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AN ISOLATED POINT IN THE HEINIS SPECTRUM

Ramzi Turki
1,2

Abstract. This paper continues the study initiated by Alex Heinis of the set H of pairs (α, β) obtained
as the lower and upper limit of the ratio of complexity and length for an infinite word. Heinis proved
that this set contains no point under a certain curve. We extend this result by proving that there are
only three points on this curve, namely (1, 1), ( 3

2
, 5

3
) and (2, 2), and moreover the point ( 3

2
, 5

3
) is an

isolated point in the set H . For this, we use Rauzy graphs, generalizing techniques of Ali Aberkane.

Mathematics Subject Classification. 68R15.

1. Introduction

The complexity function p(n), which counts the number of factors of length n in an infinite word u on a
finite alphabet A, has been extensively studied. We refer the reader to Chapter 4 in [4] which is devoted to this
function. In particular, a vast open question is to know which functions p can be complexity functions; even
after taking into account some immediate necessary conditions (p must be increasing, with p(m+n) ≤ p(m)p(n)
for all m, n), it has been known since Morse and Hedlund [11] that some functions, for example [

√
n], cannot

be realized as a complexity function.
More recently, Alex Heinis [7, 8] made a fine study of the possible values of the couple α = lim infn→∞

p(n)
n ,

β = lim supn→∞
p(n)

n , for p the complexity function of an infinite word u: again, there is one obvious condition,
α ≤ β, and a condition from [11] that either β = 0 or α ≥ 1; but Heinis showed that there are many more
constraints: indeed we cannot have α = β ∈ ]1, 2[, and when we suppose that 1 < α < 2, then β is bounded
from below by the function 3α−2

α .
For practical reasons, we restrict ourselves to recurrent infinite words. An infinite word u is recurrent if every

factor of u has infinitely many occurrences in u. It is likely that the results would not change without this
hypothesis, but proofs would be more cumbersome as several additional shapes of Rauzy graphs would have to
be considered.

Thus we can define the Heinis spectrum

H = {(α, β) : u ∈ AN, u recurrent}.
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By Heinis’s result, H is above the curve C : β = 3α−2
α . Heinis constructed one point in C ∩H , namely the point

(3
2 , 5

3 ).
The goal of the present paper is to study how close points in H can get to the curve C. For this we study

Rauzy graphs and their evolution for an infinite word, starting with those of Sturmian words which have only
two types of evolution. This was extended by Ali Aberkane in [2] who showed that, when an infinite recurrent
word u has a complexity p(n) ≤ 4

3n + 1, then we can describe three types of evolutions of Rauzy graphs which
are denoted by O1,x, O1,y, and Om,x.

Then we introduce a new class of infinite words, called words of type uβ , defined by the condition β < 4α
2+α ,

we describe the evolution of their Rauzy graphs, adapting the techniques of Aberkane to this new class. A
particular case gives the point (3

2 , 5
3 ) in H , following Heinis.

In the main part of the paper, we study how properties of evolutions of the Rauzy graphs imply relations
between α and β. We show that if u is an infinite word of type uβ such that β is less than 5α2−3α

2α2−α+1 , then α is
always equal to 3

2 and β is equal to 5
3 . Therefore, we can say that (3

2 , 5
3 ) is the only point of H that lies on C

with 1 < α < 2, and that it is isolated in H .

2. Definitions

2.1. Some basic notions of combinatorics on words

We first recall some basic definitions in combinatorics on words, and introduce some notations. For more
details see [10].

(1) A word is a finite sequence of letters on a finite alphabet A.
(2) We denote by x[i] the i-th letter of a word x.
(3) The length of a word u is the number of letters in this word. We denote it by |u|.
(4) An infinite word is a sequence indexed by N with values in A. We denote it by u = u0u1 . . .
(5) Let v be a finite word. A word w is a prefix (respectively a suffix) of v if there exists a word z such that

v = wz (respectively v = zw). We denote by prefi(v) the prefix of length i of v and by suffi(v) the suffix
of length i of v. If w is a prefix of length i of v, then w−1v is suff |v|−|w|(v).

(6) Let u be an infinite word. The word u is periodic if there exists T ≥ 1 such that for all n ≥ 0, we have
un+T = un. We say that u is eventually periodic if there exist T ≥ 1 and n0 ≥ 0, such that for all n ≥ n0,
un+T = un. In this case, u can be written u = vwω where v = u0 . . . un0−1 and w = un0un0+1 . . . un0+T−1.

(7) A word w of length n is a factor of an infinite word u if there exists n0 ∈ N such that w =
un0un0+1 . . . un0+n−1. We denote by L(u) the set of all factors of u.

(8) Let u be an infinite word. We denote by Ln(u) the set of factors of length n of u. Then we set pu(n) =
#Ln(u) with pu(0) = 1.
This function p is called the complexity function of u.

(9) Let s(n) = p(n + 1) − p(n) denote the first difference of the complexity function.
(10) Let u be an infinite word on an alphabet A and w a factor of u.

• The factor w is a right special factor (respectively left special factor) for u if there exist two distinct
letters, a and b, such that wa and wb (respectively aw and bw) are in L(u). The set of right special
factors (respectively left special factors) of length n is denoted by RSn (respectively LSn).

• We say that a factor w is a bispecial factor if it is both right special and left special.
(11) Let u be an infinite word on the binary alphabet {a, b} and w a bispecial factor of u. The factor w is a

strong bispecial factor of u if and only if awa, bwb, awb and bwa belong to L(u); if L(u) contains only three
factors out of these four then w is an ordinary bispecial factor; and finally if it contains only two of them
then w is a weak bispecial factor. These definitions can also be used on a larger alphabet when it is known
that w has only two extensions to the left and two extensions to the right.

(12) An infinite word u is called Sturmian if its complexity is p(n) = n + 1 for all n ∈ N.
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(13) An infinite word u is said to be recurrent if every factor of u has infinitely many occurrences in u.

2.2. The Heinis spectrum

Let u ∈ Aω be a recurrent infinite word. We define α(u) := lim infn→∞
p(n)

n and β(u) := lim supn→∞
p(n)

n

(usually we will simply write α(u) = α and β(u) = β where there is no ambiguity).
When u is periodic, then α = β = 0; otherwise, by Morse and Hedlund’s Theorem, [11], β ≥ α ≥ 1. In

particular, if u is a Sturmian word, α = β = 1.
The Heinis spectrum is the set

H = {(α, β) : u ∈ AN, u recurrent} ⊆ (R ∪ {+∞})2.

