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FINITE REPETITION THRESHOLD FOR LARGE
ALPHABETS

Golnaz Badkobeh1, Maxime Crochemore2

and Michaël Rao3

Abstract. We investigate the finite repetition threshold for k-letter
alphabets, k ≥ 4, that is the smallest number r for which there exists an
infinite r+-free word containing a finite number of r-powers. We show
that there exists an infinite Dejean word on a 4-letter alphabet (i.e.
a word without factors of exponent more than 7

5
) containing only two

7
5
-powers. For a 5-letter alphabet, we show that there exists an infinite

Dejean word containing only 60 5
4
-powers, and we conjecture that this

number can be lowered to 45. Finally we show that the finite repetition
threshold for k letters is equal to the repetition threshold for k letters,
for every k ≥ 6.

Mathematics Subject Classification. 68R15.

1. Introduction

Following the study of infinite words avoiding repetitions in relation to Dejean’s
statement on the repetition threshold of alphabets [5] we show that it is possible
to impose more constraints on words. We are interested in infinite words whose
maximal exponent of its finite factors does not exceed Dejean’s threshold and that
contain a finite number of factors having the maximal exponent. This introduces
the notion of finite repetition threshold (see [2, 3]). Imposing this constraint is
not possible on the binary alphabet whose finite repetition threshold is 7

3 while
the repetition threshold is 2 (see [10, 13]), but can be satisfied for the ternary
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alphabet [2]. We show here that the result also holds for larger alphabets. This
confirms the intuition given by the growth rates of words having the smallest
exponent according to their alphabet size (see [7, 14]).

Associated with the finite repetition threshold is the smallest number of factors
of highest exponent that an infinite word can accommodate (see [1, 6]). We show
here that there exists an infinite word on a 4-letter alphabet containing only two
7
5 -powers and no factor of exponent more than 7

5 . The only known proofs of the 7
5

repetition threshold for 4 letters are due to Pansiot [9] and Rao [11]; both of their
words contain 24 7

5 -powers. On 5 letters, the proof of the 5
4 threshold by Moulin–

Ollagnier [8] provides a word with 360 5
4 -powers of periods 4, 12 and 44. We show

that this number can be reduced to 60 and conjecture that it can be lowered to
45, the smallest possible number.

Both results also provide in fact new proofs of the repetition thresholds for the
corresponding alphabet sizes, 4 and 5. The question on the smallest number of
factors of highest exponent in a Dejean word remains open for larger alphabets.

2. Preliminaries

We denote by Σk the set {1, 2, . . . , k} for k ≥ 2. Let w be a word. We denote
by w[i] the ith letter w, and by w[i : j] (where i ≤ j) the word w[i]w[i+1] . . . w[j].
Two words w and w′ are conjugated if there are u and v such that w = uv and
w′ = vu. A repetition in w is a pair of words (p, e) where p is non-empty, e is a
prefix of pe, and pe is a factor of w. The period of the repetition is |p|, and its
exponent is |pe|

|p| . By abuse of notation, we sometimes identify the repetition (p, e)
with the factor pe of w. A repetition (p, e) in w over the alphabet Σk is a short
repetition if |e| < k − 1, otherwise it is a kernel repetition.

A word is x-free (resp. x+-free) if it has no repetition of exponent at least x
(resp. greater than x). A word is called an x-power if it is a repetition of exponent x.

The repetition threshold for k letters (or for a k-letter alphabet), denoted RT(k),
is the infimum of maximum exponents of repetitions over all infinite words on a
k-letter alphabet. The following was conjectured by Dejean [5] and finally proved
by several authors (see [4, 11]).

RT(k) =

⎧⎪⎪⎨
⎪⎪⎩

7
4 k = 3
7
5 k = 4

k
k−1 k ≥ 5 or k = 2.

We say that an infinite word on a k-letter alphabet is a Dejean word if it is
RT(k)+-free, and a factor is a limit repetition if its exponent is exactly RT(k).

