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Cross-bifix-free sets via Motzkin paths generation

Elena Barcucci∗ Stefano Bilotta∗ Elisa Pergola∗

Renzo Pinzani∗ Jonathan Succi∗

Abstract

Cross-bifix-free sets are sets of words such that no prefix of any word
is a suffix of any other word. In this paper, we introduce a general con-
structive method for the sets of cross-bifix-free q-ary words of fixed length.
It enables us to determine a cross-bifix-free words subset which has the
property to be non-expandable.

1 Introduction

A cross-bifix-free set of words (also called cross-bifix-free code) is a set where,
given any two words over an alphabet, possibly the same, any prefix of the first
one is not a suffix of the second one and vice-versa. Cross-bifix-free sets are in-
volved in the study of frame synchronization which is an essential requirement
in a digital communication systems to establish and maintain a connection be-
tween a transmitter and a receiver.

Analytical approaches to the synchronization acquisition process and meth-
ods for the construction of sequences with the best aperiodic autocorrelation
properties [1, 2, 3, 4] have been the subject of numerous analyses in the digital
transmission.

The historical engineering approach started with the introduction of bifix, a
name proposed by J. L. Massey as acknowledged in [5]. It denotes a subsequence
that is both a prefix and suffix of a longer observed sequence.

In [4] the notion of a distributed sequences is introduced, where the synchro-
nization word is not a contiguous sequence of symbols but is instead interleaved
into the data stream. In [6] is showed that the distributed sequence entails a
simultaneous search for a set of synchronization words. Each word in the set of
sequences is required to be bifix-free. In addition, they arises a new requirement
that no prefix of any length of any word in the set is a suffix of any other word
in the set. This property of the set of synchronization words was termed as
cross-bifix-free.

The problem of determining such sets is also related to several other scientific
applications, for instance in pattern matching [7] and automata theory [8].
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Several methods for constructing cross-bifix-free sets have been recently pro-
posed as in [9, 10, 11]. In particular, once the cardinality q of the alphabet and
the length n of the words are fixed, a matter is the construction of a cross-bifix-
free set with the cardinality as large as possible. An interesting method has
been proposed in [9] for words on a binary alphabet. This specific construc-
tion reveals interesting connections to the Fibonacci sequence of numbers. In
a recent paper [11] the authors revisit the construction in [9] and generalize it
obtaining cross-bifix-free sets having greater cardinality over an alphabet of any
size q. They also show that their cross-bifix-free sets have a cardinality close to
the maximum possible. To our knowledge this is the best result in the literature
about the greatest size of cross-bifix-free sets.

For the sake of completeness we note that an intermediate step between the
original method [9] and its generalization [11] has been proposed in [10] and it
is constituted by a different construction of binary cross-bifix-free sets based on
lattice paths which allows to obtain greater values of cardinality if compared to
the ones in [9].

In this study, we revisit the construction in [10]. We give a new construction
of cross-bifix-free sets that generalizes the construction of [10] in order to extend
the construction to q-ary alphabets for any q, q > 2. This approach enables us
to obtain cross-bifix-free sets having greater cardinality than the ones presented
in [11], for the initial values of n. This new result extends the theory of cross-
bifix-free sets and it could be used to improve some technical applications.

This paper is organized as follows. In Section 2 we give some preliminaries
and describe the adopted notation. In Section 3 we present a new construction
of cross-bifix-free sets in the q-ary alphabet and in Section 4 we analyze the
sizes of the sets of our construction in comparison to the ones in the literature.

2 Basic definitions and notations

Let Zq = {0, 1, · · · , q− 1} be an alphabet of q elements. A (finite) sequence
of elements in Zq is called (finite) word. The set of all words over Zq having
length n is denoted by Z

n
q . A consecutive sequence of m element a ∈ Zq is

denoted by the short form am. Let w ∈ Z
n
q , then |w|a denotes the number of

occurrences of a in w, being a ∈ Zq. Let w = uzv then u is called a prefix of w
and v is called a suffix of w. A bifix of w is a subsequence of w that is both its
prefix and suffix.