Theorem 2.1 ([7]). If (α, β) ∈ H with α 
= 0, then β ≥ 3α−2
α .

The following Lemma (implicit in [7]) will be useful to compute α and β.

Lemma 2.2. Let u be a recurrent infinite word.

(1) If s(n) is eventually constant or if limn→∞ s(n) = +∞, then α = β = limn→∞ s(n).
(2) Otherwise, let V + = {n : s(n) > s(n − 1)} and V − = {n : s(n) < s(n − 1)}, then

α = lim inf
n∈V +

p(n)
n

and β = lim sup
n∈V −

p(n)
n

·

Proof.

(1) If s(n) = d for all n ≥ n0, then p(n) = p(n0) + d(n − n0) so that limn→∞
p(n)

n = d. If limn→∞ s(n) = +∞,
then for all d there exists n0 such that s(n) ≥ d and p(n) ≥ p(n0) + d(n − n0) for all n ≥ n0, and thus
limn→∞

p(n)
n = +∞.

(2) If the conditions of (1) are not satisfied, then both V + and V − are infinite. Let n1 and n2 be two successive
elements of V +. Then s(n) ≤ s(n − 1) for all n such that n1 < n < n2. It follows that

p(n) ≥ p(n1) + (n − n1)s(n) and p(n) ≥ p(n2) − (n2 − n)s(n).

We multiply the first inequation by (n2−n) and the second by (n−n1). Summing the resulting inequations,
we get

(n2 − n1)p(n) ≥ (n2 − n)p(n1) + (n − n1)p(n2)

and thus
p(n)
n

≥ n1(n2 − n)
n(n2 − n1)

p(n1)
n1

+
n2(n − n1)
n(n2 − n1)

p(n2)
n2

≥ min
(

p(n1)
n1

,
p(n2)
n2

)
·

It follows that lim infn→∞
p(n)

n = lim infn∈V +
p(n)

n .

The proof for β is similar. �

3. Rauzy graphs and their evolution

Let u be an infinite word defined on a finite alphabet A. To describe its structure, we associate with the set
of factors of u a family of graphs, called Rauzy graphs. Rauzy graphs were defined in [3], and have proved to
be a very useful tool to study families of infinite words with a constrained complexity function, e.g. p(n) = 2n
in [12], or s(n) ≤ 2 in [9].
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Figure 1. The first Rauzy graphs associated with the fixed point of the substitution defined
by: σ(a) = bb et σ(b) = ba.

Definition 3.1. For all n ∈ N, the Rauzy graph of order n of u is the labelled directed graph, denoted by
Γn = Γn(u), such that:

• Its vertices are the factors of length n of u.
• There exists an edge from the vertex w to the vertex v if and only if there exist two elements a and b of A,

satisfying wa = bv, such that wa is a factor of length n + 1 of u. We then say that the words w and v follow
each other in the infinite word u. The letter a is the label of the edge from w to v.

Remark 3.2. Let B = (w0, w1, w2, . . . , wk) be a directed path in the graph Γn. For all i ∈ [1, k], there exist
two letters ai and bi in A such that wi−1ai = biwi. The path B is labelled by the word a1a2 . . . ak. The length
of this path is |a1a2 . . . ak| = k. Note that several paths may be labelled by the same word.

Definition 3.3. Let w be a factor of u of length n + k for some k ≥ 0, and let wi be the factor of length n
occurring at position i in w, for 0 ≤ i ≤ k. Then B = (w0, w1, w2, . . . , wk) is a directed path in the graph Γn,
which is called the path associated with w. The label of B is a word w′ such that w = w0w

′.

Definition 3.4. A substitution σ is a non-erasing endomorphism of A∗.

Example 3.5. Consider the substitution

σ :

{
a �→ bb

b �→ ba.

Then u = limn→∞ σn(b) = babbbabababbbabbbabbbabababbbab . . . is the fixed point of this substitution. The first
Rauzy graphs of this infinite word are represented on Figure 1.

3.1. Evolution of Rauzy graphs

Informally, we call evolution of a Rauzy graph Γn the sequence of the following Rauzy graphs
(Γn+1, Γn+2, . . . , Γn+l) for some l ≥ 1. The question we want to address here is: if we are given only Γn,
without any knowledge of the infinite word u, are we able to predict the evolution of Γn, and up to which length
l? More generally, what are the possible evolutions of Γn?
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In order to give a formal definition, we need more notations. Let G be the set of all possible Rauzy graphs
for infinite words on a finite alphabet A ⊂ A0 (where A0 is a fixed infinite set, e.g. A0 = N, otherwise G would
not be a properly defined set). Then, we can write:

G = {Γn(u) : n ∈ N,A a finite alphabet, u ∈ Aω}
Given G ∈ G, there is an integer n, an alphabet A and an infinite word u ∈ AN such that G = Γn(u).

Moreover, n is unique (recall that the vertices of a Rauzy graph are words such that n is their length). An
evolution is a partial map E : G → G∗ = ∪l≥0Gl such that, if E(G) = (G1, G2, . . . , Gl), there exist n ∈ N, an
alphabet A and u ∈ Aω such that Γn(u) = G and Γn+i(u) = Gi for all i from 1 to l. Note that usually E will
be defined only on a subset of G. We say that Γn undergoes the evolution E (in a given infinite word u), if there
exists l such that E(Γn) = (Γn+1, . . . , Γn+l). Now, we call E the set of the evolutions. If we take E1 and E2

from E , let E1E2 be the evolution that maps G to (G1, . . . , Gl, G
′
1, . . . , G

′
l′) where E1(G) = (G1, . . . , Gl) and

E2(Gl) = (G′
1, . . . , G

′
l′ ). This endows E with a monoid structure.

First, we study the evolutions of length 1. Let Γn and Γn+1 be two consecutive Rauzy graphs of u. How are
they related? There is a one-to-one correspondence between edges of Γn and vertices of Γn+1. Indeed, both are
in one-to-one correspondence with factors of length n + 1 of u: vertices of Γn+1 by definition, and edges of Γn

when viewed as paths of length 1 associated with factors of length n + 1. In the sequel, we will identify both
edges of Γn and vertices of Γn+1 with the associated words. So we can say that the vertices of Γn+1 are the
edges of Γn.