The finite repetition threshold for k letters is the smallest number FRT(k) for
which there exists an infinite FRT(k)+-free word containing a finite number of
RT(k)-powers (that is, it has a finite number of limit repetitions).

It is known that any infinite 7
3 -free infinite binary word contains an arbitrary

number of squares [10, 13]. However, there exists an infinite binary word whose
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maximal exponent does not exceed 7
3 and all of its squares have period length at

most 7. In [3], the associated minimal number of squares that an infinite binary
word can accommodate is given as follows: there exists an infinite binary word
containing only 12 squares whose maximal exponent is 7

3 . The proof is based on
a HD0L-system exploiting two special non-uniform morphisms, the first one on
6-letter alphabet and the second from 6 letters to binary. Furthermore, a simple
construction of all binary words with only 11 squares whose maximal exponent is
7
3 showed that this set is finite and that its longest element has length 116, which
shows the minimality of 12.

This idea was extended and further studied in [2] on ternary words. The result
is as follows: there exists an infinite ternary Dejean word containing only two
7
4 -powers. The proof is based on a 160-uniform morphism which translates any
infinite Dejean word on 4 letters to an infinite Dejean word on 3 letters containing
only two 7

4 -powers.
Pansiot proved that the repetition threshold for a 4-letter alphabet is 7

5 . In
order to prove the result, Pansiot used a construction that codes a k−1

k−2 -free word
over alphabet Σk into a binary word. Let k ≥ 3 and w be a k−1

k−2 -free word over
Σk, of length at least k − 1. Then every factor of length k − 1 consists of k − 1
different letters. The Pansiot code of w is the binary word Pk(w) such that for all
i ∈ {1, . . . , |w| − k + 1} (for all i ≥ 1 if w is infinite):

Pk(w)[i] =

{
0 w[i + k − 1] = w[i]

1 w[i + k − 1] /∈ {w[i], . . . , w[i + k − 2]}.

Note that w is uniquely defined by Pk(w) and w[1 : k − 1]. One can define an
inverse operation: for a binary word w, Mk(w) is the word on the alphabet Σk such
that:

Mk(w)[i] =

⎧⎪⎪⎨
⎪⎪⎩

i i < k

Mk(w)[i − k + 1] i ≥ k and w[i − k + 1] = 0

α otherwise

where {α} = Σk \ {Mk(w)[i − k + 1], . . . , Mk(w)[i − 1]}. Note that if w[i] = i for
every i < k, then Mk(Pk(w)) = w.

We shall denote by Sk the symmetric group on k elements. Therefore the ele-
ments of this set are the permutations of the set Σk = {1, 2, . . . , k}. We denote
by Idk the identity permutation of Sk. We use cycle notation for permutations,
that is σ = (a1a2 . . . al) denotes the permutation such that σ(ai) = ai+1 (where
the indices are taken modulo l). Let Ψ : Σ∗ → Sk be a morphism. A repetition
(p, e) is a Ψ -kernel repetition if p ∈ ker(Ψ). Ψ -kernel repetitions were introduced
by Moulin–Ollagnier [8], and generalized later by Rao [11].

Let ϕ : {0, 1}∗ → Sk be the morphism such that ϕ(0) = (1 . . . k − 1) and
ϕ(1) = (1 . . . k). The following lemma by Moulin–Ollagnier gives a strong relation
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between kernel repetitions in a word on a k-letter alphabet and ϕ-kernel repetitions
in its Pansiot code.

Lemma 2.1 ([8]). Let w be a k−1
k−2 -free word w on a k-letter alphabet. Then w has

a kernel-repetition (p, e) if and only if Pk(w) has a ϕ-kernel-repetition (p′, e′) with
|p′| = |p|, p′e′ = Pk(pe) and |e′| = |e| − k + 1.