A word w ∈ Z
n
q is said to be bifix-free or unbordered [12] if and only if no

prefix of w is also a suffix of w. Therefore, w is bifix-free if and only if w 6= uzu,
being u any necessarily non-empty word and z any word. Obviously, a necessary
condition for w to be bifix-free is that the first and the last letters of w must be
different.

Example 2.1 In Z2 = {0, 1}, the word 111010100 of length n = 9 is bifix-free,

while the word 101001010 contains two bifixes, 10 and 1010.
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Let BFq(n) denote the set of all bifix-free words of length n over an alphabet
of fixed size q (for more details about this topic see [12]).

Given q > 1 and n > 1, two distinct words w,w′ ∈ BFq(n) are said to be
cross-bifix-free [6] if and only if no strict prefix of w is also a suffix of w′ and
vice-versa.

Example 2.2 The binary words 111010100 and 110101010 in BF2(9) are cross-
bifix-free, while the binary words 111001100 and 110011010 in BF2(9) have the

cross-bifix 1100.

A subset of BFq(n) is said to be a cross-bifix-free set if and only if for each
w,w′, with w 6= w′, in this set, w and w′ are cross-bifix-free. This set is said to
be non-expandable on BFq(n) if and only if the set obtained by adding any other
word in BFq(n) is not a cross-bifix-free set. A non-expandable cross-bifix-free
set on BFq(n) having maximal cardinality is called a maximal cross-bifix-free

set on BFq(n).

In a recent paper [11] the authors provide a general construction of cross-
bifix-free sets over a q-ary alphabet. Below, we recall such generation for the
family of cross-bifix-free sets in Z

n
q .

For any 2 ≤ k ≤ n− 2, the cross-bifix-free set Sk,q(n) in [11] is the set of all
words s = s1s2 · · · sn in Z

n
q that satisfy the following two properties:

1) s1 = · · · = sk = 0, sk+1 6= 0 and sn 6= 0,

2) the subsequence sk+2 . . . sn−1 does not contain k consecutive 0’s.

Let

Fk,q(n) =

{

qn if 0 ≤ n < k,

(q − 1)
∑k

l=1 Fk,q(n− l) if n ≥ k,

be the sequence enumerating the words in Z
n
q avoiding k consecutive zero’s [13].

Then, from the above definition of Sk,q(n), we have

|S(k)
n,q| = (q − 1)2Fk,q(n− k − 2) .

For any fixed n and q, the largest size of |S
(k)
n,q| is denoted by S(n, q) and it

is given by the following expression as in [11]

S(n, q) = max{(q − 1)2Fk,q(n− k − 2) : 2 ≤ k ≤ n− 2}.

This result allows to obtain non-expandable cross-bifix-free sets in the q-ary
alphabet having cardinality close to the maximum.

In the present paper we introduce an alternative constructive method for
the generation of cross-bifix-free set in Zq. Our approach is based on the study
of lattice path in the discrete plane and it moves from the construction in [10].

Each word w ∈ Z
n
q can be represented as a lattice path of N2 running from

(0, 0) to (n, 0) having the following properties:
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- the element 0 corresponds to a fall step which is defined by (1,−1),

- the element 1 corresponds to a rise step which is defined by (1, 1),

- the elements 2, . . . , q − 1 correspond respectively to a colored level step

which is defined by (1, 0) and it is labeled by one of the q− 2 fixed colors.

For example, in Table 1 and Table 2 is showed an equivalence between ele-
ments and steps of lattice paths in the alphabets Z3 and Z4, respectively.

Table 1: Equivalence between symbols and steps for
Z3 = {0, 1, 2}.

Symbol Step Color Representation

0 (1,−1) -

1 (1, 1) -

2 (1, 0) Black

Table 2: Equivalence between symbols and steps for
Z4 = {0, 1, 2, 3}.

