(E′) if E = E′,
E otherwise.

Let us now give the definition of the support operators. For any k-ary boolean
function f, let fC be the operator from (C)k to C associated with f defined by:

• fC(C1, . . . , Ck) = ⊕b=(b1,...,bk)∈Bk|f(b)=1 ⊗1≤j≤k g(bj , Cj);

• where g(bj, Cj) =
{Cj if bj = 1;
�Cj otherwise.

The operator ·C from C×Exp(Σ) to C is defined, for any clause C in C and for
any expression F in Exp(Σ), by:

C ·C F =
⋃

C∈C{hC({C}) · F}.
Finally, we consider the operation set OC defined by

OC = {⊕, ·C} ∪ {fC | f is a k-ary boolean function different from ∨}.
Let us notice that, by definition, the operator� (resp. ⊗) is equal to the operator

¬C (resp. ∧C) whereas the operator ⊕ is different from ∨C, since:
C1 ∨C C2 = ((�(C1) ⊗ C2) ⊕ (C1 ⊗�(C2))) ⊕ (C1 ⊗ C2).

There exist several expressions (combinations of ⊕, ⊗ and �) for a given fC
operator. As an example, with the ternary ∨3(b1, b2, b3) = b1∨ b2∨ b3 is associated
an operator ∨3

C
that can be expressed as the combination of two ⊕ operators:

∨3
C
(C1, C2, C3) = (C1 ⊕ C2) ⊕ C3.

Reduced expressions can be found using Karnaugh maps for instance.
We now consider the 6-tuple SC = (Σ, C,OC, hC, {{1}}, ∅) and show that it is a

support.
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Proposition 5.1. The 6-tuple SC is a support.

Proof. Properties of support are trivially checked for the clauses {{1}}, ∅ and {∅}.
Let us consider that C, C1, . . . , Ck are elements in C \ {∅, {∅}}. According to the
definitions of ⊕ and ⊗:

L(hC(C1 ⊕ C2)) = L(hC(C1 ∪ C2))

= L(
∑

C∈C1∪C2

∧
eE∈Cc(E))

=
⋃

C∈C1∪C2
L(
∧

eE∈Cc(E))

=
⋃

C∈C1
L(
∧

eE∈Cc(E)) ∪⋃C∈C2
L(
∧

eE∈Cc(E))

= L(
∑

C∈C1

∧
eE∈Cc(E)) ∪ L(

∑
C∈C2

∧
eE∈Cc(E))

= L(hC(C1)) ∪ L(hC(C2))

= L(hC(C1) + hC(C2))

L(hC(C1 ⊗ C2)) = L(hC(
⋃

(C1,C2)∈C1×C2
{C1 ∪ C2})

=
⋃

(C1,C2)∈C1×C2
L(hC({C1 ∪ C2}))

=
⋃

(C1,C2)∈C1×C2
L(∧eC∈C1∪C2c(E))

=
⋃

(C1,C2)∈C1×C2
L(∧eC∈C1c(E)) ∩ L(∧eC∈C2c(E))

=
⋃

(C1,C2)∈C1×C2
L(hC({C1})) ∩ L(hC({C2}))

=
⋃

C∈C1
L(hC({C})) ∩⋃C∈C2

L(hC({C}))
= L(

∑
C∈C1

hC({C})) ∩ L(
∑

C∈C2
hC({C}))

= L(hC(C1) ∧e hC(C2)).

Moreover,

L(hC(�({{c}}))) = L(hC({{n(c)}}))

=

{
L(hC({{E}})) if c = E

L(hC({{E}})) if c = E

=

{
L(¬eE) if c = E

L(E) if c = E

=

{¬L(E) if c = E

¬L(L(¬eE)) if c = E

=

{¬L(hC({{c}})) if c = E

¬L(L(hC({{c}}))) if c = E

= ¬L(L(hC({{c}}))).
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Consequently:
L(hC(�(C1))) = L(hC(⊗C1∈C1 ⊕c∈C {{n(c)}}))

=
⋂

C1∈C1
L(hC(⊕c∈C{{n(c)}}))

=
⋂

C1∈C1

⋃
c∈C L(hC({{n(c)}}))

=
⋂

C1∈C1

⋃
c∈C L(hC(�({{c}})))

=
⋂

C1∈C1

⋃
c∈C ¬L(L(hC({{c}})))

=
⋂

C1∈C1
¬L(

⋂
c∈C L(hC({{c}})))

= ¬L(
⋃

C1∈C1

⋂
c∈C L(hC({{c}})))

= ¬L(L(hC(C1)))

= L(¬e(hC(C1))).