Throughout this paper, in order to prove the existence of an infinite word com-
plying with some properties, the following method is used. The main technique is
to design two or more morphisms generating an appropriate infinite binary word
and then translate that by the inverse of the Pansiot coding. One of the experi-
mental techniques that we used consists of the following steps. We generate a long
enough word satisfying the pre-defined constraints using a backtracking strategy,
and we translate this word to a binary word by applying the Pansiot coding. Then,
we search for its most repetitive motifs, and using selective elements of the set of
motifs, we try to decode the word to find its pre-image according to the morphism
defined by the motifs. If necessary, we iterate the previous step with the new word
(pre-image of the first word). Backtracking is a general algorithm for finding all (or
some) solutions to some computational problem; it incrementally builds candidates
to the solutions, and abandons each partial candidate as soon as it determines it
cannot possibly be completed to a valid solution.

3. Finite repetition threshold for 4-letter alphabets

Since the repetition threshold for a 4-letter alphabet is 7
5 , it suffices to show that

there exists a 7
5

+-free infinite word on Σ4 with finitely many limit repetitions (that
is 7

5 -powers). There are two proofs of Dejean’s conjecture for 4-letter alphabets, by
Pansiot [9] and Rao [11]. In both cases the number of limit repetitions contained
in the infinite words is 24. This proves that the finite repetition threshold for 4
letters is 7

5 . In this section, we prove the following:

Theorem 3.1. The finite repetition threshold for 4-letter alphabets is 7
5 and the

minimal number of 7
5 -powers is 2.

A computer check shows that a word on a 4-letter alphabet for which the max-
imal exponent of factors is 7

5 and that contains at most one limit repetition has
maximal length 230. Then, to prove Theorem 3.1, we give a morphic word which
is the Pansiot code of a Dejean word on 4 letters with only two limit repetitions.
The correctness proof follows the plan and notations introduced in [11]. However,
since the morphism ϕ′ will be simpler here, we can make the proof self-contained.
Informally, the idea is to prove that if the morphic word has a forbidden repetition
with a long enough period, then it has a smaller forbidden repetition. Thus it
remains to prove that the morphic word has no forbidden repetition with a period
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bounded by a constant, which can be done by a finite case analysis. Let:

f :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a → abc

b → cda

c → adc

d → cba

g :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a → aacbbaaccbaabcabc

b → aacbacbaabbcaabbc

c → cbaaccbbaccabcabc

d → aacbaccaabbcaabbc

h :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a → 10110101011011010110110101011010101101101010110110101011

0101011011010101101101010110101011011010101

b → 10110101011011010110110101011011010101101010110110101011

0110101011010101101101010110110101011010101

c → 10110101011011010110110101011011010101101101010110101011

0110101011011010101101010110110101011011010.

The rest of this section is devoted to the proof of the following theorem.

Theorem 3.2. w0 = M4(h(g(f∞(a)))) is 7
5

+-free and it contains only two 7
5 -

powers: (3421432412, 3421) and (1423412432, 1423).

Remark 3.3. A computer check shows that the Pansiot code of every long enough
7
5

+-free word on 4-letter alphabet with at most two limit repetitions contains h(x)
as factor, for an x ∈ {a, b, c}. Moreover, every Pansiot code of a Dejean word
with at most two limit repetitions Moreover, every Pansiot code of a Dejean word
with at most two limit repetitions starting with h(x) (for x ∈ {a, b, c}) must be
followed by h(y), for a y ∈ {a, b, c}. Thus the morphism h in our construction is
unavoidable, i.e. for every Dejean word w which proves Theorem 3.1, P4(w) must
be the image by h of a ternary word (modulo the shift operation).

The following properties derive from simple observations:

• f is 3-uniform, g is 17-uniform and h is 99-uniform. Thus h◦g is 1683-uniform.
(A morphism f : Σ∗ → Σ′∗ is l-uniform, l ∈ N, if for every x ∈ Σ, |f(x)| = l).

• f , g, h and h ◦ g are comma-free. (A morphism f : Σ∗ → Σ′∗ is comma-free if
whenever f(xy) = uf(z)v, then either u = ε or v = ε, for every x, y, z ∈ Σ and
u, v ∈ Σ′∗).