Symbol Step Color Representation

0 (1,−1) -

1 (1, 1) -

2 (1, 0) Red

3 (1, 0) Green

From now on, we will refer interchangeably to words or their graphical rep-
resentations on the discrete plane, that is paths. The definition of bifix-free and
cross-bifix-free can be easily extended to paths.

A k-colored Motzkin path of length n is a lattice path of N2 running from
(0, 0) to (n, 0) that never goes below the x-axis and whose admitted steps are
rise steps, fall steps and k-colored level steps (for more details about this copy
see [14]).

For example, the left side of Fig. 1 shows a Motzkin path in Z3 having
length 6, while the path in its right side is not a Motzkin path since it crosses
the x-axis.

We denote by Mk(n) the set of all k-colored Motzkin paths of length n, and
let Mk(n) be the size of Mk(n).

4



Figure 1: Words 121002, 100212 and the equivalent paths. The first one is a Motzkin
word.

1 2 1 0 0 2 1 0 0 2 1 2

Proposition 2.1 For any n ≥ 0 and k ≥ 3, Mk(n) is given by the following

expression

Mk(n+ 1) = kMk(n) +

n−1
∑

i=0

Mk(i)Mk(n− 1− i)

with Mk(0) = 1 and Mk(1) = k.

Proof. If n = 0, Mk(n) contains the empty path only, then Mk(0) = 1. If
n = 1, Mk(n) only contains those paths obtained by a level step, thus Mk(1) =
k.
Let n ≥ 1 and w ∈ Mk(n+ 1). There are two cases: w begins with a level step
or w begins with a rise step. In the first case we have that w = hα where h is a
level step and α ∈ Mk(n), then the number of this first kind of paths is equal
to kMk(n).

Otherwise, we have that w = uαdβ where u is a rise step, d is a fall step,
α ∈ Mk(i) and β ∈ M(n− 1− i) with 0 ≤ i ≤ n− 1. Then the number of this

latter kind of paths is equal to
∑n−1

i=0 Mk(i)Mk(n− 1− i).
Thus,

Mk(n+ 1) = kMk(n) +

n−1
∑

i=0

Mk(i)Mk(n− 1− i).

�

A word w ∈ Z
n
q is called (q−2)-colored Motzkin word if the equivalent lattice

path is a (q − 2)-colored Motzkin path.

For our purposes, it is useful to denote by M̂q−2(n) the set of all elevated
(q − 2)-colored Motzkin words of length n, defined as

M̂q−2(n) = {1α0 : α ∈ Mq−2(n− 2)}.

For example, in Fig. 2 two words in M̂1(6) are depicted.
In the next section of the present paper we are interested in determining

one among all the possible non-expandable cross-bifix-free sets of words of fixed
length n > 1 on Z

n
q . We denote this set by CBFSq(n).

5



Figure 2: An example of elevated Motzkin words

1 2 1 2 0 0 1 2 2 2 2 0

Figure 3: Graphical representation of the set Aq(n), n ≥ 3

α ∈ Mq−2(i) β ∈ M̂q−2(n− i)

3 On the non-expandability of CBFSq(n)

In this section we define the set CBFSq(n) which is formed by the union of
three sets of (q− 2)-colored Motzkin paths denoted by Aq(n),Bq(n) and Cq(n),
with q ≥ 3 and n ≥ 3, respectively.

Let

Aq(n) =
{

αβ : α ∈ Mq−2(i), β ∈ M̂q−2(n− i)
}

\
{

αβ : α, β ∈ M̂q−2

(n

2

)}

with 0 ≤ i ≤
⌊

n
2

⌋

, be the set of words composed by a (q − 2)-colored Motzkin
word α of length i, and a elevated (q − 2)-colored Motzkin word β of length
n − i (see Fig. 3). If n is even, we need to remove the words composed by
two elevated subwords of the same length. On the other side, if n is odd, we

assume the set
{

αβ : α, β ∈ M̂q−2

(

n
2

)

}

empty, since it does not exists any path

of non-integer length.
Then, the enumeration of the set Aq(n) is given by the following expression

|Aq(n)| =

⌊n/2⌋
∑

i=0

Mq−2(i)Mq−2(n− i− 2)−
[

Mq−2

(n

2
− 2

)]2

.