Definition 3.6. Let G = (V, E) be a directed graph. The derived graph of G, denoted by D(G) = (V ′, E′), is
the directed graph such that:
• Its vertices are the edges of G, i.e. V ′ = E.
• It admits an edge from the vertex x to the vertex y when in G, the ending vertex of the edge x is the starting

vertex of the edge y (we can then say that the edges x and y of G are consecutive).

Remark 3.7 ([1]). The derived graph D(Γn) of a Rauzy graph Γn is thus the directed graph such that:
• Its vertices are the edges of Γn, i.e. the factors of length n + 1 of u.
• It admits an edge from the vertex w to the vertex v if and only if there exists a and b in A satisfying wa = bv.

This edge has label a.

We can notice that in the Rauzy graph Γn+1, in order to have an edge from w to v, wa must belong to Ln+1(u).
But it is not important in D(Γn). We know that any edge of Γn+1 connects two vertices associated with two
factors w and v of u such that wa = bv. These two vertices correspond to two consecutive edges of Γn and thus
are also connected in D(Γn). Therefore Γn+1 is a subgraph of D(Γn).

The following proposition shows how Γn and Γn+1 are related.

Proposition 3.8 ([5]). Let u be an infinite word and (Γn)n∈N be its sequence of Rauzy graphs.
We always have Γn+1 ⊂ D(Γn). Moreover, if u is recurrent and RSn ∩ LSn = ∅ then Γn+1 = D(Γn).

The consequence of this proposition is that, if there is no bispecial factor, we can easily construct the graph
Γn+1. So, the most important is to study the case where we have a bispecial factor.

To study this case, we introduce the evolution Eb. Eb is an evolution up to the next graph with a bispecial
factor. We can define Eb in this way:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Eb(G0) undefined if G0 has no right special factor
Eb(G0) = ∅ if G0 has a bispecial factor
Eb(G0) = (G1, . . . , Gl) otherwise, where Gl has a bispecial factor,

G0, . . . , Gl−1 have no bispecial factor,
and Gi+1 = D(Gi) for 0 ≤ i ≤ l − 1

Remark 3.9. If G0 has no right special factor, then any u such that Γn(u) = G0 is eventually periodic and
has no bispecial factor of length more than n. Otherwise, there is always l ≥ 1 such that Γn+l has a bispecial
factor.
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Figure 2. The two types of Sturmian graph.

3.2. The evolution of Rauzy graphs of infinite Sturmian words

First of all, we recall the particular case of infinite Sturmian words.
The evolution of their Rauzy graphs is well-known. We adopt the presentation of Ali Aberkane.

3.2.1. Some properties of Sturmian words and their Rauzy graphs

Proposition 3.10 ([5]). Let u be a binary infinite word. The cardinality of the set of right special factors of
length n, called RSn, is equal to s(n). If moreover u is recurrent, the cardinality of the set LSn is also equal
to s(n).

Remark 3.11. In the case of an infinite Sturmian word which is always recurrent, we can notice that s(n) = 1
for all n ∈ N, i.e. there is only one right special factor and one left special factor for each length.

As every infinite Sturmian word is recurrent, we can say that a Rauzy graph of an infinite Sturmian word u
has one of only two possible shapes. We call Sturmian graph a Rauzy graph that has one of these two shapes
(even if it is not associated with a Sturmian word). The first is the graph which has only one bispecial factor
and the second is the graph which has only one right special factor and one left special factor distinct from each
other.

Notation 3.12. We now give a notation for these two types of Sturmian graphs described above and illustrated
on Figure 2.

(1) We denote by S(n, x, y) the graph of order n with a bispecial factor and x, y are the words which are the
labels of the two loops. We suppose that |x| ≥ |y|. From n, x and y, we can find the vertices. In particular,
the bispecial factor w is determined by n, x and y.

(2) We denote by T (n, x, y, z) the graph of order n with only one right and one left special factor, x, y and z
are the words labelling the branches (see Fig. 2).

Remark 3.13.

• If Γn = S(n, x, y) and w is the bispecial factor of length n, then x and y start with different letters and
satisfy wx = x′w and wy = y′w where x′ and y′ are two words that end with different letters.

• If Γn = T (n, x, y, z), if w1 is the right special vertex and w2 the left special vertex, there exist x′, y′ and z′

such that w1x = x′w2, w1y = y′w2 and w2z = z′w1.

3.2.2. The derived graph of these two types of graphs

In this part, we study the shape of the derived graph of a Sturmian graph. Suppose first that Γn is a graph
of type T . Then Γn+1 = D(Γn) by Proposition 3.8. If Γn = T (n, x, y, z) then Γn+1 = D(T (n, x, y, z)) =:{

S(n + 1, xz, yz) if |z| = 1
T (n + 1, xpref1(z), y pref1(z), suff |z|−1(z)) if |z| > 1
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Figure 3. A graph of type S and its derived graph.

Iterating this, we get Eb(T (n, x, y, z)) = (T (n + 1, xpref1(z), y pref1(z), suff|z|−1(z)), . . . , T (n + |z| −
1, xpref |z|−1(z), y pref |z|−1(z), suff1(z)), S(n + |z|, xz, yz)).

We suppose now that Γn is a graph of type S. We can notice that D(Γn) is a graph with n + 2 vertices and
n + 4 edges. Since p(n + 2) = n + 3, then Γn+1 is a subgraph of D(Γn) with n + 3 edges. Then, to obtain Γn+1,
we should take off one edge from the graph D(Γn). Since Γn+1 has to be of type S or T , the only edges that we
can take off are e2 and e4 (see Fig. 3).

If we take off e2 then Γn+1 = T (n+1, xpref1(y), pref1(y), suff|y|−1(y)) (we assume for simplicity that |y| ≥ 2;
if |y| = 1, we directly get S(n + 1, xy, y)). Then this graph Γn+1 undergoes the evolution Eb which ends with
the graph Γn+|y| = S(n + |y|, xy, y).

If we take off e4 then Γn+1 = T (n + 1, y pref1(x), pref1(x), suff |x|−1(x)). Then Γn+1 undergoes the evolution
Eb which ends with Γn+|x| = S(n + |x|, yx, x).