• The longest common prefix in {h ◦ g(a), h ◦ g(b), h ◦ g(c), h ◦ g(d)} has size 635
and the longest common suffix has size 990.

• For every x ∈ {a, b, c}, ϕ(h(x)) = (13).

The last fact can be verified by a computer check (or by a tedious hand check).
The notion of Ψ -kernel repetition is central in [8, 11]. However, the proof can be
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simplified here since ϕ(h(x)) = (13) for every x ∈ {a, b, c} (which is not true for
cases in [11]). Since g and h are uniform and of odd-size, for every x ∈ {a, b, c, d},
ϕ(h(g(x))) = (13) and ϕ(h(g(f(x)))) = (13). Let ϕ′ : {0, 1, 2, 3}∗ → S4 such that
ϕ′(u) = (13)|u|. Thus (p, q) is a ϕ′-kernel repetition if (p, q) is a repetition, and
|p| is even. The following lemma gives a relation between ϕ-kernel repetitions in
w1 = h(g(f∞(a))) and ϕ′-kernel repetitions in w2 = f∞(a).

Lemma 3.4. Let (p1, e1) be a ϕ-kernel-repetition of w1. If |e1| ≥ 3365, then w2

has a ϕ′-kernel-repetition (p2, e2) with |e2| ≥
⌈
|e1|−1625

1683

⌉
and |p1| = 1683× |p2|.

Proof. Suppose w.l.o.g. that (p1, e1) is a maximal repetition, i.e. there is no rep-
etition (p′1, e′1) in w1 such that |p′1| = |p1| and p1e1 is a proper factor of p′1e′1. If
|e1| ≥ 3365 = 2 × 1683 − 1, then h ◦ g(a), h ◦ g(b) or h ◦ g(c) appears as a factor
in e1. Since h ◦ g is comma-free and 1683-uniform, |p1| is a multiple of 1683. Let
n ∈ N such that |p1| = n × 1683. Then there is a factor u = a1 . . . al in w2 such
that h ◦ g(u) = vp1e1v

′, v is a proper prefix of h ◦ g(a1) and v′ is a proper suffix of
h ◦ g(al). Since (p1, e1) is a repetition of period n × 1683, for every n + 1 < i < l,
ai = ai−n. Thus (p2, e2) = (a2 . . . an+1, an+2 . . . al−1) is a repetition in w2 of period
n. Moreover, ϕ′(p2) = ϕ(h ◦ g(p2)) = Id4 since ϕ(p1) = Idk, and p1 is conjugate to
h ◦ g(p2). Since p1e1 is maximal on the left, |v| ≥ 693, and since p1e1 is maximal
on the right, |v′| ≥ 1048. Thus |e1| − 1625 ≤ 1683 × |e2|, and w2 has a ϕ′-kernel
repetition (p2, e2) with |e2| ≥

⌈
|e1|−1625

1683

⌉
and |p1| = 1683 × |p2|. �

The proof of the following Lemma is similar, and is omitted.

Lemma 3.5. If (p2, e2) is a ϕ′-kernel repetition of w2 = f∞(a) with |e2| ≥ 5,
then w2 has a ϕ′-kernel-repetition (p′2, e′2) with |e′2| ≥

⌈
|e2|−2

3

⌉
and |p2| = 3× |p′2|.

Lemma 3.6. Suppose that w2 has a ϕ′-kernel-repetition (p2, e2) with |e2| ≥ 5 and
|e2|+1
|p2| ≥ 2

5 . Then there exists a ϕ′-kernel-repetition (p′2, e′2) with |p2| = 3×|p′2| and
|e′

2|+1
|p′

2| ≥ 2
5 ·

Proof. By Lemma 3.5,

2
5
≤ |e2| + 1

|p2| ≤ 3 × |e′2| + 3
3 × |p′2|

=
|e′2| + 1
|p′2|

· �

The following fact can be verified by a computer check:

Fact 3.7. There is no ϕ′-kernel-repetition (p2, e2) with 2 ≤ |e2| < 5 and |e2|+1
|p2| ≥

2
5 in w2.