Hence, according to definition of fC:
L(hC(fC(C1, . . . , Ck))) = L(hC(⊕b=(b1,...,bk)|f(b)=1 ⊗1≤j≤k g(bj , Cj)))

=
⋃

b=(b1,...,bk)|f(b)=1

⋂
1≤j≤k L(hC(g(bj , Cj)))

=
⋃

b=(b1,...,bk)|f(b)=1

⋂
1≤j≤k

⎧⎨
⎩

L(hC(Cj)) if bj = 1

L(hC(�Cj)) if bj = 0

=
⋃

b=(b1,...,bk)|f(b)=1

⋂
1≤j≤k

⎧⎨
⎩

L(hC(Cj)) if bj = 1

¬LL(hC(Cj)) if bj = 0

= fL(L(hC(C1)), . . . , L(hC(Ck)))

= L(fe(hC(C1), . . . , hC(Ck))).
Furthermore,

L(hC(C ·C F )) = L

(
hC

(⋃
C∈C

{(∧
e E∈C

c(E)

)
· F
}))

=
⋃

C∈C
L

((∧
e E∈C

c(E)

)
· F
)

=
⋃

C∈C
L

(∧
e E∈C

c(E)

)
· L(F )

=

(⋃
C∈C

L

(∧
e E∈C

c(E)

))
· L(F )

= L

(∑
C∈C

∧
e E∈C

c(E)

)
· L(F )

= L (hC(C)) · L(F )
= L (hC(C) · F ) �
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We now study the properties of the derivation DC associated with the
support SC.

Theorem 5.2. Let E be an expression in Exp(Σ). Let (D, B) be a couple in
{DC} × {BA, BB, BC}. Then:

The (D, B)-automaton of E is an AFA recognizing L(E).

Proof. (I) Let us show that the derivation DC satisfies the sufficient conditions
for finiteness of Proposition 3.10. (a) Since ⊕ = ∪, the function ⊕ is associa-
tive, commutative and idempotent (H1). (b) According to the definition of the
operators ⊕, ⊗ and �:

DC(a, hC(C1 ⊕ C2)) = DC

(
a, hC(C1 ∪ C2))

= DC(a,
∑

C∈C1∪C2

{¬e0 if C = ∅,∧
eE∈Cc(E) otherwise,

)

=
⋃

C∈C1∪C2

{
DC(a,¬e0) if C = ∅,
DC(a,

∧
eE∈Cc(E)) otherwise,

=
⋃

C∈C1

{
DC(a,¬e0) if C = ∅,
DC(a,

∧
eE∈Cc(E)) otherwise,

∪⋃C∈C2

{
DC(a,¬e0) if C = ∅,
DC(a,

∧
eE∈Cc(E)) otherwise,

= DC(a,
∑

C∈C1

{¬e0 if C = ∅,∧
eE∈Cc(E) otherwise,

∪DC(a,
∑

C∈C2

{¬e0 if C = ∅,∧
eE∈Cc(E) otherwise,

= DC(a, hC(C1)) ⊕ DC(a, hC(C2)).

DC(a, hC(C1 ⊗ C2)) = DC(a, hC(
⋃

(C1,C2)∈C1×C2
{C1 ∪ C2})

=
⋃

(C1,C2)∈C1×C2
DC(a, hC({C1 ∪ C2})

=
⋃

(C1,C2)∈C1×C2
DC(a, hC({C1} ∪ {C2})

=
⋃

(C1,C2)∈C1×C2
DC(a, hC({C1}) ∪ DC(a, hC({C2})

= DC(a, hC(C1)) ⊗ DC(a, hC(C2)).
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DC(a, hC(�(C1))) = DC(a, hC(⊗C1∈C1 ⊕c∈C {{n(c)}}))

= ⊗C1∈C1DC(a, hC({⊕c∈C{n(c)}}))

= ⊗C1∈C1 ⊕c∈C DC(a, hC({{n(c)}}))

= ⊗C1∈C1 ⊕c∈C DC(a, hC(

⎧⎪⎨
⎪⎩

c′ if c = c′,

c otherwise.