Definition 3.14. We define two types of evolutions between two graphs of type S:

• Let O1,y be the evolution defined on graphs of type S by:
O1,y(S(n, x, y)) = (G1, G2, . . . , G|y|) where Gi = T (n + i, xprefi(y),
prefi(y), suff |y|−i(y)) for 1 ≤ i < |y|, and G|y| = S(n + |y|, xy, y).

• Let O1,x be the evolution defined on graphs of type S by:
O1,x(S(n, x, y)) = (G1, G2, . . . , G|x|) where Gi = T (n + i, y prefi(x),
prefi(x), suff |x|−i(x)) for 1 ≤ i < |x|, and G|x| = S(n + |x|, yx, x).

We conclude that the sequence of Rauzy graphs of a Sturmian word u is therefore characterized by the sequence
of evolutions (Ek)k≥0 ∈ {O1,x, O1,y}N. Indeed, starting from n0 = 0, x0 = a, y0 = b, it defines by induction a
sequence (nk, xk, yk) ∈ N ×A∗ ×A∗ such that Γnk

= S(nk, xk, yk) and Ek(Γnk
) ends with Γnk+1 .

4. The infinite words of type uβ

4.1. Definition

In general, the Rauzy graphs of an infinite word may have many different shapes, with complicated evolutions.
However, if the complexity is assumed to be small enough, then the range of possible shapes and evolutions
becomes smaller and resembles that of Sturmian words. The purpose of this section is to define the right class
of words for our study, large enough to include all words whose contribution to the Heinis spectrum lies in a
neighborhood of C, and small enough to minimize the number of different evolutions.

We first observe that, if α < 2, then infinitely many Rauzy graphs have a shape already encountered with
Sturmian words.
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Lemma 4.1. Let u be a recurrent infinite word which is not eventually periodic. If α < 2 then there exists an
infinite number of n such that Γn is of type S.

Proof. If we suppose that s(n) ≥ 2 for all n large enough, then p(n) ≥ 2n+ c, which implies that α ≥ 2 which is
excluded. From this, we can say that s(n) = 1 for an infinite number of n, since s(n) ≥ 1 as u is not eventually
periodic. Therefore, for such an n, Γn is one of the Sturmian graphs. If it is not already of type S, then it will
evolve to a graph Γn′ of type S with n′ > n (n′ − n being the length of one branch of Γn). �

In [2], Aberkane considered the class of infinite words with complexity p(n) ≤ 4
3n + 1. This is not enough for

us, as the point (3
2 , 5

3 ) cannot be reached by such words, so we need to extend Aberkane’s results to a larger
class. One of the key argument in [2] is that, when a Rauzy graph is of type S, say Γn = S(n, x, y), some of the
a priori possible evolutions require that s(n + k) ≥ 2 for all k such that 1 ≤ k ≤ |x|, which is impossible when
p(n) ≤ 4

3n + 1. In the next lemma, we study more precisely when this happens.

Lemma 4.2. Let u be an infinite word. We assume that there exist infinitely many n such that Γn is of type
S, and s(n + k) ≥ 2 for all k such that 1 ≤ k ≤ |x|, where Γn = S(n, x, y). Then

α(4 − β) ≤ 2β.

Proof. If β ≥ 2, clearly
α(4 − β) ≤ 2α ≤ 2β.

We assume now that β < 2.
Let ε be such that 0 < ε ≤ 2 − β. Since α = lim infn→∞

p(n+1)
n and β = lim supn→∞

p(n+1)
n , there exists

n0 ∈ N such that, for all n ≥ n0, α − ε ≤ p(n+1)
n ≤ β + ε. Let n ≥ n0 be such that Γn = S(n, x, y) and

s(n + k) ≥ 2 for 1 ≤ k ≤ |x|.
We can notice that

p(n + |x| + 1) = p(n + 1) +
|x|∑

k=1

s(n + k) ≥ p(n + 1) + 2|x|,

since
s(n + k) ≥ 2.

We know that p(n + 1) = |x| + |y|. Then, we have⎧⎪⎨
⎪⎩

p(n + 1) = |x| + |y| ≥ (α − ε)n (4.1)
3|x| + |y| ≤ p(n + |x| + 1) ≤ (β + ε)(n + |x|) (4.2)

|x| ≥ |y| (4.3)

Equations (4.1) and (4.3) give

|x| ≥ 1
2
(α − ε)n. (4.4)

Equation (4.2) gives
(|x| + |y|) + (2 − β − ε)|x| ≤ (β + ε)n.

According to (4.1) and (4.4), we have

(α − ε)n +
1
2
(2 − β − ε)(α − ε)n ≤ (β + ε)n,

which implies that

(α − ε)
(

2 − β

2
− ε

2

)
≤ β + ε.

By letting ε tend to 0, we get
α(4 − β) ≤ 2β. �
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Figure 4. Graphs of type R and Q.

We are now ready to define our class of words, that we named uβ. It is exactly the class of recurrent words
for which the conclusion of Lemma 4.2 does not hold.

Definition 4.3. Let u be a recurrent infinite word. We say that u is an infinite word of type uβ if

β <
4α

2 + α
·

Remark 4.4. If u is of type uβ, then α ≤ β < 4α
2+α , therefore 0 < α < 2, and β < 2. In particular, since α 
= 0,

u is not eventually periodic, so in fact 1 ≤ α ≤ β < 2. By Lemma 4.1, infinitely many Rauzy graphs are of
type S.

Remark 4.5. Let u be a recurrent infinite word of complexity p(n) ≤ 4
3n + 1, which is the class of infinite

words defined by Aberkane in [2], then β ≤ 4
3 which implies that this infinite word is of type uβ (except in the

particular case α = 1, β = 4
3 ). We are going to show that the techniques of Aberkane allow to extend some of

his results to the class of infinite words of type uβ.

4.2. Evolution of Rauzy graphs of infinite words of type uβ

We consider now an infinite word of type uβ . As with Sturmian words, our aim is to look at the evolution of
graphs between two successive graphs of type S.
In this part, we see the difference between the evolution of graphs of Sturmian words and of infinite words of
type uβ . In fact, together with the two cases previously represented, where one edge is removed from D(Γn) to
get Γn+1, we can also have Γn+1 = D(Γn). However, it is not permitted to take off both e2 and e4 (see Fig. 3),
as this would yield an infinite periodic word, which is excluded as α > 0.