Let
Bq(n) =

{

1αβ : α ∈ Mq−2(i), β ∈ M̂q−2(n− i− 1)
}

with 0 ≤ i ≤
⌊

n
2

⌋

− 1, be the set of words composed by a rise step, a (q − 2)-
colored Motzkin word α of length i, and a elevated (q−2)-colored Motzkin word
β of length n− i− 1 (see Fig. 4).
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Figure 4: Graphical representation of the set Bq(n), n ≥ 3

1 α ∈ Mq−2(i) β ∈ M̂q−2(n− i− 1)

Figure 5: Graphical representation of the set Cq(n), n ≥ 3

γ ∈ Mq−2(n− 1) 0

γ avoids
elevated Motzkin words

of length j ≥
⌈

n
2

⌉

Then, the enumeration of the set Bq(n) is given by the following expression

|Bq(n)| =

⌊n/2⌋−1
∑

i=0

Mq−2(i)Mq−2(n− i− 3).

Let

Cq(n) =
{

γ0 : γ ∈ Mq−2(n− 1), γ 6= uβv, β ∈ M̂q−2(j)
}

with j ≥
⌈

n
2

⌉

, be the set of words composed by a (q − 2)-colored Motzkin word
γ of length n− 1 that avoids elevated (q − 2)-colored Motzkin words of length
j, and a fall step (see Fig. 5).

Then, the enumeration of the set Cq(n) is given by the following expression

|Cq(n)| = Mq−2(n− 1)−

n−1
∑

k=⌈n/2⌉

n−1−k
∑

i=0

Mq−2(i)Mq−2(k − 2)Mq−2(n− 1− i− k).

Note that, in order to obtain the size |Cq(n)| we need to subtract from all
words γ of length n − 1 those containing a elevated Motzkin subword β of
length greater than or equal to ⌈n/2⌉, and γ can contain one of those subwords
at most. Then, for k = ⌈n/2⌉ , . . . , n−1 we need to remove the words uβv, with
u ∈ Mq−2(i), β ∈ M̂q−2(k), v ∈ Mq−2(n− 1− i− k) and 0 ≤ i ≤ n− 1− k.

At this point, we define the set CBFSq(n) as follows

CBFSq(n) = Aq(n) ∪ Bq(n) ∪ Cq(n)
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that is the union of the above described sets. For instance, in Fig. 6 the set
CBFS3(4) is depicted.

Figure 6: Graphical representation of the set CBFS3(4)

1 2 2 0 1 1 0 0 2 1 2 0 2 2 1 0

1 1 2 0 1 2 1 0 2 2 2 0

Proposition 3.1 The set CBFSq(n) is a cross-bifix-free set on BFq(n), for

any q ≥ 3 and n ≥ 3.

Proof. Let w,w′ ∈ CBFSq(n). Let u be a prefix of w, and v be a suffix of
w′ such that |u| = |v|. We need to check that in each case the prefix u does not
match with the suffix v.

1. Let w ∈ Aq(n) and w′ ∈ Aq(n) ∪ Bq(n).
For each prefix u of w we have |u|0 ≤ |u|1 and if |u| > ⌊n

2 ⌋, then |u|0 < |u|1.
For each suffix v of w′ we have |v|0 ≥ |v|1 and if |v| < ⌊n+1

2 ⌋, then
|v|0 > |v|1.
Let |u| = |v| = l, if either l < ⌊n+1

2 ⌋ or l > ⌊n
2 ⌋, then u does not match

with v. So we have to check the case ⌊n+1
2 ⌋ ≤ l ≤ ⌊n

2 ⌋.