⎞
⎟⎠
⎞
⎟⎠

= ⊗C1∈C1 ⊕c∈C

⎧⎪⎨
⎪⎩

DC(a, hC(c′)) if c = c′,

DC(a, hC(c)) otherwise.

= ⊗C1∈C1 ⊕c∈C

⎧⎪⎨
⎪⎩

DC(a, c′) if c = c′,

DC(a,¬ec)) otherwise.

= ⊗C1∈C1 ⊕c∈C

⎧⎪⎨
⎪⎩

�� DC(a, c′) if c = c′,

�DC(a, c)) otherwise.

= ⊗C1∈C1 ⊕c∈C

⎧⎪⎨
⎪⎩

�DC(a,¬ec
′) if c = c′,

�DC(a, c)) otherwise.

= ⊗C1∈C1 ⊕c∈C �DC(a, hC({{c}}))
= �⊕C1∈C1 ⊗c∈CDC(a, hC({{c}}))
= �DC(a,

∑
C1∈C1

∧ec∈ChC({{c}}))
= �(DC(a, hC(C1))).

Finally, since any fB is defined as combination of ⊕, ⊗ and � operators, hy-
pothesis H2 holds. According to Proposition 3.10, DC is finite.

(II) Let us show that any couple in {DC} × {BA, BB, BC} satisfies the atom-
derivability property. (a) By definition of BB, the atom-derivability property is
satisfied by (DC, BB). (b) By induction over the structure of E. Let a be a symbol
in Σ. (i) If E ∈ Σ∪{1, 0} or if E = F ·G or if E = F ∗, since BA(E) = BC(E) = E,
Atom(BA(E)) = Atom(BC(E)) = {E}. (ii) Let f be a k-ary boolean function. Let
us first prove that the equation of the atom-derivanility property is satisfied for
the operators ⊕, ⊗ and �. If C1 or C2 equal ∅ or {∅}, equation is trivially satisfied.
Let C1 and C2 be two clauses different from ∅ and {∅}.
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Atom(BC(hC(C1 ∪ C2))) = Atom(BC(
∑

C∈C1∪C2
∧eE∈Cc(E)))

= Atom(∨BC∈C1∪C2BC(∧eE∈Cc(E)))
=
⋃

C∈C1∪C2Atom(BC(∧eE∈Cc(E)))

=
⋃

C∈C1Atom(BC(∧eE∈Cc(E)))

∪⋃C∈C2Atom(BC(∧eE∈Cc(E)))

= Atom(∨BC∈C1BC(∧eE∈Cc(E)))

∪Atom(∨BC∈C2BC(∧eE∈Cc(E)))

= Atom(BC(
∑

C∈C1 ∧e E∈Cc(E)))

∪Atom(BC(
∑

C∈C2 ∧e E∈Cc(E)))

= Atom(BC(hC(C1))) ∪ Atom(BC(hC(C2))).

Atom(BC(hC(C1 ⊗ C2))) = Atom(BC(hC(
⋃

(C1,C2)∈C1×C2
{C1 ∪ C2})))

=
⋃

(C1,C2)∈C1×C2
Atom(BC(hC({C1 ∪ C2})))

=
⋃

(C1,C2)∈C1×C2
Atom(BC(hC({C1})))

∪Atom(BC(hC({C2})))
=
⋃

(C1,C2)∈C1×C2
Atom(BC(hC({C1})))

∪⋃(C1,C2)∈C1×C2
Atom(BC(hC({C2})))

=
⋃

C1∈C1
Atom(BC(hC({C1})))

∪⋃C2∈C2
Atom(BC(hC({C2})))

= Atom(BC(hC(C1))) ∪ Atom(BC(hC(C2))).

Atom(BC(hC(�C1))) = Atom(BC(hC({{n(x)}})))
=
⋃

C∈C1

⋃
x∈C Atom(BC(hC({{n(x)}})))

=
⋃

C∈C1

⋃
x∈C Atom(BC(hC({{x}})))

= Atom(BC(hC(
⋃

C∈C1

⋃
x∈C{{x}})))

= Atom(BC(hC(C1))).