Definition 4.6. We define the graphs of types R and Q:
• Let R(n, x, y, z1, z2, z3, z4) be the graph which contains two right and two left special factors with six branches

labelled by x, y, z1, z2, z3, z4 as indicated in Figure 4.
• Let Q(n, x, y, z1, z2, z3) be the graph which contains one right special factor, one left special factor and one

bispecial factor with five branches labelled by x, y, z1, z2, z3 as indicated in Figure 4.

Definition 4.7. We define the evolutions Om,x for all m ≥ 2, where we don’t take off the edges e2 and e4. Let
Om,x be the evolution defined on graphs of type S by: Om,x(S(n, x, y)) = (G1, . . . , G|x|) when |x| > (m − 1)|y|
(otherwise not defined), where:
• Gj|y|+i = R(n + j|y| + i, suff|x|−j|y|−i(x), suff |y|−i(y), prefj|y|+i(x),

prefj|y|+i(x), yj prefi(y), prefi(y)) for 1 ≤ i < |y| and 0 ≤ j ≤ m − 2.
• Gj|y| = Q(n + j|y|, suff |x|−j|y|(x), y, prefj|y|(x), prefj|y|(x), yj)

for 1 ≤ j ≤ m − 1.
• G(m−1)|y|+i = T (n + (m − 1)|y| + i, ym pref(m−1)|y|+i(x), pref(m−1)|y|+i(x),

suff |x|−(m−1)|y|−i(x)) for 1 ≤ i < |x| − (m − 1)|y|
• G|x| = S(n + |x|, ymx, x).

We can notice that this evolution is not a simple evolution such as Eb which is from a graph which contains a
bispecial factor to the next graph which has a bispecial factor since the graphs of type Q also contain a bispecial
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Figure 5. The possible evolutions of a graph of type S with a strong bispecial factor.

factor. The graph G0 = S(n, x, y) contains a strong bispecial factor w. For 1 ≤ j ≤ m − 2, Gj|y| contains an
ordinary bispecial factor wyj and G(m−1)|y| has a weak bispecial factor which is wym−1.

The following proposition generalizes Lemma 4 in [1].

Proposition 4.8. Let u be an infinite word of type uβ, then for all n large enough such that Γn is of type S,
the evolution between Γn and the next graph of type S is one of Om,x, O1,x, or O1,y.

Proof. Let Γn = S(n, x, y), and define w, x′ and y′ as in Remark 5. If Γn+1 
= D(Γn), then as for a Sturmian
word we get evolution O1,x or O1,y.

Assume now that Γn+1 = D(Γn), so that s(n + 1) = 2. Let n1 = min{k > n : s(k) = 1} − 1, which is
well-defined since s(k) is infinitely often 1. By Lemma 4.2, since β < 4α

2+α , we have n1 < n + |x| except for
finitely many n. We thus assume that n is large enough, so that n < n1 < n + |x|. Then s(k) ≥ 2 for all
k ∈ [n + 1, n1], and s(n1 + 1) = 1.

Since s(n1+1)−s(n1) < 0, there is a weak bispecial factor w′ of length n1. Let B be the path in Γn associated
with w′. Since w′ is bispecial, the path B must start in a left special factor and end in a right special factor,
that is start in w and end in w. Therefore B is labelled by a word in {x, y}∗, and thus w′ ∈ w{x, y}∗. Then
n1 = n + i|x| + j|y|, and n1 < n + |x| implies i = 0. So we have n1 = n + j|y|, for some j ≥ 1. This implies in
particular that |y| < |x|, and that

w′ = wyj .

The graph Γn+1 evolves by Eb to Γn+|y|, which has exactly one bispecial factor wy, one left special factor
and one right special factor. The evolution of Γn+|y| gives four cases for the graph Γn+|y|+1. These cases are
illustrated on Figure 5:

• Case 1: wy is a strong bispecial factor. Then Γn+|y|+1 = G′
1.

• Case 2: wy is an ordinary bispecial factor, with edge e6 missing. Then Γn+|y|+1 = G′
2.
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• Case 3: wy is an ordinary bispecial factor, with edge e5 missing. Then Γn+|y|+1 = G′
3.

• Case 4: wy is a weak bispecial factor. Then Γn+|y|+1 = G′
4.

Now, we must discuss according to the nature of bispecial factors of length between n and n1, i.e. the nature
of wyl, 1 ≤ l ≤ j − 1.

Assume that one of the factors wyl is a strong bispecial factor. Then x′wylx = wxylx and x′wyly = wxyly
are factors. Also wxx and wxy are factors since w is a strong bispecial factor. Hence, the suffixes of length n1 +1
of wxyl and wx are both right special factors. They are distinct since their suffixes of length n + 1 are the two
distinct extensions of w to the left, i.e., since we know that wxyl = x′y′lw and wx = x′w and the suffixes of
x′y′lw and x′w of length n + 1 are different then we can say that wxyl and wx have distinct suffixes of length
n1 + 1. Then s(n1 + 1) ≥ 2. This is a contradiction.

Therefore, for all l ∈ [1, j − 1], the word wyl is an ordinary bispecial factor since wxyly, wyylx, wyyly
necessarily are factors. In particular, G′

1 never occurs.
For all k ∈ [n + 1, n1 − 1], we have s(k + 1) = s(k), because all bispecial factor of those lengths are ordinary.

Then s(k) = 2 for all k ∈ [n + 1, n1].