If n is odd, it does not exist an integer l satisfying ⌊n+1
2 ⌋ ≤ l ≤ ⌊n

2 ⌋,
otherwise if n is even, the case ⌊n+1

2 ⌋ ≤ l ≤ ⌊n
2 ⌋ is verified only for l = n

2 .
Therefore let n be even and l = n

2 . In this case |u|0 ≤ |u|1 and |v|0 ≥ |v|1.
At this point u can match with v only if |v|0 = |v|1, and this can happen
only if v is a elevated Motzkin word. Suppose now that u = v, so u should
be a elevated Motzkin word too, and they have both length n

2 . In this
case, w should be a word composed of two elevated Motzkin subwords of
the same length, but such a word does not exists in CBFSq(n) since the

set
{

αβ : α, β ∈ M̂q−2

(

n
2

)

}

is not included in it, thus u does not match

with v.

2. Let w ∈ Bq(n) and w′ ∈ Aq(n) ∪ Bq(n).
For each prefix u of w we have |u|0 < |u|1, and for each suffix v of w′ we
have |v|0 ≥ |v|1, thus u does not match with v.

3. Let w ∈ Cq(n) and w′ ∈ Aq(n) ∪ Bq(n).
For each prefix u of w we have |u|0 ≤ |u|1. For each suffix v of w′ we have

8



|v|0 ≥ |v|1 and if |v| < ⌊n+1
2 ⌋, then |v|0 > |v|1.

Let |u| = |v| = l. If l < ⌊n+1
2 ⌋, then u does not match with v. So we have

to check the case l ≥ ⌊n+1
2 ⌋. In this case v contains a elevated Motzkin

subword of length ⌊n+1
2 ⌋ = ⌈n

2 ⌉ at least, and u does not match with v,
since u avoids such subwords.

4. Let w ∈ CBFSq(n) and w′ ∈ Cq(n).
For each prefix u of w we have |u|0 ≤ |u|1, and for each suffix v of w′ we
have |v|0 > |v|1, thus u cannot match with v.

We proved that CBFSq(n) is a cross-bifix-free set on BFq(n), for any q ≥ 3 and
n ≥ 3. �

Proposition 3.2 The set CBFSq(n) is a non-expandable cross-bifix-free set on

BFq(n), for any q ≥ 3 and n ≥ 3.

Proof. Let w ∈ BFq(n) \ CBFSq(n) and W = CBFSq(n) ∪ {w}. If w
begins with 0 then W is not cross-bifix-free since any word in CBFSq(n) ends
with 0. If w ends with 1 then W is not cross-bifix-free since any word in Aq(n)
begins with 1. If w ends with a letter k 6= 0, 1 then W is not cross-bifix-free
since the suffix k of w matches, for instance, with the prefix k of the word
kn−10 ∈ Cq(n). Consequently we have to consider w as a word beginning with
a non-zero letter and ending with 0.

Let h = |w|1 − |w|0 be the ordinate of the last point of the path correspond-
ing to w. We now need to distinguish three different cases: h > 0, h < 0 and
h = 0.

If h > 0, w can be written as (see Fig. 7)

w = φ 1 µ1 1 µ2 · · · 1 µh,

where φ is a word satisfying |φ|1 = |φ|0 and not beginning with 0, and µ1, . . . , µh

are (q − 2)-colored Motzkin words with µh non-empty as w ends with 0.
In this case, if |µh| = l ≤ n − 2, considering for instance the word u =

1µh2
n−l−20 ∈ Aq(n) we can clearly see that 1µh is a cross-bifix between w and

u, and then W is not cross-bifix-free. On the other hand, if |µh| = n− 1, then
necessarily h = 1 and w = 1µ1. So, w can be written as w = 1αβ, where
α ∈ Mq−2(i), β ∈ M̂q−2(n− i− 1) with i > ⌊n

2 ⌋ (otherwise w ∈ Bq(n)). In this
case, for instance, the word β12i−10 ∈ Aq(n) has a cross-bifix with w, thus W
is not a cross-bifix-free-set.