Thus by Lemma 3.6:

Corollary 3.8. There is no ϕ′-kernel-repetition (p2, e2) with 2 ≤ |e2| and |e2|+1
|p2| ≥

2
5 in w2.
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Lemma 3.9. w1 has no ϕ-kernel-repetition (p1, e1) with |e1| ≥ 3 × 1683 and
|e1|+3
|p1| ≥ 2

5 ·
Proof. Suppose that w1 has a ϕ-kernel-repetition (p1, e1) with |e1| ≥ 3× 1683 and
|e1|+3
|p1| ≥ 2

5 . By Lemma 3.4, w2 has a ϕ′-kernel repetition (p2, e2) with |e2| ≥ 2 and

2
5
≤ |e1| + 3

|p1| ≤ 1683 × |e2| + 1625 + 3
1683 × |p2| <

|e2| + 1
|p2| ·

By Corollary 3.8, w2 has no such ϕ′-kernel repetition. Contradiction. �

By Lemma 3.9, if w1 has a ϕ-kernel repetition (p1, e1) with |p1e1|+3
|p1| ≥ 7

5 , then

|p1| ≤ 5
2 (|e1| + 3) < 5×(3×1683+3)

2 , that is |p1| < 12630. By Lemma 2.1, and
since w1 is the Pansiot code of w0, w0 has no repetition (p, e) with |p| ≥ 12633
and |pe|

|p| ≥ 7
5 . To complete the proof of Theorem 3.2, it suffices to show that for

every repetition (p, e) in w0 with |p| < 12633, either |pe|
|p| < 7

5 , or |pe|
|p| = 7

5 and
(p, e) ∈ {(3 421 432 412, 3421), (1 423 412 432, 1423)}. This fact has been verified by
a computer check.

4. Finite repetition threshold for 5-letter alphabets

This section is devoted to the study of the minimal number of limit repetitions
over all Dejean words on a 5-letter alphabet. Moulin–Ollagnier gave a proof of
Dejean’s conjecture for k = 5 (see [8]). Let:

m :

{
0 → 010101101101010110110

1 → 101010101101101101101.

Then M5(m∞(0)) is 5
4

+-free. We claim without proof that it contains 360 limit
repetitions, of which a third have period 4, a third period 12 and the remaining have
period 44. This proves that the finite repetition threshold for 5-letter alphabets
is 5

4 . We show, with an explicit construction, that the number of limit repetitions
can be lowered to 60, and we conjecture that the minimal number is 45. Most of
the intermediate proofs are similar to those in Section 3, and are omitted. Let:

f :

{
a → aaabbababbaaabbaabb

b → aabbbaababaabbbaabb

g :

{
a → aaaababbbbababaaaababbb

b → bbbbabaaaabababbbbabaaa

h :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a → 11011010101011011010101011011010101101101010110110110101

011011011011010101011011010101101101010110110110101010110

b → 11011010101101101010110110101010110110110110101011011011

010101101101010110110101010110110101010110110110101010110.
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Let w2 = f∞(a), w1 = h(g(w2)) and w0 = M5(w1).

Theorem 4.1. w0 is a Dejean word on 5 letters, and it contains only 60 limit
repetitions, all of which have period 4.

The following properties will help with the proof of Theorem 4.1:

• f is 19-uniform, g is 29-uniform and h is 113-uniform. Thus h◦g is 3277-uniform.
• f , g, h and h ◦ g are comma-free.
• The longest common prefix in {h ◦ g(a), h ◦ g(b)} has size 11 and the longest

common suffix has size 24.
• For every x ∈ {a, b}, ϕ(h(x)) = (12)(354), thus for every x ∈ {a, b},

ϕ(h(g(x)) = (12)(345) and ϕ(h(g(f(x))) = (12)(345).