• If j = 1, there is a weak bispecial factor w′ of length n+ |y| so Γn+|y|+1 is graph G′
4 in Figure 5. Then Γn+|x|

is of type S and the evolution between Γn and Γn+|x| is O2,x.
• If j ≥ 2, Γn+|y|+1 is graph G′

3 (not G′
2 since wy3 is a factor), which is of type R and evolves by Eb to a

graph of type Q, Γn+2|y|. If j > 2, this process repeats until we reach Γn+j|y|, which is of type Q and has a
weak bispecial factor. Then Γn+j|y|+1 is a graph of type T similar to G′

4, which evolves by Eb to a graph of
type S, Γn+|x|. We recognize that the evolution between Γn and Γn+|x| is Om,x with m = j + 1. �

Definition 4.9. Let u be an infinite word of type uβ , and n0 ∈ N be the smallest integer such that Γn0 is of
type S and for every n ≥ n0, if Γn is of type S then Γn undergoes one of the evolutions O1,x, O1,y, or Om,x

(m ≥ 2). The sequence of evolutions of u is the sequence (Ei) ∈ {O1,x, O1,y, Om,x : m ≥ 2}N such that Γni

undergoes evolution Ei, where Γni is the ith graph of type S after Γn0 . We say that E ∈ E occurs an infinite
number of times (in the sequence of evolutions of u) if there exist l ∈ N and infinitely many i ∈ N such that
E = EiEi+1 . . . Ei+l−1. Otherwise, we say that E does not occur from a certain rank.

5. Infinite words where only O2,x occurs

The following lemma implies that (3
2 , 5

3 ) belongs to H , which was stated in [7] with a different proof. However
Lemma 5.1 is stronger as it applies to a whole class of words, characterized by the evolution of its Rauzy graphs,
and this will be needed at the end of the proof of Theorem 6.5.

Lemma 5.1. Let u be an infinite word with infinitely many graphs of type S. Let n0 ∈ N, and suppose that for
every n ≥ n0, if Γn is a graph of type S, then it undergoes the evolution O2,x. Then (α, β) = (3

2 , 5
3 ).

Proof. We may assume that Γn0 is of type S. Let (ni)i∈N be the increasing sequence of orders n ≥ n0 for which Γn

is of type S, and let Γni = S(ni, xi, yi). Then the next graph of type S is the graph Γni+1 = S(ni + |xi|, y2
i xi, xi),

so that ⎧⎪⎪⎨
⎪⎪⎩

ni+1 = ni + |xi|
|xi+1| = |xi| + 2|yi|
|yi+1| = |xi|
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Then we can write this system as a product of a matrix and a vector as follows:⎛
⎝ ni+1

|xi+1|
|yi+1|

⎞
⎠ =

⎛
⎝1 1 0

0 1 2
0 1 0

⎞
⎠

⎛
⎝ ni

|xi|
|yi|

⎞
⎠ .

We note A =

⎛
⎝1 1 0

0 1 2
0 1 0

⎞
⎠ . Then we can notice that

⎛
⎝ ni

|xi|
|yi|

⎞
⎠ = Ai

⎛
⎝ n0

|x0|
|y0|

⎞
⎠.

To find Ai, we should write A as a product of a diagonal matrix D by a transfer matrix P and its inverse,
i.e. A = PDP−1. Then Ai = PDiP−1.

As the eigenvalues of A are {−1, 1, 2},

we have D =

⎛
⎝2 0 0

0 −1 0
0 0 1

⎞
⎠ and then Di =

⎛
⎝2i 0 0

0 (−1)i 0
0 0 1

⎞
⎠. Moreover, we may take the matrix P =

⎛
⎝2 1 1

2 −2 0
1 2 0

⎞
⎠ and

then P−1 =

⎛
⎝0 1

3
1
3

0 − 1
6

1
3

1 − 1
2 −1

⎞
⎠.

Now, we can say that

⎛
⎝ ni

|xi|
|yi|

⎞
⎠ = PDiP−1

⎛
⎝ n0

|x0|
|y0|

⎞
⎠.

Hence

⎛
⎝ ni

|xi|
|yi|

⎞
⎠ =

⎛
⎜⎝

2i+1

3 (|x0| + |y0|) + (−1)i

3 (− 1
2 |x0| + |y0|) − 1

2 |x0| − |y0| + n0
2i+1

3 (|x0| + |y0|) − 2
3 (−1)i(− 1

2 |x0| + |y0|)
2i

3 (|x0| + |y0|) + 2
3 (−1)i(− 1

2 |x0| + |y0|)

⎞
⎟⎠.

Observe that s(n) = 2 when ni +1 ≤ n ≤ ni + |yi| and s(n) = 1 when ni + |yi|+1 ≤ n ≤ ni+1. By Lemma 2.2,
with V + = {ni + 1 : i ≥ 0} and V − = {ni + |yi| + 1 : i ≥ 0}, we deduce that

α = lim inf
i→∞

p(ni + 1)
ni

and
β = lim sup

i→∞
p(ni + |yi| + 1)

ni + |yi| .

We can write that
p(ni + 1) = |xi| + |yi|

and

p(ni + |yi| + 1) = p(ni + 1) +
|yi|∑
k=1

s(ni + k) = p(ni + 1) + 2|yi|,

(since Γni undergoes evolution O2,x, we have s(ni + k) = 2 for 1 ≤ k ≤ |yi|).
Then

p(ni + |yi| + 1)
ni + |yi| =

|xi| + 3|yi|
ni + |yi| ·

By replacing ni, |xi| and |yi| with their values, we will have:

|xi| + |yi|
ni

=
2i(|x0| + |y0|)

2i+1

3 (|x0| + |y0|) + (−1)i

6 (2|y0| − |x0|) − 1
2 |x0| − |y0| + n0

=
|x0| + |y0|

2
3 (|x0| + |y0|) + (−1)i

2i6 (2|y0| − |x0|) −
1
2 |x0|+|y0|−n0

2i

·
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Letting i → ∞, we obtain that
|xi| + |yi|

ni
→ 3

2
· (5.1)

Similarly,

|xi| + 3|yi|
ni + |yi| =

2i 5
3 (|x0| + |y0|) + 2

3 (−1)i(2|y0| − |x0|)
2i(|x0| + |y0|) + (−1)i

2 (2|y0| − |x0|) − 1
2 |x0| − |y0| + n0

·

Letting i → ∞, we obtain that
|xi| + 3|yi|
ni + |yi| → 5

3
· (5.2)

Finally, (5.1) and (5.2) give that (α, β) = (3
2 , 5

3 ). �

Example 5.2. Consider the substitution

σ :

{
a �→ bb

b �→ ba.

Then u = limn→∞ σn(b) = babbbabababbbabbbabbbabababbbab . . . is the fixed point of this substitution. It is
called period-doubling word [6]. All Rauzy graphs of u of type S, starting from Γ1, undergo the evolution O2,x.
Therefore Lemma 5.1 applies and (α, β) = (3

2 , 5
3 ).