If h < 0, w can be written as (see Fig. 8)

w = µ−h 0 · · · µ2 0 µ1 0 φ

9



Figure 7: Graphical representation of w, in the case h > 0

φ 1 µ1 1 µ2 · · · 1 µh

where φ is a word satisfying |φ|1 = |φ|0 and ending with 0, and µ1, . . . , µ−h are
(q−2)-colored Motzkin words with µ−h non-empty as w begins with a non-zero
letter.

Figure 8: Graphical representation of w, in the case h < 0

µ−h 0 · · · µ2 0 µ1 0 φ

In this case, if |µ−h| = l ≤ n − 2, considering for instance the word u =
12n−l−2µ−h0 ∈ Aq(n) we can clearly see that µ−h0 is a cross-bifix between w
and u, and then W is not cross-bifix-free. On the other hand, if |µ−h| = n− 1,
then necessarily h = −1 and w = µ10. So, w can be written as w = αβδ0,
where β ∈ M̂q−2(j) with j ≥ ⌈n

2 ⌉ (otherwise w ∈ Cq(n)), and α, δ any two
(q − 2)-colored Motzkin words of the appropriate length. In this case, for in-
stance, the word 2n−j−|α|αβ ∈ Aq(n) has a cross-bifix with w, thus W is not a
cross-bifix-free-set.

Finally, if h = 0, the path associated to w can either remain above x-axis or
fall below it.

In the first case let i, with ⌊n
2 ⌋ ≤ i < n, be the last x-coordinate of the

path intercepting the x-axis. Notice that i can not be less than ⌊n
2 ⌋, otherwise

w ∈ Aq(n). We can write w = αβ, where α is a non-empty word in Mq−2(i) and

β ∈ M̂q−2(n − i). We now need to take into consideration two different cases:

i = ⌊n
2 ⌋ and i > ⌊n

2 ⌋. In the first case α ∈ M̂q−2(
n
2 ), otherwise w ∈ Aq(n),

then, for instance, the word 2n/2α ∈ Aq(n) has a cross-bifix with w. In the
latter case, for instance, the word β2i−10 ∈ Cq(n) has a cross-bifix with w, so
that W is not a cross-bifix-free-set.

In the other case the path associated to w crosses the x-axis. Let i, with

10



0 < i < n, be the first x-coordinate of the path crossing x-axis. We can write
w = α0φ, where α is a non-empty word in Mq−2(i). In this case, for instance,
the word 12n−i−2α0 ∈ Aq(n) has a cross-bifix with w, then W is not a cross-
bifix-free-set.

We proved that CBFSq(n) is a non-expandable cross-bifix-free set onBFq(n),
for any q ≥ 3 and n ≥ 3.

�

4 Sizes of Cross-Bifix-Free sets for Small Lengths

In this section we present some interesting results concerning the size of
CBFSq(n) compared to the ones in [11].

For fixed n and q, we recall that the size of q-ary cross-bifix-free sets given
in [11] is obtained by

S(n, q) = max{(q − 1)2Fk,q(n− k − 2) : 2 ≤ k ≤ n− 2}

which is proved to be nearly optimal.
In Table III is shown the values of S(n, q) and |CBFSq(n)| for 3 ≤ q ≤ 6

and n ≤ 16. For the initial values of n, we can observe that the sizes obtained
by our construction are greater than the size S(n, q). In particular, the number
of the initial values of n for which |CBFSq(n)| is greater grows with q and this
trend can be easily verified by experimental results.

In order to improve the values of the size S(n, q) for the initial size of n, we
can consider the following expression

S∗(n, q) = max{(q − 1)2Fk,q(n− k − 2) : 1 ≤ k ≤ n− 2},

where k can assume also the value 1. When k = 1, in the case of small n and
large q, we obtain cross-bifix-free sets having cardinality greater than the one
proposed in [11].