Let ϕ′ : {0, 1, 2, 3, 4}∗ → S5 such that ϕ′(u) = [(12)(345)]|u|. Thus (p, q) is a
ϕ′-kernel repetition if and only if (p, q) is a repetition, and |p| is divisible by 6.

Lemma 4.2. Let (p1, e1) be a ϕ-kernel-repetition of w1 = h(g(f∞(a))). If |e1| ≥
6553, then w2 = f∞(a) has a ϕ′-kernel-repetition (p2, e2) with |e2| ≥

⌈
|e1|−35
3277

⌉
and |p1| = 3277 × |p2|.
Lemma 4.3. If |e2| ≥ 37, then w2 = f∞(a) has a ϕ′-kernel-repetition (p′2, e′2)
with |e′2| ≥

⌈
|e2|−8

19

⌉
and |p2| = 19 × |p′2|.

Here, we adapt the same approach as in Section 3 (Lem. 3.6 and Fact 3.7) with
the appropriate changes based on the size of the morphism f and the exponent 5

4 .
The next corollary follows:

Corollary 4.4. There is no ϕ′-kernel-repetition (p2, e2) with 6 ≤ |e2| and |e2|+1
|p2| ≥

1
4 in w2.

Lemma 4.5. w1 has no ϕ-kernel-repetition (p1, e1) with |e1| ≥ 6 × 3277 and
|e1|+4
|p1| ≥ 1

4 ·
The proof of Lemma 4.5 is similar to the proof of Lemma 3.9, and is a direct

consequence of Lemma 4.2 and 4.3. By Lemma 4.5, if w1 has a ϕ-kernel repetition
(p1, e1) with |p1e1|+4

|p1| ≥ 5
4 , then |p1| ≤ 4

1 (|e1| + 4) < 4 × (6 × 3277 + 4), that is
|p1| < 78 664. By Lemma 2.1, and since w1 is the Pansiot code of w0, w0 has no
repetition (p, e) with |p| ≥ 78 664 and |pe|

|p| ≥ 5
4 . A computer check showed that

among every repetition (p, e) in w0 of period at most 78 664, none has an exponent
greater than 5

4 . This proves that FRT(5) = 5
4 . This check also reveals that there

are only 60 limit repetitions (p, e) in w0, and for every limit repetition, |e| = 1.
This concludes the proof of Theorem 4.1.

To conclude this section, we give lower bounds on the number of limit repetitions
for a Dejean word on 5 letters. The following facts have been verified by a computer
check. A standard (and easily parallelizable) backtrack algorithm written in C++
took approximately 3 days (resp. 120 days) of single-core time on a 2.1GHz CPU
to verify fact (a) (resp. fact (b)).
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Fact 4.6.

(a) A 5
4

+-free word on a 5-letter alphabet that contains at most 44 limit repetitions
has size at most 4648.

(b) A 5
4

+-free word on a 5-letter alphabet that contains at most 45 limit repetitions,
and such that every limit repetition has period 4, has size at most 7331.

Thus the minimal number of limit repetitions over all Dejean words on 5 letters
is between 45 and 60. Based on computer experiments, we conjecture the following.

Conjecture 4.7.

• There exists an infinite Dejean word on a 5-letter alphabet with only 45 limit
repetitions.

• There exists an infinite Dejean word on a 5-letter alphabet with only 46 limit
repetitions, and such that every limit repetition has period 4.

5. Finite repetition threshold for k-letter alphabets,
k ≥ 6

Looking at the existing proofs for Dejean’s conjecture shows in fact FRT(k) =
RT(k) for k ≥ 6, that is, known constructions of Dejean words have finitely many
limit repetitions.

Lemma 5.1. For every 5 ≤ k ≤ 11, FRT(k) = RT(k).