6. Relations between β and α according to the evolutions that occur

Lemma 6.1. Let u be an infinite word of type uβ. If the evolutions Om,x occur an infinite number of times
with m ≥ 3, then we have

β ≥ 5α2 − 3α

2α2 − α + 1
·

Proof. If α = 1, then the result is trivial since 5α2−3α
2α2−α+1 = 1. We assume in the rest of the proof that α 
= 1.

By Remark 7, we then have 1 < α ≤ β < 2. Let ε > 0 and n be such that Γn = S(n, x, y) undergoes the
evolution Om,x, for some m ≥ 3.

As in the proof of Lemma 4.2, we know that for all n large enough,

(α − ε)n ≤ p(n + 1) = |x| + |y|.

Since s(n + k) = 2, for 1 ≤ k ≤ (m − 1)|y|, then

p(n + (m − 1)|y| + 1) = p(n + 1) +
(m−1)|y|∑

k=1

s(n + k) = |x| + (2m − 1)|y|.

Since, for all n large enough,

p(n + (m − 1)|y| + 1) ≤ (β + ε)(n + (m − 1)|y|)

then
|x| + (2m − 1)|y| ≤ (β + ε)(n + (m − 1)|y|).

We have also, for all n large enough,

p(n + |x| + 1) = 2|x| + m|y| ≥ (α − ε)(n + |x|).
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Let ξ = |x|
n and η = |y|

n . We have ⎧⎪⎨
⎪⎩

(β + ε)[1 + (m − 1)η] ≥ ξ + (2m − 1)η
ξ + η ≥ α − ε

2ξ + mη ≥ (α − ε)(1 + ξ)

and thus ⎧⎪⎨
⎪⎩

−ξ − [(2 − (β + ε))(m − 1) + 1]η ≥ −(β + ε) (6.1)
ξ + η ≥ (α − ε) (6.2)
(2 − (α − ε))ξ + mη ≥ (α − ε) (6.3)

We multiply (6.2) by λ and (6.3) by μ. Then in order to cancel ξ and η in (6.1) + λ(6.2) + μ(6.3), we should
find the values of λ and μ in this system:{ −1 + λ + (2 − (α − ε))μ = 0 (6.4)

−[(2 − (β + ε))(m − 1) + 1] + λ + mμ = 0 (6.5)

Now, we subtract (6.5) from (6.4), hence we have

(2 − (β + ε))(m − 1) + (2 − (α − ε) − m)μ = 0,

then

μ =
(2 − (β + ε))(m − 1)

m + (α − ε) − 2
·

From (6.4), we can say that λ = 1 − (2 − (α − ε))μ. It is clear that μ ≥ 0 if ε is small enough. We can also see
that λ is positive, in fact:

λ(m + α − ε − 2) = m + α − ε − 2 − (2 − α + ε)(2 − β − ε)(m − 1)
= m(1 − (2 − α + ε)(2 − β − ε)) − (2 − α + ε)(β − 1 + ε)
= (m − 1)(2 − α + ε)(β − 1 + ε) + m(α − 1 − ε).

The last expression is positive if ε is small enough because 1 < α < 2 and 1 < β < 2.
Moreover, by doing (6.1) + λ(6.2) + μ(6.3), we obtain (β + ε) ≥ (α − ε)(λ + μ). Then we have

(β + ε) ≥ (α − ε)[1 + μ(α − ε − 1)],

which implies that

(m + α − ε − 2)(β + ε) ≥ (m + α − ε − 2)(α − ε) + (α − ε)(α − ε − 1)(2 − (β + ε))(m − 1),

and then

(β + ε)[(m − 1)(α − ε)2 + (2 − m)(α − ε) + (m − 2)] ≥ (α − ε)2(2m − 1) − m(α − ε).

By letting ε tend to 0, we obtain

β[(m − 1)α2 + (2 − m)α + (m − 2)] ≥ α2(2m − 1) − mα.

Now, we should look at the sign of (m−1)α2+(2−m)α+(m−2), so we calculate Δ = (2−m)2−4(m−1)(m−2) =
(m − 2)(2 − 3m) < 0, since m ≥ 3.
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Then
(m − 1)α2 + (2 − m)α + (m − 2) > 0,

so we have

β ≥ α2(2m − 1) − mα

(m − 1)α2 + (2 − m)α + (m − 2)
·

We know that
α2(2m − 1) − mα

(m − 1)α2 + (2 − m)α + (m − 2)
=

m(2α2 − α) − α2

m(α2 − α + 1) + (−α2 + 2α − 2)
,

which is an increasing function of m, then

β ≥ min
{

m(2α2 − α) − α2

m(α2 − α + 1) + (−α2 + 2α − 2)
: m ≥ 3

}
=

5α2 − 3α

2α2 − α + 1
· �

Lemma 6.2. Let u be an infinite word of type uβ. If the evolution O2,xO1,y occurs an infinite number of times
then we have

β ≥ (6α − 5)α
2α2 − 1

·

Proof. The result trivially holds if α = 1, so we assume that 1 < α ≤ β < 2.
Let ε > 0 and n be such that Γn = S(n, x, y) undergoes the evolution O2,xO1,y.

We know that, for all n large enough,

(α − ε)n ≤ p(n + 1) = |x| + |y| ≤ (β + ε)n.

Since Γn+|y| = Q(n + |y|, suff|x|−|y|(x), y, pref |y|(x), pref |y|(x), y), Γn+|x| = S(n + |x|, y2x, x) and Γn+2|x| =
S(n + 2|x|, y2x2, x), we can say that, for all n large enough,

p(n + 2|x| + 1) = 3|x| + 2|y| ≥ (α − ε)(n + 2|x|)
and

p(n + |y| + 1) = |x| + 3|y| ≤ (β + ε)(n + |y|).
Let ξ = |x|

n and η = |y|
n , so that ⎧⎨

⎩
(α − ε)(1 + 2ξ) ≤ 3ξ + 2η
ξ + 3η ≤ (β + ε)(1 + η)
(α − ε) ≤ ξ + η

Hence, we have ⎧⎪⎨
⎪⎩

(3 − 2(α − ε))ξ + 2η ≥ (α − ε) (6.6)
−ξ + (β + ε − 3)η ≥ −(β + ε) (6.7)
ξ + η ≥ (α − ε) (6.8)

We multiply (6.7) by λ and (6.8) by μ. Then, in order to cancel ξ and η in (6.6) + λ(6.7) + μ(6.8), we should
find the values of λ and μ in the following system:{

(3 − 2(α − ε)) − λ + μ = 0 (6.9)
2 + λ(β + ε − 3) + μ = 0 (6.10)

Now, we subtract (6.10) from (6.9), hence we have λ(β + ε− 2)− (1− 2(α− ε)) = 0. Then λ = 2(α−ε)−1
2−(β+ε) . From

(6.9), we can say that μ = λ − (3 − 2(α − ε)).
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If ε is small enough, it is clear that λ ≥ 0. We can easily prove that μ ≥ 0, in fact:

μ(2 − β − ε) = (2(α − ε) − 1) − (3 − 2(α − ε))(2 − β − ε)
= 2(α − ε − 1)(3 − β − ε) + (β + ε − 1).