In Table IV is shown the values of S∗(n, q) and |CBFSq(n)| for 3 ≤ q ≤ 6
and n ≤ 16. Also in this situation, we can observe that the sizes obtained by
our construction are greater than the size S(n, q) in a range of values of n. In
particular, the range of values of n for which |CBFSq(n)| is greater grows with
q and this trend can be easily verified by experimental results.
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Table 3: Comparing the values from [11] with CBFSq(n), for 3 ≤ q ≤ 6

n |CBFS3(n)| S(n, 3) |CBFS4(n)| S(n, 4)

3 4 4 9 9
4 7 4 25 9
5 16 12 72 36
6 36 32 223 135
7 87 88 712 513
8 210 240 2 334 1 944
9 535 656 7 868 7 371
10 1 350 1 792 26 731 27 945
11 3 545 4 896 93 175 105 948
12 9 205 13 376 324 520 401 679
13 24 698 36 544 1 157 031 1 522 881
14 65 467 99 840 4 104 449 5 773 680
15 178 375 272 768 14 874 100 21 889 683
16 480 197 745 216 53 514 974 82 990 089

n |CBFS5(n)| S(n, 5) |CBFS6(n)| S(n, 6)

3 16 16 25 25
4 61 16 121 25
5 224 80 550 150
6 900 384 2 739 875
7 3 595 1 856 13 260 5 125
8 15 014 8 960 67 740 30 000
9 63 135 43 264 342 676 175 625
10 271 136 208 896 1 787 415 1 028 125
11 1 178 677 1 008 640 9 324 647 6 018 750
12 5 167 953 4 870 144 49 456 240 35 234 375
13 22 986 100 23 515 136 263 776 127 206 265 625
14 102 403 229 113 541 120 1 417 981 855 1 207 500 000
15 463 098 075 548 225 024 7 688 015 908 7 068 828 125
16 2 089 302 415 2 647 064 576 41 785 951 916 41 381 640 625

12



Table 4: Comparing the values from S∗(n, q) with CBFSq(n), for 3 ≤ q ≤ 6

n |CBFS3(n)| S∗(n, 3) |CBFS4(n)| S∗(n, 4)

3 4 4 9 9
4 7 8 25 27
5 16 16 72 81
6 36 32 223 243
7 87 88 712 729
8 210 240 2 334 2 187
9 535 656 7 868 7 371
10 1 350 1 792 26 731 27 945
11 3 545 4 896 93 175 105 948
12 9 205 13 376 324 520 401 679
13 24 698 36 544 1 157 031 1 522 881
14 65 467 99 840 4 104 449 5 773 680
15 178 375 272 768 14 874 100 21 889 683
16 480 197 745 216 53 514 974 82 990 089

n |CBFS5(n)| S∗(n, 5) |CBFS6(n)| S∗(n, 6)

3 16 16 25 25
4 61 64 121 125
5 224 256 550 625
6 900 1 024 2 739 3 125
7 3 595 4 096 13 260 15 625
8 15 014 16 384 67 740 78 125
9 63 135 65 536 342 676 390 625
10 271 136 262 144 1 787 415 1 953 125
11 1 178 677 1 048 576 9 324 647 9 765 625
12 5 167 953 4 870 144 49 456 240 48 828 125
13 22 986 100 23 515 136 263 776 127 244 140 625
14 102 403 229 113 541 120 1 417 981 855 1 220 703 125
15 463 098 075 548 225 024 7 688 015 908 7 068 828 125
16 2 089 302 415 2 647 064 576 41 785 951 916 41 381 640 625
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5 Conclusions and further developments

In this paper, we introduce a general constructive method for cross-bifix-free
sets in the q-ary alphabet based upon the study of lattice paths on the discrete
plane. This approach enables us to obtain the cross-bifix-free set CBFSq(n)
having greater cardinality than the ones proposed in [11], for the initial values
of n.

Moreover, we prove that CBFSq(n) is a non-expandable cross-bifix-free set
on BFq(n), i.e. CBFSq(n)∪{w} is not a cross-bifix-free set on BFq(n), for any
w ∈ BFq(n)\CBFSq(n).

The non-expandable property is obviously a necessary condition to obtain
a maximal cross-bifix-free set on BFq(n), anyway the problem of determine
maximal cross-bifix-free sets is still open and no general solution has been found
yet.
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