Hence, since any operator fC is a composition of ⊕, ⊗ and �:

Atom(BC(hC(fC(C1, . . . , Ck)))) =
⋃

1≤j≤k Atom(BC(hC(Cj))).
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Consequently:

Atom(BC(hC(DC(a, fe(E1, . . . , Ek)))))

= Atom(BC(hC(fC(DC(a, E1), . . . , DC(a, Ek)))))

=
⋃

1≤j≤k Atom(BC(hC(DC(a, Ej))))

=
⋃

1≤j≤k

⋃
E′∈Atom(BC(Ej))

Atom(BC(hC(DC(a, E′))))

=
⋃

E′∈Atom(BC(E)) Atom(BC(hC(DC(a, E′)))).

Furthermore, if f 
= ∨, BA(fe(E1, . . . , Ek)) = fe(E1, . . . , Ek).

Atom(BA(fe(E1, . . . , Ek))) = {fe(E1, . . . , Ek)}.
Finally,

Atom(BA(hC(C1 ∪ C2))) = Atom(BA(
∑

C∈C1∪C2
∧eE∈Cc(E)))

= Atom(∨BC∈C1∪C2BA(∧eE∈Cc(E)))

=
⋃

C∈C1∪C2Atom(BA(∧eE∈Cc(E)))

=
⋃

C∈C1Atom(BA(∧eE∈Cc(E)))
∪⋃ C∈C2Atom(BA(∧eE∈Cc(E)))

= Atom(∨BC∈C1BA(∧eE∈Cc(E)))
∪Atom(∨BC∈C2BA(∧eE∈Cc(E)))

= Atom(BA(
∑

C∈C1 ∧e E∈Cc(E)))

∪Atom(BA(
∑

C∈C2 ∧e E∈Cc(E)))

= Atom(BA(hC(C1))) ∪ Atom(BA(hC(C2))).

Consequently, any couple in {DC}×{BA, BB, BC} satisfies the atom-derivability
property.

(III) According to Theorem 4.5, from (I) and (II), the theorem holds. �

To conclude this section, we give two examples enlightening our construction.
Example 5.3 illustrates the computation of an AFA from a regular expression
while Example 5.4 shows that in some cases, our construction leads to an automa-
ton which is exponentially smaller than the one computed with the construction
of Brzozowski. In order to improve readability, regular expressions are simplified
according to the following rules:

E + 0 ≡ 0 + E ≡ E

E · 0 ≡ 0 · E ≡ 0

E · 1 ≡ 1 · E ≡ E.

Example 5.3. Let E = ((ab)∗a)XORe((abab)∗a). We now construct the
(DC, BC)-automaton of E, that is the AFA (Σ, Q, E, F, δ). We first compute the
derivatives C of E w.r.t. any symbol in Σ, according to the derivation DC and then
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compute the derivatives of the expressions that are atoms of the base of hC(C).
This scheme is repeated until no more expression is produced.

DC(a, E) = (�(DC(a, (ab)∗a)) ⊗ DC(a, (abab)∗a))

⊕(DC(a, (ab)∗a) ⊗�(DC(a, (abab)∗a)))

= (�({{b(ab)∗a}, {1}})⊗ {{bab(abab)∗a}, {1}})
⊕({{b(ab)∗a}, {1}} ⊗ �({{bab(abab)∗a}, {1}}))

= ({{b(ab)∗a, 1}} ⊗ {{bab(abab)∗a}, {1}})
⊕({{b(ab)∗a}, {1}} ⊗ {{bab(abab)∗a, 1}})

= {{b(ab)∗a, 1, bab(abab)∗a}, {b(ab)∗a, 1, 1},
{b(ab)∗a, bab(abab)∗a, 1}, {1, bab(abab)∗a, 1}}

DC(b, E) = ∅
DC(a, b(ab)∗a) = ∅
DC(b, b(ab)∗a) = {{(ab)∗a}}
DC(a, (ab)∗a) = {{b(ab)∗a},

{1}}
DC(b, (ab)∗a) = ∅
DC(a, 1) = ∅
DC(b, 1) = ∅
DC(a, bab(abab)∗a)= ∅

DC(b, bab(abab)∗a)= {{ab(abab)∗a}}
DC(a, ab(abab)∗a) = {{b(abab)∗a}}
DC(b, ab(abab)∗a) = ∅
DC(a, b(abab)∗a) = ∅
DC(b, b(abab)∗a) = {{(abab)∗a}}
DC(a, (abab)∗a) = {{bab(abab)∗a},

{1}}
DC(b, (abab)∗a) = ∅.