The last expression is positive if ε is small enough since 1 < α < 2 and 1 < β < 2. Moreover, by doing
(6.6) + λ(6.7) + μ(6.8), we have λ(β + ε) ≥ (α − ε)(1 + μ). Then we have,

(2(α − ε) − 1)(β + ε) ≥ (α − ε)[2 − (β + ε) + 2(α − ε) − 1 − (3 − 2(α − ε))(2 − (β + ε))].

Letting ε tend to 0, we get
(2α − 1)β ≥ α(6α + 2β − 2αβ − 5),

and then
(2α2 − 1)β ≥ α(6α − 5).

Since 2α2 − 1 > 0 we have β ≥ α(6α−5)
2α2−1 . �

Lemma 6.3. Let u be an infinite word of type uβ. If the evolution O2,xO1,x occurs an infinite number of times
then we have

β ≥ 4α2 − 3α

2α2 − 2α + 1
·

Proof. Let ε be small enough and n large enough such that Γn = S(n, x, y) undergoes the evolution O2,xO1,x.
With similar arguments as in the previous proof, we have:⎧⎨

⎩
3|x| + 4|y| ≥ (α − ε)(n + 2|x| + 2|y|)
|x| + 3|y| ≤ (β + ε)(n + |y|)
|x| + |y| ≥ (α − ε)n

Now, let ξ = |x|
n and η = |y|

n , then we have this new system:⎧⎪⎨
⎪⎩

(3 − 2(α − ε))ξ + 2(2 − (α − ε))η ≥ (α − ε) (6.11)
(β + ε − 3)η − ξ ≥ −(β + ε) (6.12)
ξ + η ≥ (α − ε) (6.13)

By doing suitable combinations between these equations, we find the following result

β ≥ 4α2 − 3α

2α2 − 2α + 1
· �

Lemma 6.4. If β < 5α2−3α
2α2−α+1 , then we have

β <
(6α − 5)α
2α2 − 1

and β <
4α2 − 3α

2α2 − 2α + 1
·

Proof. Observe first that β < 5α2−3α
2α2−α+1 implies that 1 < α < 2. We have to study the sign of the difference

between the quotients 5α2−3α
2α2−α+1 and (6α−5)α

2α2−1 . We can write

5α2 − 3α

2α2 − α + 1
− (6α − 5)α

2α2 − 1
=

−2(α − 1)(2 − α)2α
(2α2 − 1)(2α2 − α + 1)

,
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Figure 6. Graphic representation.

which is negative. So
5α2 − 3α

2α2 − α + 1
<

(6α − 5)α
2α2 − 1

,

which implies that β < (6α−5)α
2α2−1 , since β < 5α2−3α

2α2−α+1 .
Similarly, we calculate the following difference

5α2 − 3α

2α2 − α + 1
− 4α2 − 3α

2α2 − 2α + 1
=

−2α2(α − 1)(2 − α)
(2α2 − 2α + 1)(2α2 − α + 1)

< 0.

Then we can say that

β <
4α2 − 3α

2α2 − 2α + 1
· �

Theorem 6.5. Let u be a recurrent infinite word such that β < 5α2−3α
2α2−α+1 and β < 4α

2+α , then (α, β) = (3
2 , 5

3 ).

Remark 6.6. We can reformulate Theorem 6.5 in another way:

• If α ≤ 5
3 , then either β ≥ 5α2−3α

2α2−α+1 or (α, β) = (3
2 , 5

3 ).
• If α ≥ 5

3 then β ≥ 4α
2+α .

The different functions involved in the proof of Theorem 6.5 are represented on Figure 6.

Now, we prove Theorem 6.5.

Proof. Let u be an infinite word satisfying both conditions. Since β < 4α
2+α , it is of type uβ. Since β < 5α2−3α

2α2−α+1 ,
we can say by using Lemma 6.1 that, from a certain rank, there is no evolution Om,x, with m ≥ 3. Therefore
we have only evolutions O1,x, O2,x and O1,y .

By using Lemma 6.4, we have β < (6α−5)α
2α2−1 and β < 4α2−3α

2α2−2α+1 , then from a certain rank, evolution O2,xO1,y

does not occur by Lemma 6.2, nor evolution O2,xO1,x by Lemma 6.3. These two results imply that from a
certain rank, either O2,x does not occur at all, but this would imply that α = 1, which is excluded, or only O2,x

occurs. Therefore, by using Lemma 5.1, we conclude that (α, β) = (3
2 , 5

3 ). �
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Corollary 6.7. Let H = {(α, β) : u ∈ AN, u recurrent} and C = {(α, β) : β = 3α−2
α }. Then

H ∩ C =
{

(1, 1),
(

3
2
,
5
3

)
, (2, 2)

}

and (3
2 , 5

3 ) is an isolated point in H.

Proof. Let (α, β) ∈ H ∩ C.

• If α < 1 or α > 2 then β = 3α−2
α < α, which is impossible.

• If 1 < α < 2 then the conditions of Theorem 6.5 are satisfied, so that (α, β) = (3
2 , 5

3 ).

Therefore, H ∩ C ⊂ {(1, 1), (3
2 , 5

3 ), (2, 2)}. These three values are obtained since: (α, β) = (1, 1) for Sturmian
words, (α, β) = (3

2 , 5
3 ) for Example 5.2 and (α, β) = (2, 2) for words of complexity 2n + 1, see [3]. �
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