Proof. Moulin–Ollagnier gave uniform morphisms hk, for 5 ≤ k ≤ 11, such that
Mk(h∞

k (1)) is a Dejean word on a k-letter alphabet [8]. We show that these Dejean
words have finitely many limit repetitions. We fix a 5 ≤ k ≤ 11, and let h = hk.
Let u = |h(0)| = |h(1)|, and let L be the longest common prefix of h(0) and h(1).
Note that the last letters of h(0) and h(1) differ. Suppose that Mk(h∞(1)) has
infinitely many limit repetitions. Let L be the set of ϕ-kernel repetitions (p, e)
in h∞(1) with |e|+k−1

|p| = 1
k−1 , that is ϕ-kernel repetitions which correspond to a

limit repetition. Since Mk(h∞(1)) has infinitely many limit repetitions, L is also
infinite. By ([8], Cor. 3.20), there is a repetition (p, e) ∈ L and a n > 0 such that
(hn(p), μn(e)) ∈ L, where μ(w) = h(w)L. Then:

|e| + k − 1
|p| =

un · |e| + |L| · ∑n−1
i=0 ui + k − 1

un · |p|
which is satisfied when:

(u − 1) · (k − 1) = |L|.
We have a contradiction, since |L| ≤ u − 1 and k ≥ 5. �

For k ≥ 12 we use the following lemma.



428 G. BADKOBEH ET AL.

Lemma 5.2. Let k ≥ 5. Let wTM be the Prouhet–Thue–Morse word, that is
wTM = η∞(0) where η : 0 → 01, 1 → 10. Let w1 = h(wTM ) be a binary word
such that:

(1) w0 = Mk(w1) is a Dejean word on a k-letter alphabet;
(2) h : {0, 1}∗ → {0, 1}∗ is n-uniform;
(3) there exists σ ∈ Sk such that ϕ′(0)ϕ′(1) = σϕ′(0)σ−1 and ϕ′(1)ϕ′(0) =

σϕ′(1)σ−1, where ϕ′ : {0, 1}∗ → Sk is the morphism such that ϕ′(0) = ϕ(h(0))
and ϕ′(1) = ϕ(h(1)).

Then w0 has finitely many limit repetitions.

Proof. Note that w1 cannot contain arbitrarily large powers, otherwise w0 would
also contain arbitrarily large powers. We have h(0) �= h(1), since the Pansiot code
of a Dejean word is not periodic. Thus we can suppose w.l.o.g. that the last letters
of h(0) and h(1) differ, otherwise we replace h(0) (resp. h(1)) by uh(0)u−1 (resp.
uh(1)u−1), where u is the largest common suffix of h(0) and h(1). Moreover we
can suppose w.l.o.g. that the last letter of h(x) is x for x ∈ {0, 1}, otherwise we
exchange h(0) and h(1) (note the factor set of wTM is closed under the comple-
mentation). Let L be the largest common prefix of h(0) and h(1), and let 	 be the
size of L.

Claim 5.3. There is a B ∈ N such that for every ϕ-kernel repetition (p, e) in w1

with |e| ≥ B, |p| is a multiple of n.

Proof. Let v, where v is a binary word, be the image of v by the morphism 0 →
1, 1 → 0. Let M = {1 ≤ i ≤ n : h(0)[i] = h(1)[i]}, N = {1 ≤ i ≤ n : h(0)[i] =
0 and h(1)[i] = 1} and N ′ = {1 ≤ i ≤ n : h(0)[i] = 1 and h(1)[i] = 0}. Note that
{M, N, N ′} is a partition of {1, . . . , n}, and since the last letter of h(x) is x, we have
n ∈ N . Suppose that the claim is false. Then there are arbitrarily large factors u
and u′ of wTM , with |u| = |u′|+1 ≥ 4, such that vh(u′) is a prefix of h(u), where v
is a non-empty proper suffix of h(0) or h(1). Since wTM is cube-free, u′, u[1 : |u|−1]
and u[2 : |u|] contain 0 and 1 as factors. Thus for every i ∈ M , i+|v| ∈ M (mod n),
that is M + |v| = M (mod n). Since n ∈ N , we have |v| �∈ M . Since the last letter
of h(x) is x (for x ∈ {0, 1}), u′ is either a suffix of u or of u, depending on whether
|v| ∈ N or |v| ∈ N ′. If u′ is a suffix of u, then h(u′)[i] = h(u′)[i + n − |v|] for
every 1 ≤ i ≤ n · |u′| − n + |v|, that is h(u′) is a repetition of period n − |v|.
Suppose now that u′ is a suffix of u. Let 1 ≤ i ≤ n · |u′| − 2(n − |v|). If i ∈ M
(mod n), h(u′)[i] = h(u′)[i + n − |v|] = h(u′)[i+2(n−|v|)], since {i, i+n−|v|]} ⊆
M (mod n). Otherwise h(u′)[i] = h(u′)[i + n − |v|] = h(u′)[i + 2(n − |v|)], since
{i, i + n − |v|]} ⊆ {1 . . . n} \ M (mod n). Thus h(u′) is a repetition of period
2(n−|v|). In all cases, h(u′) is a repetition of period at most 2n. Hence w1 contains
arbitrarily large powers, and we have a contradiction. �

Suppose that w0 has infinitely many limit repetitions. Then w1 has infinitely
many ϕ-kernel repetitions (p, e) with |e|+k−1

|p| = 1
k−1 . By Claim 5.3, if e is long

enough then |p| is a multiple of n, and wTM has a repetition (p′, e′) such that
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n · |p′| = |p|, p is conjugated to h(p′) and |e| = n · |e′|+ 	. Since (p, e) is a ϕ-kernel
repetition, ϕ(p) = Idk and ϕ(h(p′)) = Idk. By condition (3), ϕ′(p′) = Idk, and
(p′, e′) is a ϕ′-kernel repetition of wTM .

Thus wTM has infinitely many ϕ′-kernel repetitions (p′, e′) with n·|e′|+�+k−1
n·|p′| =

1
k−1 . Let (p′, e′) be a ϕ′-kernel repetition in wTM with |e′| ≥ 4 and n·|e′|+�+k−1

n·|p′| =
1

k−1 . By [11], Corollary 9, wTM has a ϕ′-kernel repetition (p′′, e′′) with |p′| = 2×|p′′|
and |e′| ≤ 2× |e′′|. Thus w1 has a ϕ-kernel repetition (h(p′′), h(e′′)L), and w0 has
a kernel repetition of exponent n·|e′′|+�+k−1

n·|p′′| > n·|e′|+�+k−1
n·|p′| = 1

k−1 . We have a
contradiction with the fact that w0 is a Dejean word. �

We apply the previous lemma on constructions for 8 ≤ k ≤ 38 in [11], or k ≥ 24
in [12] to show that FRT(k) = RT(k) for every k ≥ 8.

We conclude with the following open questions.

Conjecture 5.4. For every k ≥ 5, there is a infinite Dejean word on k letters
such that the only allowed limit repetitions have period k − 1.

Let LR(k), for k ≥ 3, be the minimal number of limit repetitions over all Dejean
words on k letters. Similarly let LR′(k), for k ≥ 5, be the minimal number of limit
repetitions over all Dejean words on k letters such that every limit repetition has
period k−1. By the results of the present article, LR(k) is defined for every k ≥ 3,
and LR′(k) is defined if Conjecture 5.4 is true. We know that LR(3) = 2 [2],
LR(4) = 2, 45 ≤ LR(5) ≤ 60 and 46 ≤ LR′(5) ≤ 60. It may be difficult to find
the exact value of LR(k) or LR′(k) for any k ≥ 5, but we can ask the following
question.

Question 1. Find a lower or an upper bound for LR(k) or LR′(k), k ≥ 5.

Conjecture 5.4 implies that LR(k) ≤ LR′(k) ≤ k!. On the other hand, limit
repetitions cannot be avoided when k ≥ 5 since every 0 in the Pansiot code leads
to an occurrence of a limit repetition of period k − 1. Thus 0 < LR(k) ≤ LR′(k).
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