From the computation of the derivatives, we deduce:

• the set Q = {q1, . . . , q8} of states:
q1 = E, q2 = b(ab)∗a, q3 = 1, q4 = bab(abab)∗a;

q5 = ab(abab)∗a, q6 = b(abab)∗a, q7 = (ab)∗a, q8 = (abab)∗a;
• the function F from Q to B:

F (q3) = F (q7) = F (q8) = 1;
F (q1) = F (q2) = F (q4) = F (q5) = F (q6) = 0;

• and the function δ from Q × Σ to BoolForm(Q):

q1 q2 q3 q4 q5 q6 q7 q8

a

¬Bq2 ∧B ¬Bq3 ∧B q4

∨B

¬Bq2 ∧B ¬Bq3 ∧B q3

∨B

q2 ∧B ¬Bq4 ∧B ¬Bq3

∨B

q3 ∧B ¬Bq4 ∧B ¬Bq3

0 0 0 q6 0 q2 ∨B q3 q4 ∨B q3

b 0 q7 0 q5 0 q8 0 0
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Let us notice that in this example, substituting BC(E) to E in I would produce
a smaller automaton.

Example 5.4. Let n1 and n2 be any two integers satisfying n1 < n2. Let us
consider the expression E = E1 ∩ E2 where E1 = (a + b)∗a(a + b)n1 and E2 =
(a + b)∗b(a + b)n2 . It can be checked that for any word w in Σ∗:

d
dw

(E) =
d
dw

(E1) ∩ d
dw

(E2).

For any integer j, let us set Fj = (a+b)j with F0 = 1. It is a folk knowledge that
the number of dissimilar derivatives of E1 (resp. E2) is exponential with respect
to n1 (resp. n2). Consequently, the number of states of the (DB , BB)-automaton
of E is exponential with respect to max(n1, n2).

Moreover, the number of derivated terms of E (using our extension of Antimirov
partial derivation) is quadratic with respect to the number of occurrences of sym-
bols of E. Indeed

DA(w, E1 ∩ E2) ⊂
⋃

(F,G)∈{E1,Fn1 ,Fn1−1,...1,0}×{E2,Fn2 ,Fn2−1,...1,0}
{F ∩ G}

consequently, the (DA, BA)-automaton of E has a quadratic number of states with
respect to the number of occurrences of symbols of E.

Finally, the (DC, BC) automaton of E has a linear number of states since

DC(a, E) = {{E1, E2}, {Fn1 , E2}} DC(b, E) = {{E1, E2}, {E1, Fn2}},
DC(a, E1) = {{E1}, {Fn1}} DC(b, E1) = {{E1}}
DC(a, E2) = {{E2}}} DC(b, E2) = {{E2}, {Fn2}}

DC(a, Fj) = DC(b, Fj) =

{
{{Fj−1}} if j ≥ 1

∅ otherwise.

6. Conclusion

This paper provides two main results. First, the theoretical scheme of derivations
via a support allows us to formalize intrinsic properties of (unrestricted) regular
expression derivations. As a by-product we obtain a kind of unification of the clas-
sical derivations that compute word derivatives, partial derivatives or extended
partial derivatives. Secondly, the notion of base function that associates a boolean
formula with a regular expression allows us to show how to deduce an alternating
automaton equivalent to a given regular expression from the set of its derivatives
via a given support. We are now investigating new features: it is possible, for ex-
ample, to define morphisms from one support to another one in order to study the
relations between the associated automata. An other perspective is to replace the
derivation mapping by an other mapping (right derivation or left-and-right deriva-
tion for example, or any transformation with good properties). There also exist
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well-know algorithms to reduce boolean formulas (Karnaugh, Quine-McCluskey);
we intend to investigate reduction techniques based on derivation. Finally we in-
tend to extend the theoretical derivation scheme in order to handle the derivation
of regular expression with multiplicities.
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